EUROPEAN PATENT SPECIFICATION

INTEGRATED GPS/DAB RECEIVER
INTEGRIERTER GPS/DAB EMPFÄNGER
RECEPTEUR GPS/DAB INTEGRÉ

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

Priority: 22.05.2000 EP 00201800

Date of publication of application:
12.03.2003 Bulletin 2003/11

Proprietor: IPG Electronics 503 Limited
Les Banques
St Peter Port
Guernsey GY1 3DA (GB)

Inventor: HUISKEN, Josephus, A.
NL-5656 AA Eindhoven (NL)

Representative: Talbot-Ponsonby, Clare
Josephine et al
Coller IP Management
Fugro House
Hithercroft Road
Wallingford
Oxfordshire OX10 9RB (GB)

References cited:
EP-A- 1 039 311
US-A- 5 689 245
DE-A- 19 848 006

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

[0001] The invention relates to a global Position System (GPS) receiver for receiving and processing GPS signals comprising means for receiving and processing Digital Audio Broadcast (DAB) signals. Such a receiver is known from e.g. the article "Mobile Satellite Communications for Consumers" by Mr. G.K. Noreen, published in Microwave Journal, November 1991, pages 24-34. The known receiver shows the use of a DAB receiver and a GPS receiver in one receiver housing. The advantages of having both single-to-multipoint transmission capabilities and position information at hand are extensively explained therein.

[0002] However, the use of complete receivers for DAB and GPS signals in one housing is not only costly, but may also give rise to mutual interferences in the processing of the received DAB and GPS signals.

SUMMARY OF THE INVENTION

[0003] It is an object of the invention to reduce the costs of implementing such receiver while maintaining or even improving performance of both DAB and GPS features. Therefore, the invention provides a receiver for receiving an analog GPS signal and an analog DAB signal. The receiver comprises a receiver front end; a mixer stage connected to the front end and operative to carry out frequency conversion of the DAB signal and of the GPS signal; filtering means connected to an output of the mixer stage; analog-to-digital converter means connected to an output of the filtering means for converting the filtered frequency-converted GPS signal into GPS digital data and for converting the filtered frequency-converted DAB signal into DAB digital data; a GPS processor for processing the GPS digital data; and a DAB demodulator for processing the DAB digital data. The invention is characterized in that the analog-to-digital converter means has an A/D converter with an input connected to the filtering means and with an output connected to the GPS processor and to the DAB demodulator, and in that the receiver has DAB elimination means operative to reduce a contribution of the DAB data to the GPS data as processed by the GPS processor.

[0004] The invention is based on the recognition that proper correlation of GPS signal does not necessarily require to have the GPS signals available continuously or fully separated from DAB signals. This allows either to interrupt the processing of GPS signals during the data carrying signal segments of a DAB signal, hereinafter also referred to as non-zero DAB data segments, or to tolerate the occurrence of DAB signals in the GPS signal path of the receiver, therewith enabling to combine the processing of GPS signals with a processing of DAB signals and to use certain receiver circuitry in common for both GPS and DAB processing. By applying the above measure according to the invention certain RF circuitry may be used for both GPS and DAB signal processing, whereas at least after digitalization GPS signal processing is fully separated from DAB signal processing. This allows reducing the costs of implementation while preventing mutual interferences between the GPS and DAB signal processing from occurring.

[0005] Preferably a receiver according to the invention is characterized by a voltage controlled oscillator supplying a tuneable local oscillator signal to the mixer stage, said DAB eliminating means comprising control means coupled to a DAB demodulator for providing a control signal to the voltage controlled oscillator as well as to a switching device, said switching device being connected between the A/D converter on the one hand and said DAB demodulator and said GPS processor on the other hand, said control means tuning the receiver to receive GPS signals and simultaneously controlling the switching device to disconnect the A/D converter from the GPS processor and to connect the A/D converter to the DAB demodulator at the occurrence of non-zero level DAB data segments.

[0006] By applying this measure the receiver is switched from a GPS reception mode to a DAB reception mode and vice versa, dependent of the occurrence of non-zero level data carrying segments, respectively zero level NULL symbols, in the DAB signals, therewith allowing to use the complete receiver circuitry for the reception and processing of both DAB and GPS signals. This shared use of circuitry allows further reducing the price of manufacturing.

[0007] Another embodiment of a receiver according to the invention is characterized in that the receiver front end comprising mutually separated DAB and GPS receiver front ends, the mixer stage comprises a DAB mixer and a GPS mixer respectively coupled to the DAB receiver front end and the GPS receiver front end, the filtering means comprises a DAB filtering device connected to an output of the DAB mixer, and a GPS filtering device connected to an output of the GPS mixer, an adder having inputs connected to an output of the DAB filtering device and to an output of the GPS filtering device, and having an output connected to the A/D converter, said DAB mixer and said GPS mixer together with the DAB filtering device and the GPS filtering device forming the DAB elimination means and providing a frequency conversion of the DAB and GPS signals into separated frequency ranges.

[0008] By applying this measure the selective elimination of DAB signals from said digital GPS signal path is obtained by a mutual separation in frequency. Non-zero DAB signals are therewith blocked from entering into the GPS signal path.

[0009] Preferably such embodiment is characterized by DAB channel selection means for selecting a DAB channel having a frequency range located beyond the frequency range of the GPS signals said DAB channel selection means being controlled by a DAB channel selection control device.
[0010] This measure allows for a further suppression of DAB signals within the frequency range of the GPS signals while obtaining an improvement of the DAB channel selection.

[0011] Yet another preferred embodiment of a GPS receiver according to the invention is characterized in that the DAB elimination means comprises means for encoding demodulated DAB data as provided by the DAB demodulator and for supplying the encoded demodulated DAB data to the GPS processor for being subtracted from the GPS data.

[0012] This measure results in a feed-forward compensation of DAB signals in the GPS signal path, which with a proper adjustment in phase and amplitude of the DAB replica signal allows fully eliminating DAB signals from the GPS signal path.

[0013] For completeness, reference is made to US patent 5,689,245 and to European not-pre-published patent application EP A 1 039 311. US patent 5,689,245 discloses a receiver for DAB signals and for GPS signals, wherein common use if made of the antenna and RF electronics for a variety of services. Although not all items are explicitly indicated, the known receiver comprises a receiver front end; a mixer stage connected to the front end and operative to carry out frequency conversion of the DAB signal and of the GPS signal; filtering means connected to an output of the mixer stage; analog-to-digital converter means connected to an output of the filtering means for converting the filtered frequency-converted GPS signal into GPS digital data and for converting the filtered frequency-converted DAB signal into DAB digital data; a GPS processor for processing the GPS digital data; and a DAB demodulator for processing the DAB digital data. However, this US publication neither teaches nor suggests the sharing of circuitry farther down the signal processing path, e.g., circuitry involving the A/D converter supplying the digital data to the GPS processor and to the DAB demodulator. As a result, this US publication neither teaches nor suggests the presence of DAB elimination means operative to reduce a contribution of the DAB data to the digital data as processed by the GPS processor. EP A 1 039 311 relates to a dual mode reception device enabling reception firstly of multi-carrier broadcast signals (e.g., DAB) and secondly radio positioning signals (e.g., GPS). The device disclosed in this European publication comprises a single pre-processing module, particularly including a pass-band antenna filter in which the pass band includes at least the first and second frequency bands and outputting firstly to a first processing system for the said multi-carrier broadcast signals and secondly to a second system for processing the said radio positioning signals. The device of the European document neither teaches nor suggests the presence of an A/D converter connected to the GPS processor and to the DAB demodulator. As a result, this European document also neither teaches nor suggests using the DAB elimination means operative to reduce the contribution of the DAB data to the data as processed by the GPS processor.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:

Fig. 1 is a block-diagram of a first embodiment of a combined GPS/DAB receiver according to the invention;
Fig. 2 is a block-diagram of a second embodiment of a combined GPS/DAB receiver according to the invention;
Fig. 3 is a block-diagram of a third embodiment of a combined GPS/DAB receiver according to the invention;
Fig. 4 shows a typical structure of a DAB signal.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0015] Fig. 1 shows a first embodiment of a combined GPS/DAB receiver according to the invention comprising a Global Position System (GPS) receiver 1-6,8 for receiving and processing GPS signals and means for receiving and processing Digital Audio Broadcast (DAB) signals 1-7 including a common receiver frontend having a low noise amplifier (LNA) 1 being supplied with RF GPS and DAB signals from an antenna ANT and being subsequently coupled to a mixer stage 2. IF filtering means 4 and analog to digital (AD) converter means 5. The mixer stage 2 is being supplied with a local oscillator signal by a tuneable oscillator 3. The AD converter means 5 are being coupled through a controllable switching device 6 to either a digital DAB or a GPS signal path. The digital DAB and GPS signal paths include respectively a DAB demodulator 7 and a GPS signal processor 8. The DAB demodulator 7 is coupled to a control signal generator 9, comprising a detection device (not shown) for detecting the occurrence of so-called Null symbols, which have zero or near zero level signal energy, in the received DAB signal, as shown in Figure 4. The circuitry described so far are on themselves known and no further knowledge thereof is required for a proper understanding of the invention. For detailed information reference is made to the article “A Power-Efficient Single-Chip OFDM Demodulator and Channel Decoder for Multimedia Broadcasting” by Jos A. Huisken et al., published in IEEE Journal of Solid-State Circuits, Volume 33, No. 11, November 1998.

[0016] According to the invention, the control signal generator 9 is coupled to a control input of the tunable oscillator 3 to vary the frequency of the local oscillator signal simultaneously with the controllable switching device 6. At the detection of any symbol in the demodulated DAB signal of the DAB demodulator 7, other than Null...
symbols, e.g. non-zero level symbols being the PRS and FIC symbols as well as symbols 1 to 72, the receiver is functioning in a DAB signal reception mode. In this DAB signal reception mode the AD converter means 5 are being coupled through the controllable switching device 6 to the DAB demodulator 7, whereas the frequency of the oscillator 3 is adjusted to a value allowing the received RF DAB signals to be converted in the mixer stage into IF DAB signals having a frequency range within the pass-band of the IF filtering means 4.

[0017] At the detection of a Null symbol the receiver is switched from the DAB reception mode into a GPS reception mode. In this GPS signal reception mode the AD converter means 5 are being coupled through the controllable switching device 6 to the GPS signal processor 8, whereas the frequency of the oscillator 3 is adjusted to a value allowing the received RF GPS signals to be converted in the mixer stage into IF GPS signals having a frequency range within the pass-band of the IF filtering means 4. The control signal generator 9 together with the oscillator 3 and the controllable switching device 6 therewith form DAB signal eliminating means for selectively eliminating DAB signals from said digital GPS signal path.

[0018] RF DAB signals are being received at the antenna ANT within a frequency range of 1452-1492 Mhz. The DAB channels are placed in a raster of 16 kHz. The DAB channels are separated by 1.728 Mhz. The channel at the center frequency of said frequency range is located around 1471.792 Mhz. The bandwidth of a DAB signal is 1.536 Mhz. RF GPS signals are being received at the antenna ANT within a bandwidth of 1.024 Mhz around an RF carrier frequency of 1575.42 Mhz.

[0019] These RF signals are being down-converted into DAB and GPS intermediate frequency (IF) signals in the mixer stage 2 by using a local oscillator signal of an appropriate frequency. In the DAB reception mode, the local tuneable oscillator 3 is used to provide DAB channel selection

[0020] In a so-called zero IF (ZIF) receiver, the frequency of the local oscillator signal is chosen to correspond either to the RF carrier frequency of the received RF DAB signals in the DAB reception mode, or to the RF carrier frequency of the received RF GPS signals in the GPS reception mode, respectively. This results in a direct conversion of said RF signals into base-band, the IF signals so obtained also being referred to as ZIF signals. When switching such ZIF receiver between the DAB and GPS reception modes, the frequency of the local oscillator signal has to be varied between the RF carrier frequency of the RF DAB signals and the above RF carrier frequency of the RF GPS signals.

[0021] In a so-called non-zero IF (NZIF) receiver the frequency of the local oscillator signal is chosen to differ from the RF carrier frequency of the received RF DAB signals in the DAB reception mode, or to differ from the RF carrier frequency of the received RF GPS signals in the GPS reception mode over a certain IF frequency value, which is the same in both modes. This results in a conversion of said RF signals into NZIF signals, which in both reception modes have a NZIF frequency corresponding with said IF frequency value. When switching such NZIF receiver between the DAB and GPS reception modes, the frequency of the local oscillator signal has to be varied between a value differing from the RF carrier frequency of the RF GPS signals over said IF frequency value and a value differing from the RF carrier frequency of the RF GPS signals over the same IF frequency value.

[0022] In both ZIF and NZIF receiver concepts, the filtering means 4 are provided with a band-pass characteristic having a bandwidth of at least the bandwidth of the DAB signals therewith allowing to use the same for selecting both DAB and GPS IF signals.

[0023] The discontinued supply of DAB signal to the DAB demodulator 7 does not affect a continued processing of the DAB signals, because of the use of a PLL in the DAB demodulator (not shown). Such PLL, in operation, remains synchronized with the incoming DAB signals, even when the supply of DAB signals is discontinued over one or more symbols. This allows for a continuous demodulation of DAB signals. For more information about the functioning of the PLL, reference is made to the above-mentioned article "A Power-Efficient Single-Chip OFDM Demodulator and Channel Decoder for Multimedia Broadcasting" by Jos A. Huisken et al, published in IEEE Journal of Solid-State Circuits, Volume 33, No. 11, November 1998. In practice the duration of the Null symbols is sufficiently long for a proper deconvolution of the GPS codes, needed for a reliable position determination, even when the supply of GPS signals to the GPS signal processor 8 is being discontinued over the duration of the DAB symbols other than the Null symbols.

[0024] Figure 2 shows a block-diagram of a second embodiment of a combined GPS/DAB receiver according to the invention comprising a receiver frontend including mutually separated DAB and GPS receiver frontend ends, respectively comprising DAB and GPS RF LNA’s 1” and 1". The DAB and GPS RF LNA’s 1” and 1" are respectively coupled to DAB and GPS mixer stages 2” and 2” and DAB and GPS filtering devices 4” and 4". The local oscillator 3 of this receiver is used to supply both DAB and GPS mixer stages 2” and 2 with an oscillator signal having a frequency chosen such that the frequency ranges of the IF converted DAB and GPS signals are in juxtaposition and located close to zero IF value. Outputs of the DAB and GPS filtering devices 4” and 4" are connected to an adder 11, an output thereof being coupled to the DAB demodulator 7 and the GPS signal processor 8 through the AD converter 5. The DAB filtering device 4” comprises a tuneable channel selection device, which may be constituted by a further mixing stage 10, and which is to select a wanted DAB channel from the DAB signals available at the output of the DAB mixer stage 2”.

The so selected DAB channel is separated in frequency from the GPS signal at the output of the GPS filtering device 4”, therewith blocking DAB signals from passing
through into the GPS signal.

In contrast with the receiver of Figure 1, no switching occurs in the receiver shown in Figure 2. The addition of the DAB and GPS signals obtained in the adder 11 results in a signal combination, in which the GPS signals are frequency separated from the DAB signals. The local oscillator 3 together with the filtering means 4' and 4" therewith form DAB signal eliminating means for selectively eliminating DAB signals from said digital GPS signal path. Eventually remaining GPS signal components in the frequency range of the DAB signals effectuate only a small negligible increase in the noise level of these DAB signals, whereas eventually remaining DAB signals in the frequency range of the GPS signals do not affect these GPS signals due to the fact that they are uncorrelated with the GPS signals. This allows for a proper demodulation of DAB signals in the DAB demodulator 7 and a simultaneous proper processing of GPS signals in the GPS signal processor 8. The control signal generator 9 now provides for a proper selection of a wanted DAB signal in the DAB IF filtering means 4" by supplying an appropriate oscillator signal to the further mixing stage 10 and a corresponding adjustment of the DAB demodulator.

Figure 3 shows a third embodiment of a combined GPS/DAB receiver according to the invention, in which the frequency of the local oscillator signal 3 is chosen to provide a frequency conversion of both DAB and GPS signals to substantially the same intermediate frequency. The combined DAB/GPS signals are being IF selected in the filtering means 4, followed by an analog to digital conversion in the AD converter 5. The demodulation of DAB signals in the DAB demodulator 7 from this combined DAB/GPS signal at the output of the AD converter 5 is hardly affected by the GPS signals, because of the signal energy of GPS signals are substantially smaller than the signal energy of DAB signals during the occurrence of all symbols but the null symbols. The deconvolution of the GPS signals in the GPS signal processor 8 is not affected by the DAB signals because there is no correlation between the DAB and GPS signals. According to the invention, the demodulated DAB signal is encoded in an encoding circuit 13 and subtracted from the GPS signals in the GPS processor 8 to eliminate DAB signal components in the GPS signals processed in the GPS processor 8.

Figure 4 shows a DAB frame structure in a so-called mode I, comprising in a cyclic sequence subsequently a NULL symbol having zero or near zero level signal energy and non-zero level DAB data segments, including a PRS symbol providing for synchronization of the DAB signal demodulation, followed by a number of so-called FIC symbols and data carrying DAB symbols 1-71. For detailed information reference is made to the above mentioned article “A Power-Efficient Single-Chip OFDM Demodulator and Channel Decoder for Multimedia Broadcasting” by Jos A. Huisken et al, published in IEEE Journal of Solid-State Circuits, Volume 33, No. 11, November 1998.

Claims

1. A receiver for receiving an GPS signal and an DAB signal, the receiver comprising:

 - a receiver front end (1; 1'; 1'');
 - a mixer stage (2, 3; 2', 2'', 3) connected to the front end and operative to carry out frequency conversion of the DAB signal and of the GPS signal;
 - filtering means (4; 4', 4'') connected to an output of the mixer stage;
 - analog-to-digital converter means (5) connected to an output of the filtering means for converting the filtered frequency-converted GPS signal into GPS digital data and for converting the filtered frequency-converted DAB signal into DAB digital data;
 - a GPS processor (8) for processing the GPS digital data; and
 - a DAB demodulator (7) for processing the DAB digital data;

characterized in that

 - the analog-to-digital converter means has an A/D converter (5) with an input connected to the filtering means and with an output connected to the GPS processor and to the DAB demodulator, and
 - the receiver has DAB elimination means (3, 6, 9; 3, 4', 4'', 11; 13) operative to reduce a contribution of the DAB data to the GPS data as processed by the GPS processor.

2. Receiver according to claim 1, characterized by a voltage controlled oscillator (3) supplying a tuneable local oscillator signal to the mixer stage, said DAB eliminating means comprising control means (9) coupled to the DAB demodulator for providing a control signal to the voltage controlled oscillator as well as to a switching device (6), said switching device being connected between the A/D converter on the one hand and said DAB demodulator and said GPS processor on the other hand, said control means tuning the receiver to receive GPS signals and simultaneously controlling the switching device to disconnect the A/D converter from the GPS processor and to connect the A/D converter to the DAB demodulator at the occurrence of non-zero level DAB data segments.

3. Receiver according to claim 1, characterized in that:
Empfänger zum Empfangen eines GPS-Signals und eines DAB-(Digital Audio Broadcast) Signals, wobei der Empfänger aufweist:

- einen Empfänger-Eingang (1; 1 ') ;
- eine Mischstufe (2, 3, 2'; 2'';3), die mit dem Eingang verbunden ist und ausgestaltet ist, eine Frequenzkonvertierung des DAB-Signals und des GPS-Signals auszuführen;
- Filterungsmittel (4, 4', 4''), die mit einem Ausgang der Mischstufe verbunden sind;
- Analog/Digital-Konvertiermittel (5), die mit einem Ausgang der Filterungsmittel verbunden sind zum Konvertieren des gefilterten Frequenzkonvertierten GPS-Signals in GPS Digitaldaten und zum Konvertieren des gefilterten Frequenzkonvertierten DAB-Signals in DAB-Digitaldaten;
- einen GPS-Prozessor (8) zum Verarbeiten der GPS-Digitaldaten; und
- einen DAB-Demodulator (7) zum Verarbeiten der DAB-Digitaldaten;
dadurch gekennzeichnet, dass
- die Analog/Digital-Konvertiermittel einen A/D-Konverter (5) aufweisen mit einem Eingang, der mit den Filterungsmitteln verbunden ist, und einem Ausgang, der mit dem GPS-Prozessor und dem DAB-Demodulator verbunden ist, und
- der Empfänger DAB-Eliminierungsmittel (3, 6; 9; 3, 4, 4'; 11, 13) aufweist, die ausgestaltet sind, einen Beitrag der DAB-Daten zu den GPS-Daten, wie verarbeitet durch den GPS-Prozessor, zu reduzieren.

Empfänger nach Anspruch 1, dadurch gekennzeichnet, dass:
- der Eingang gegenseitig getrennte DAB- und GPS-Empfängereingänge (1, 1') aufweist,
- die Mischstufe einen DAB-Mischer (2', 3) und einen GPS-Mischer (2'', 3) aufweist, die jeweils mit dem DAB-Empfängereingang bzw. dem GPS Empfängereingang verbunden sind,
- die Filterungsmittel eine DAB-Filterungseinrichtung (4', 10) umfasst, die mit einem Ausgang des DAB-Mischers verbunden ist und eine GPS-Filterungseinrichtung (4''), die mit einem Ausgang des GPS-Mischers verbunden ist, aufweisen,
- einen Addierer (11), der Eingänge aufweist,
- die GPS-Empfängereingänge (1, 1') eines DAB-Demodulators aufweist, wobei die Filterungsmittel der GPS-Empfängereingänge aufweist.
die mit einem Ausgang der DAB-Filterungseinrichtung und mit einem Ausgang der GPS-Filterungseinrichtung verbunden sind und der einen Ausgang aufweist, der mit dem A/D-Konverter verbunden ist, wobei der DAB-Mischer und der GPS-Mischer zusammen mit der DAB-Filterungseinrichtung und der GPS-Filterungseinrichtung die DAB-Eliminierungsmitteil bilden, und
- eine Frequenzkonvertierung der DAB- und GPS-Signale in getrennte Frequenzbereiche bereitgestellt wird.

4. Empfänger nach Anspruch 3, gekennzeichnet durch DAB-Kanalauwahlmittel (10) zum Auswahl-
len eines DAB-Kanals, der einen Frequenzbereich hat, der jenseits des Frequenzbereichs des GPS-
Signals angeordnet ist, wobei die DAB-Kanalauwahlmittel durch eine DAB-Kanalauwahlsteue-
rungeinrichtung (9) gesteuert werden.

5. Empfänger nach Anspruch 1, dadurch gekenn-
zeichnet, dass die DAB-Eliminierungsmitteil Mittel (13) zum Codieren demodulierter DAB-Daten, gelie-
fert durch den DAB Demodulator, und zum Liefern der codierten demodulierten DAB-Daten an den GPS-Prozessor zum Subtrahieren von den GPS-
Daten aufweisen.

6. Empfänger nach einem der Ansprüche 3 bis 5, ge-
kennzeichnet durch verschiedene GPS-Korrelato-
ren, die in einen GPS-Verarbeitungspfad einge-
schlossen sind, jeweils aufweisend eine Integrie-
rungs- und Ausgabeschaltung für eine DAB-Signal
Inhalt-gesteuerte Zeitmultiplex-Korrelation der GPS-Signale.

Revendications

1. Récepteur, pour recevoir un signal GPS et un signal DAB, le récepteur comprenant :
- un équipement frontal de récepteur (1 ; 1', 1") ;
- un étage mélangeur (2, 3 ; 2', 2", 3) connecté à l’équipement frontal et fonctionnant pour ef-
tectuer une conversion de fréquence du signal DAB et du signal GPS ;
- des moyens de filtrage (4 ; 4', 4") connectés à une sortie de l’étage mélangeur ;
- des moyens de conversion analogique-numé-
rique (5), connectés à une sortie des moyens de filtrage, pour convertir le signal GPS à fré-
quence convertie, filtré, en des données numé-
riques GPS et pour convertir le signal DAB à fréquence convertie filtré, en des données numé-
riques DAB ;
- un processeur GPS (8), pour traiter les don-
nées numériques GPS ;
- un démodulateur DAB (7), pour traiter les don-
nées numériques DAB ;

caractérisé en ce que :
- les moyens de conversion analogique-numé-
rique comprennent un convertisseur A/N (5),
avec une entrée connectée aux moyens de fil-
trage et avec une sortie connectée au proces-
sseur GPS et au démodulateur DAB, et
- le récepteur comprend des moyens d’élimina-
tion de DAB (3, 6, 9 ; 3, 4', 4", 11 ; 13) fonction-
nant pour réduire une contribution des données DAB aux données GPS, telles que traitées par le processeur GPS.

2. Récepteur selon la revendication 1, caractérisé par
un oscillateur commandé en tension (3), fournissant un signal d’oscillateur local syntonisable à l’étage mélangeur, lesdits moyens d’élimination de DAB comprenant des moyens de commande (9), couplés au démodulateur DAB, pour fournir un signal de commande à l’oscillateur commandé en tension, ain-
si qu’à un dispositif de commutation (6), ledit dispo-
sitif de commutation étant connecté entre le conver-
tisseur A/N, d’une part, et ledit démodulateur DAB et ledit processeur GPS, d’autre part, lesdits moyens de commande syntonisant le récepteur, pour rece-
voir des signaux GPS et, simultanément, comman-
der le dispositif de commutation, pour déconnecter le convertisseur A/N du processeur GPS et pour con-
necter le convertisseur A/N au démodulateur DAB, à l’occurrence de segments de données DAB dont le niveau est différent de zéro.

3. Récepteur selon la revendication 1, caractérisé en ce que :
- l’équipement frontal de récepteur comprend des équipements frontaux de récepteur DAB et GPS (‘1’, 1") mutuellement séparés,
- l’étage mélangeur comprend un mélangeur
DAB (2’, 3) et un mélangeur GPS (2", 3), couplés respectivement à l’équipement frontal de récep-
teur DAB et à l’équipement frontal de récepteur GPS,
- les moyens de filtrage comprennent un dispo-
sitif de filtrage DAB (4’, 10), connecté à une sor-
tie du mélangeur DAB, et un dispositif de filtrage GPS (4") , connecté à une sortie du mélangeur
GPS,
- un additionneur (11), ayant des entrées con-
nectées à une sortie du dispositif de filtrage DAB et à une sortie du dispositif de filtrage GPS, et ayant une sortie connectée au convertisseur A/N, ledit mélangeur DAB et ledit mélangeur
GPS formant, conjointement avec le dispositif...
de filtrage DAB et le dispositif de filtrage GPS, les moyens d'élimination de DAB, et la fourniture d'une conversion de fréquence des signaux DAB et GPS, dans des plages de fréquences séparées.

4. Récepteur selon la revendication 3, caractérisé par des moyens de sélection de canal DAB (10), pour sélectionner un canal DAB ayant une plage de fréquences située au-delà de la plage de fréquence des signaux GPS, lesdits moyens de sélection de canal DAB étant commandés par un dispositif de commande de sélection de canal DAB (9).

5. Récepteur selon la revendication 1, caractérisé en ce que les moyens d'élimination de DAB comprennent des moyens (13) pour coder des données DAB démodulées, tel que fournies par le démodulateur DAB, et pour fournir les données DAB démodulées codées au processeur GPS pour être soustraites des données GPS.

6. Récepteur selon la revendication 1, caractérisé par divers corrélateurs GPS, inclus dans un chemin de traitement GPS, chacun comprenant un circuit intégré et de coupure, pour une corrélation multiplexée temporellement, commandée par le contenu du signal DAB des signaux GPS.
FIG. 1

FIG. 2
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5689245 A [0013] [0013]
- EP 1039311 A [0013] [0013]

Non-patent literature cited in the description

- Mr. G.K. Noreen. Mobile Satellite Communications for Consumers. Microwave Journal, November 1991, 24-34 [0001]