EUROPEAN PATENT SPECIFICATION

COILED TUBING LINE DEPLOYMENT SYSTEM
SYSTEM ZUM EINFÜHREN EINER GEWICKELTEN ROHRSTRANG
SYSTEME DE DEPLOIEMENT DE LIGNE DE TUBE ENROULE

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

Priority: 27.04.2000 GB 0010322

Date of filing: 17.04.2001

Application number: 01921616.7

Date of publication and mention of the grant of the patent:
29.09.2004 Bulletin 2004/40

Date of publication of application:
22.01.2003 Bulletin 2003/04

Proprietor: FMC Technologies, Inc.
Chicago, IL 60601 (US)

Inventors:
• COLLIE, Graeme, John
 Fife KY12 7QJ (GB)

• HUTCHISON, David, Ramsay
 Fife KY11 4YZ (GB)

• KENT, Richard
 Fife KY14 6ER (GB)

Representative: Hammler, Martin Franz et al
Philips & Leigh
5 Pemberton Row
London EC4A 3BA (GB)

References cited:
GB-A-2 337 779
US-A-6 053 252
GB-A-2 337 780
US-A-6 142 237

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Invention Background

[0001] Pressure drops in oil reservoirs have presented serious problems for operators. In the instance where reservoir pressure drops sufficiently to curtail all oil flow, electric or hydraulic submersible pumps (ESP/HSP) have been one method used to pump oil up the pipe. These pumps are dependent upon either an electrical or hydraulic cable or line. Similarly, data retrieval has been accomplished using electronic pressure/temperature sensors dependent upon either an electrical or fibre optic line.

[0002] Deployment of pumps, sensors and their associated electrical and hydraulic lines presents significant problems. Typically, two methods of ESP/HSP or data sensor deployment have been employed: tubing deployment and wireline deployment. Tubing deployment is heavy, bulky and time-consuming, requiring the cable or line to be secured to each tubing joint as it is added to the string. Wireline deployment is lighter and less time-consuming. However, wireline deployed ESP/HSP systems cannot be used in wells where a deviated bore is used, and the ESP/HSP can become stuck. Due to the environment in which it is operating, the life cycle of any equipment located in the tubing is short. This means retrieval and replacement on a regular basis, which is expensive and time-consuming, due to the fact that equipment can only be retrieved by pulling back the tubing. Certain wells which require artificial lift may prove to be non-viable using existing ESP/HSP deployment and servicing methods.

[0003] A third option is required whereby cable or line dependent equipment can be deployed and retrieved at minimal added cost to the operator. The means of deployment should ideally be applicable to both new and existing Christmas trees, in order to provide a more economically viable means of deploying or servicing artificial lift or sensor equipment.

Summary of the Invention

[0004] The present invention provides a horizontal Christmas tree comprising a tubing hanger having a lateral production fluid outlet communicating with an axial through bore, the tubing hanger being landed in a substantially vertically extending bore in the christmas tree, a coiled tubing hanger being landed within the tubing hanger and being adapted to suspend coiled tubing within the well, the coiled tubing carrying power or signal lines to downhole equipment; characterised in that the axial through bore is sealed above the lateral production outlet in use by a plug, an internal tree cap being installed within the vertically extending bore above the tubing hanger, the power or signal lines exiting the tree upwards through the cap. With such coiled tubing deployed cable dependent equipment, wells requiring art-
power or signals to the coiled tubing hanger 38. A self orientating wet mate connector 48 makes the electrical, optical or hydraulic connection between the transition connector 46 and the coiled tubing hanger 38. The top hat 50 is modified to include an electrical or hydraulic connector 52 that connects to the transition connector 46 via a self orientating wet mate connector 54. A further wet mate connector 56 is provided between the top hat connector 52 and an external power cable or signal line 58.

[0010] As shown, the interfaces between these components are non-orientating. The ESP/HSP/data retrieval equipment is run downhole to the required depth on the coiled tubing 40. The power/signal cable is run either down the tubing bore, down the annulus between the coiled tubing 40 and production tubing 42 (“coiled tubing annulus”) or down the annulus surrounding the production tubing (“tubing annulus”). When the power/signal cables or lines are run down the coiled tubing bore or coiled tubing annulus, the cables or lines are routed through the coiled tubing hanger and tree cap, via the connectors shown. Cables or lines run down the production tubing annulus are routed through electrical/optical/hydraulic radial penetrators (not shown) extending through the wall of the tree into the tubing hanger 12, thereby facilitating hook up of the lines or cables below the tubing hanger.

[0011] When the ESP/HSP/data retrieval equipment is at the required depth, it is locked into the tubing, and the coiled tubing installation string is removed. Fig 2 illustrates an electrical submersible pump 60 landed and sealed within the tubing 40 lower end. By this means, production fluid is pumped up the annulus between the coiled tubing 40 and the production tubing 42, out through the production master valve 18 and wing valve 20. A surface controlled subsea safety valve (S. C. S. S. V.) 62 is included in the completion below the pump 60. Production fluid flow is represented by the arrows shown in Fig 2.

[0012] If desired, additional downhole hydraulic and electrical lines may be incorporated in the system to provide communication to the other downhole equipment items such as the S. C. S. S. V., or temperature and pressure gauges. The lines are connected in a similar manner to the power and signal connections described above.

[0013] The system described above has self orienting wet mate connectors 48, 54, 56. In the circumstance that a connection system is used that has a large number of parallel electrical/hydraulic/optical connections, it may be preferable to use an orientated system. That is, the transition connector 46, tree cap 32, upper wireline plug 44 and coiled tubing hanger 38 are all aligned as required to make up the connections. The alignment is provided by means of keyways, orientation pins or orientation helices.

[0014] There may be a requirement to flow test the well vertically prior to production via the horizontal tree side outlet 16. In this circumstance, an intervention test tool 64 may be used as shown in Fig 3. The tool 64 locks to the bore of the tree 10 and seals above the upper annulus outlet 66. Flow test to an intervention riser 68 and surface test equipment is provided via the crossover flow loop 70 on the tree. During the flow test, the annulus 72 between the production tubing 42 and production casing is vented via a separate line 74 that is controlled by a valve 76. This is required due to thermal expansion of the annulus fluids. If an emergency vessel drive off situation occurs during the flow test, the valves on the subsea tree may be closed to isolate the well and the intervention test tool 64 may be disconnected. The advantage of this is that no subsea test tree equipment is needed in the intervention string during the flow test. The arrows in Fig 3 represent fluid circulation during the test. Electrical/hydraulic/fibre optic connections are made between the coiled tubing hanger 38 and corresponding lines in the test tool 64 via an intermediate connector 69.

[0015] In an alternative embodiment diagrammatically shown in figures 4 and 5, the coiled tubing hanger 38 landed in the tubing hanger 12 has flutes or holes 78, to allow flow by of fluids in the production bore during the test. Alternatively, flow by flutes or holes 80 may be provided at the tubing hanger inside diameter. After the test is complete, the coiled tubing installation string is recovered by disconnecting a dedicated running tool 82 that is locked to the coiled tubing hanger 38 and provides power communication via a wet mate connector 84 and power lines 86. The coiled tubing hanger 38 is left in place in the tubing hanger 12 as shown in Fig 5. An adapter plug 88 is then installed above the coiled tubing hanger 38 to seal off the production bore 26. The adapter plug 88 locks and seals to the bore of the tubing hanger 12 above the coiled tubing hanger 38 and communicates the power cables 86 between the transition and wet mate connectors 46, 48 and the wet mate connector 84 of the coiled tubing hanger 38. Locking and sealing profiles are diagrammatically indicated at 90. It will be seen that when in place, the adapter plug seals the flow by flutes or holes 78, 80, thereby sealing the tubing hanger through bore 26. Alternatively, the adapter plug seals to the bore of the tubing hanger 12 and locks to the coiled tubing hanger 38 using the same lock interface as the running tool 82.

[0016] As a further alternative, it may be preferable to flow test the well using a pump 62 that is temporarily suspended from the surface. (See Fig 6). Where present, the coiled tubing hanger 38 is retrieved from the tubing hanger 12. Coiled tubing 40 is suspended at a surface test tree 92 and dry power connections 94 are made up to the surface tree coiled tubing hanger 39. A subsea test tree 96 may be provided in the intervention string above the tubing hanger running tool 98, to enable subsea isolation and disconnection from the well. The advantage of this is that if at start up there are problems encountered in the lower completion section below the
pump 62, then the test equipment can be easily retrieved and remedial downhole operations performed prior to re-commencement of the flow test. In Fig 6, 100 represents sea level and 102 the mudline.

[0017] The invention allows for the economic development of low pressure fields using standard wellheads and Christmas trees fitted with a coiled tubing deployed ESP’s or HSP’s, as well as the rapid and economical servicing of ESP’s, HSP’s, downhole sensors and similar cable connected equipment.

Claims

1. A horizontal Christmas tree (10) comprising a tubing hanger (12) having a lateral production fluid outlet (14) communicating with an axial through bore (26), the tubing hanger (12) being landed in a substantially vertically extending bore in the christmas tree (10), a coiled tubing hanger (38) being landed within the tubing hanger (12) and being adapted to suspend coiled tubing (40) within the well, the coiled tubing carrying power or signal lines (58) to downhole equipment (60); characterised in that the axial through bore (26) is sealed above the lateral production outlet (14) in use by a plug (28), an internal tree cap (32) being installed within the vertically extending bore above the tubing hanger (12), the power or signal lines (58) exiting the tree upwardly through the cap (32).

2. A horizontal Christmas tree (10) as defined in claim 1 characterised in that the coiled tubing hanger comprises the plug (38).

3. A horizontal Christmas tree (10) as defined in claim 2 characterised in that the coiled tubing hanger (38) is installed in the tubing hanger in place of a crown plug.

4. A horizontal Christmas tree (10) as defined in claim 1 characterised in that an adapter plug (88) is provided in the tubing hanger axial through bore above the coiled tubing hanger (38) and the tubing hanger (12) and/or the coiled tubing hanger (38) are provided with fluid flow by holes (78, 80) or flutes which are sealed by the adapter plug (88).

5. A horizontal Christmas tree as defined in any of claims 1 to 4, characterised in that the tree cap (32) includes a plug (44) permitting tubing access, the power or signal lines (58) running through the tubing access plug (44) and coiled tubing hanger (38).

6. A horizontal Christmas tree as defined in claim 5, characterised in that power or signal lines (58) carried by the coiled tubing (40) are connected to an external line via a wet mate connector (48) connected between the coiled tubing hanger (32) and a transition connector (46) in the tubing access plug.

7. A horizontal Christmas tree as defined in claim 6 characterised in that a further wet mate connector (54) is connected between the transition connector (46) and a further connector (52) provided in a debris cap or top hat (50) at the upper end of Christmas tree (10).

8. A horizontal Christmas tree as defined in claim 7 characterised in that the top hat connector (52) is connected to an external power or signal line (58) by a still further wet mate connector (56).

9. A horizontal Christmas tree as defined in any of claims 5-8, characterised in that the tubing access plug (44) is installed in the tree cap in place of an upper wireline plug.

10. A horizontal Christmas tree as defined in any of claims 6 to 9 characterised in that the wet mate connector (48) or, if more than one is present, at least one of the wet mate connectors (48, 54, 56), is self orientating.

11. A method of flow testing a horizontal Christmas tree as defined in any of claims 1 to 10 characterised in that the coiled tubing hanger (38) is removed, and flow test equipment (62) is suspended in the well through the horizontal Christmas tree (10) through bore and an intervention riser, using coiled tubing (40) suspended from a surface tree (92).

12. A test method as defined in claim 11 characterised in that power or signal lines are carried by the coiled tubing (40) suspended from the surface tree (92).

Patentansprüche

1. Horizontaler Steigrohrkopf (10), welcher ein Rohrleitungshängelager (12) aufweist, das einen lateralen Produktionsfluidauslass (14) aufweist, der mit einer axialen Durchgangsbohrung (26) in Verbindung steht, wobei die Rohrleitungshängelager (12) in einer im Wesentlichen vertikal sich erstreckenden Bohrung in dem Steigrohrkopf (10) ausgeladen wird, wobei ein gewendetes Rohrleitungshängelager (38) innerhalb der Rohrleitungshängelager (12) ausgeladen wird und angepasst ist, um eine gewendelte Rohrleitung (40) innerhalb des Bohrochs aufzuhängen, wobei die gewendelte Rohrleitung Energie- oder Signalleitungen (58) zur Ausrüstung (60) im Bohroch trägt; dadurch gekennzeichnet, dass die axiale Durchgangsbohrung (26) über dem late-
1. Horizontaler Steigrohrkopf (10), wie in Anspruch 1 definiert, dadurch gekennzeichnet, dass der Kopfkappe an Stelle eines oberen Drahtleitungssteckers installiert ist.

2. Horizontaler Steigrohrkopf (10), wie in Anspruch 1 definiert, dadurch gekennzeichnet, dass das gewendelte Rohrleitungshängelager den Stecker (28) aufweist.

3. Horizontaler Steigrohrkopf (10), wie in Anspruch 2 definiert, dadurch gekennzeichnet, dass das gewendelte Rohrleitungshängelager (38) in dem Rohrleitungshängelager an Stelle eines Deckstekkers installiert ist.

4. Horizontaler Steigrohrkopf (10), wie in Anspruch 3 definiert, dadurch gekennzeichnet, dass ein Adapterstecker (88) in der axialen Durchgangsbohrung des Rohrleitungshängelagers über dem gewendelten Rohrleitungshängelager (38) vorgesehen ist, und dass das Rohrleitungshängelager (12) und/oder das gewendelte Rohrleitungshängelager (38) mit einem Fluidstrom versehen sind durch Löcher (78, 80) oder Kanäle, welche durch den Adapterstecker (88) abgedichtet sind.

5. Horizontaler Steigrohrkopf, wie in irgendeinem der Ansprüche 1 - 4 definiert, dadurch gekennzeichnet, dass die Kopfkappe (32) einen Stecker (44) einschließt, welcher einen Rohrleitungszugang erlaubt, wobei die Energie- oder Signalleitungen (58) durch den Rohrleitungszugangsstecker (44) und das gewendelte Rohrleitungshängelager (38) hindurch laufen.

8. Horizontaler Steigrohrkopf, wie in Anspruch 7 definiert, dadurch gekennzeichnet, dass der Kopfhut-verbinder (52) mit einer externen Energie- oder Signalleitung (58) durch noch einen weiteren Wetmate-Verbinder (56) verbunden ist.

11. Verfahren zum Strömungstesten eines horizontalen Steigrohrkopfs, wie in irgendeinem der Ansprüche 1 - 10 definiert, dadurch gekennzeichnet, dass das gewendelte Rohrleitungshängelager (38) entfernt wird und eine Strömungstestausstattung (62) in dem Bohrloch durch die Durchlassbohrung des horizontalen Steigrohrkopfs und ein Eingriffssteigrohr aufgehängt wird, unter Verwendung eines gewendelten Rohrs (40), aufgehängt von einem Oberflächenkopf (92).

Revendications

1. Arbre de Noël horizontal (10) comprenant un dispositif de suspension de colonne de production (12) comportant une sortie de fluide de production latérale (14) communiquant par l’intermédiaire d’un alésage traversant axial (26), le dispositif de suspension de colonne de production (12) étant placé dans un alésage s’étendant pratiquement verticalement dans l’arbre de Noël (10), un dispositif de suspension de colonne de production enroulée (38) étant placé à l’intérieur du dispositif de suspension de colonne de production (12) et étant conçu pour suspendre la colonne de production enroulée (40) à l’intérieur du puits, la colonne de production enroulée portant des lignes d’intervention ou de signaux (58) vers un équipement de fond (60), caractérisé en ce que l’alésage traversant axial (26) est fermé de façon étanche au-dessus de la sortie de production latérale (14) en utilisant un bouchon (28), une coiffe d’arbre interne (32) étant installée à l’intérieur de l’alésage s’étendant verticalement au-dessus du dispositif de suspension de colonne de production.
12. Procédé de test selon la revendication 11, caractérisé en ce que les lignes d'alimentation ou de signaux sont portées par la colonne de production enroulée (40) suspendue à partir de l'arbre de surface (92).