EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
03.11.2004 Bulletin 2004/45

(21) Application number: 02015070.2

(22) Date of filing: 05.07.2002

(54) **Variable-capacity store for objects**

<table>
<thead>
<tr>
<th>Language</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Speicher mit variabler Kapazität für Produkte</td>
</tr>
<tr>
<td>French</td>
<td>Magasin à capacité variable pour objets</td>
</tr>
</tbody>
</table>

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

(30) Priority: 05.07.2001 IT BO20010424

(43) Date of publication of application:
08.01.2003 Bulletin 2003/02

(73) Proprietor: G. D Societa per Azioni
40133 Bologna (IT)

(72) Inventor: Draghetti, Fiorenzo
40059 Medicina (IT)

(74) Representative: Jorio, Paolo et al
STUDIO TORTA S.r.l.,
Via Viotti, 9
10121 Torino (IT)

(56) References cited:
EP-A- 0 738 478
WO-A-99/44446

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a variable-capacity store for objects. More specifically, the present invention relates to a variable-capacity store for objects defined, for example, by elongated elements, and of the type comprising an input station and an output station located in series along a feed path of the elongated elements; an endless conveyor comprising a conveying branch, for feeding said elongated elements along said path, and a return branch, which respectively form a first and a second spiral of given lengths about respective pairs of guide drums; and adjusting means for adjusting said lengths in complementary manner; said pairs of drums each comprising a fixed first drum, and a second drum movable to and from the relative first drum; and said second drums being located on the same side with respect to the relative first drums.

The present invention may be used to advantage for storing cigarettes, to which the following description refers purely by way of example.

For storing cigarettes, a store of the type defined above, and as described for example in EP 0738478, is interposed between a cigarette manufacturing machine and a packing machine to compensate for any difference between the number of cigarettes produced and the number of cigarettes packed, by lengthening or shortening the first or conveying spiral, and by shortening or lengthening the second or return spiral in complementary manner.

To move one of the two movable drums away from the relative fixed drum and move the other movable drum towards the relative fixed drum in complementary manner, known stores of the above type normally employ two independent reversible motors controlled by a single central control unit sensitive to any difference between the number of cigarettes produced and the number packed.

In known stores of the above type, the two motors, which must be operated simultaneously and in relation to each other, may give rise to both functional and mechanical problems, and in any case involve relatively high production and maintenance costs.

It is an object of the present invention to provide a store of the above type, designed to eliminate the aforementioned drawbacks.

According to the present invention, there is provided a variable-capacity store for objects, the store comprising an input station and an output station located in series along a feed path of the objects; an endless conveyor comprising a conveying branch, for feeding said objects along said path, and a return branch, which respectively form a first and a second spiral of given lengths about respective pairs of guide drums; and adjusting means for adjusting said lengths in complementary manner; said pairs of drums each comprising a fixed first drum, and a second drum movable to and from the relative first drum; said second drums being located on the same side with respect to the relative first drums; and the store being characterized in that said adjusting means comprise a transmission connecting said second drums and for moving the second drums equally and oppositely with respect to the relative first drums; and a reversible motor for powering said transmission.

A number of non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings, in which:

Figure 1 shows a view in perspective, with parts removed for clarity, of a first preferred embodiment of the store according to the present invention;

Figure 2 shows a larger-scale view in perspective of a detail in Figure 1;

Figures 3 and 4 show two schematic plan view, with parts removed for clarity, of a second and, respectively, third preferred embodiment of the store according to the present invention.

Number 1 in Figure 1 indicates as a whole a variable-capacity store for objects defined, for example, by elongated elements 2, in particular for cigarettes, and comprising, for elements 2, an input station 3 and an output station 4 located in series along a feed path P of elements 2. More specifically, store 1 provides for storing a number of elements 2 varying as required with a given range, and for feeding elements 2 to station 4 in the same order in which they are fed, in use, into store 1 at station 3.

From an output conveyor 5 forming part of a manufacturing machine (not shown) and located at station 3, store 1 receives a number of elements 2 arranged in bulk in a continuous stream 6, and feeds elements 2 to an input conveyor 7 forming part of a packing machine (not shown) and located at station 4.

Store 1 also comprises an endless conveyor 8, in turn comprising a conveying branch 9 extending between an input pulley 10 at station 3 and an output pulley 11 at station 4 to convey elements 2 from station 3 to station 4, and a return branch 12 extending between an input pulley 13 at station 4 and an output pulley 14 at station 3.

Store 1 also comprises an adjusting assembly 15 for adjusting a length L1 of conveying branch 9 and a length L2 of return branch 12 in complementary manner to adjust the storage capacity of store 1, and which comprises two transmission assemblies 16 and 17. Assembly 16 is associated with conveying branch 9, and comprises two transmission drums 18 and 19 located between pulleys 10 and 11; assembly 17 is associated with return branch 12, and comprises two transmission drums 20 and 21; drum 20 is closer to pulley 13, and receives return branch 12 via two transmission pulleys 22 and 23; and drum 21 is closer to pulley 14, and feeds return branch 12 to pulley 14 via two transmission pulleys 24 and 25.
[0014] Conveyor 8 is a belt conveyor, which forms a first spiral 26 of a given pitch P1 about drums 18 and 19 of transmission assembly 16, and a second spiral 27 of a given pitch P2 - in this case, equal to P1 - about drums 20 and 21 of transmission assembly 17.

[0015] Pulleys 10 and 14 are located at input station 3 and mounted for rotation about respective perpendicular axes 10a and 14a, of which axis 10a is parallel to an axis 28 of a transmission pulley 29 of conveyor 5. Pulleys 10 and 29 are bridged at the top by a supporting plate 30 for supporting elements 2 entering store 1, and have respective encoders 10e and 29e for measuring their angular operating speed. Pulleys 11 and 13 are located at output station 4 and mounted for rotation about respective perpendicular axes 11a and 13a, of which axis 11a is parallel to both axis 10a and an axis 31 of a transmission pulley 32 of conveyor 7. Pulleys 11 and 32 are bridged at the top by a supporting plate 33 for supporting elements 2 leaving store 1, and are powered in known manner so as to have the same surface speeds in use. More specifically, pulley 11 provides for activating conveyor 8.

[0016] As shown in Figure 2 (which relates to drum 19, which has the same structure as the other drums 18, 20, 21), each drum 18-21 comprises a respective substantially vertical shaft 34; and a number of respective rims 35, each of which is fitted idly to respective shaft 34 and, together with another rim 35 fitted idly to the other shaft 34 in the same transmission assembly 16, 17, supports a relative coil of relative spiral 26, 27.

[0017] Transmission assembly 16 comprises a support 36, in turn comprising a substantially horizontal guide 37 extending between two blocks 38 and 39; block 38 supports shaft 34 of drum 18 in fixed manner; while shaft 34 of drum 19 is carried by a slide 40 mounted to run along guide 37. Similarly, transmission assembly 17 comprises a support 41 located alongside support 36, and in turn comprising a substantially horizontal guide 42 extending parallel to guide 37 between two blocks 43 and 44; block 44 faces block 38 and supports shaft 34 of drum 21 in fixed manner; while shaft 34 of drum 20 is carried by a slide 45 mounted to run along guide 42.

[0018] Adjusting assembly 15 also comprises an actuating device 46 associated with drums 18-21 and for moving drums 19 and 20 in opposite directions along respective guides 37 and 42 to adjust lengths L1 and L2 in complementary manner and therefore the storage capacity of store 1. Actuating device 46 comprises a transmission 47, in turn comprising two pulleys 48 and 49. Pulley 48 is fitted to a shaft 50 parallel to shafts 34, and which in turn is fitted in rotary manner to a cross member 51 connecting blocks 38 and 43, and defines the output shaft of a reversible motor 52 for powering transmission 47; and pulley 49 is fitted in rotary manner to a shaft 53 parallel to shaft 50 and fitted in fixed manner to a cross member 54 connecting blocks 38 and 44. A belt 55, forming part of transmission 47, is looped about pulleys 48 and 49, and comprises two branches 56 and 57 parallel to and alongside respective guides 37 and 42, and connected to respective slides 40 and 45 by an arm 58 and an arm 59 respectively.

[0019] In a variation of the present invention, pulleys 48 and 49 may be replaced by toothed wheels also indicated 48 and 49, and about which is looped, instead of belt 55, a chain also indicated 55.

[0020] Adjusting assembly 15 also comprises a known central control unit 60 connected to motor 52 and for controlling rotation of pulley 48 so as to move drums 19 and 20 by the same distance but in opposite directions along relative guides 37 and 42. Central control unit 60 is also connected to a comparing circuit 61 for receiving a known signal from each encoder 10e e 29e, and for supplying central control unit 60 with an error signal proportional to the difference between the angular speeds of pulleys 10 and 29 to regulate said movements of drums 19 and 20.

[0021] In the Figure 3 variation, actuating device 46 in Figure 1 is replaced by an actuating device 62, in which vertical shaft 50 of motor 52 is connected to a transmission 63 comprising a pinion 64 fitted to shaft 50 and located centrally between guides 37 and 42; and two racks 65 and 66, which are parallel to guides 37 and 42, are connected to and located on opposite sides of pinion 64, and are integral with arm 58 and arm 59 respectively.

[0022] Like actuating device 46, each rotation of pinion 64 of actuating device 62 corresponds to equal and opposite movements of racks 65 and 66, and therefore of drums 19 and 20.

[0023] In the Figure 4 variation, actuating device 46 in Figure 1 is replaced by an actuating device 67, in which vertical shaft 50 of motor 52 is connected to a transmission 68 defined by a rocker arm fitted to shaft 50 and comprising two arms 69 and 70 of equal length and having, close to their free ends, respective axial slots 71 and 72 engaged in transversely sliding manner by shaft 34 of drum 19 and shaft 34 of drum 20 respectively.

[0024] In actual use, elements 2 are fed continuously by conveyor 5 over plate 30 to an input portion of conveying branch 9, and are fed by conveying branch 9 to an output portion of conveying branch 9 located at output station 4, where elements 2 are fed over plate 33 onto conveyor 7 in the same order in which they are fed into store 1.

[0025] In normal operating conditions, the number of elements 2 fed by conveyor 5 to input station 3 equals the number of elements 2 absorbed by conveyor 7 at output station 4, and said output portion of conveying branch 9 has the same linear speed as conveyor 5. Comparing circuit 61 therefore supplies central control unit 60 with a zero error signal, so that motor 52 remains idle, and therefore the distances between drums 19, 20 and respective drums 18, 21 remain unchanged.

[0026] When the number of elements 2 fed to input station 3 is greater than the number of elements 2 ab-
sorbed at output station 4, comparing circuit 61 sends an error signal to central control unit 60, which activates motor 52, and therefore transmission 47, 63, 68, so as to move drum 19 away from drum 18, and move drum 20 towards drum 21 by a distance depending on the difference between the number of incoming and outgoing elements. Moving drum 19 away from drum 18 increases the storage capacity of store 1, but requires that conveying branch 9 wound about drums 18 and 19 be lengthened accordingly; the amount of conveyor 8 required to compensate which is provided by moving drum 20 towards drum 21.

[0027] Conversely, when the number of elements 2 absorbed at output station 4, comparing circuit 61 sends an error signal to central control unit 60, which activates motor 52, and therefore transmission 47, 63, 68, so as to move drum 19 towards drum 18, and move drum 20 away from drum 21 by a distance depending on the difference between the number of incoming and outgoing elements. Moving drum 19 towards drum 18 reduces the storage capacity of store 1, but requires that conveying branch 9 wound about drums 18 and 19 be shortened accordingly, so the surplus amount of conveyor 8 is absorbed by moving drum 20 away from drum 21.

Claims

1. A variable-capacity store for objects, the store (1) comprising an input station (3) and an output station (4) located in series along a feed path (P) of the objects (2); an endless conveyor (8) comprising a conveying branch (9), for feeding said objects (2) along said path (P), and a return branch (12), which respectively form a first and a second spiral (26, 27) of given lengths about respective pairs (16, 17) of guide drums (18, 19; 20, 21); and adjusting means (46; 62; 67) for adjusting said lengths in complementary manner; said pairs (16, 17) of drums (18, 19; 20, 21) each comprising a fixed first drum (18, 19; 20, 21) and a second drum (19, 20) movable to and from the relative first drum (18, 21); said second drums (19, 20) being located on the same side with respect to the relative first drums (18, 21); and the store (1) being characterized in that said adjusting means (46; 62; 67) comprise a transmission (47; 63; 68) connecting said second drums (19, 20) and connected to said guide means (37; 42) to move the second drum (19; 20) to and from the relative first drum (18; 21); said transmission (47; 63; 68) connecting said slide means (40; 45).

2. A store as claimed in Claim 1, characterized by comprising, for each said second drum (19; 20), guide means (37; 42); and slide means (40; 45) supporting said second drum (19; 20) and connected to said guide means (37; 42) to move the second drum (19; 20) to and from the relative first drum (18; 21); said transmission (47; 63; 68) connecting said slide means (40; 45).

3. A store as claimed in Claim 2, characterized in that said first drums (18, 21) are located side by side, and said guide means (37, 42) extend parallel to each other from the relative said first drums (18, 21) and on the same side with respect to the first drums (18, 21).

4. A store as claimed in any one of Claims 1 to 3, characterized in that said transmission (47) comprises a belt (55) located between said two pairs (16, 17) of drums and looped about two pulleys (48, 49) to define two branches (56, 57); one (48) of said pulleys (48, 49) being powered by said motor (52); and each said second drum (19; 20) being connected to a respective said branch (56; 57) of said belt (55) so as to be moved together with the branch (56; 57) by said motor (52).

5. A store as claimed in any one of Claims 1 to 3, characterized in that said transmission (47) comprises a chain (55) located between said two pairs (16, 17) of drums and looped about two pulleys (48, 49) to define two branches (56, 57); one (48) of said toothed wheels (48, 49) being powered by said motor (52); and each said second drum (19; 20) being connected to a respective said branch (56; 57) of said chain (55) so as to be moved together with the branch (56; 57) by said motor (52).

6. A store as claimed in any one of Claims 1 to 3, characterized in that said transmission (63) comprises a pinion (64) located centrally between said two pairs (16, 17) of drums; and two racks (65, 66) located on opposite sides of said pinion (64) and connected to the pinion (64); said pinion (64) being powered by said motor (52); and each said second drum (19; 20) being connected to a respective said rack (65; 66) so as to be moved with the rack (65; 66) by said motor (52).

7. A store as claimed in any one of Claims 1 to 3, characterized in that said transmission (68) comprises a rocker arm located centrally between said two pairs (16, 17) of drums, and pivoting about a central shaft (50) powered by said motor (52); said rocker arm comprising two arms (69, 70) of equal lengths; and each said arm (69; 70) being connected to a respective said second drum (19; 20).

Patentsprüche

1. Speicher mit variabler Kapazität für Produkte bzw.
Gegenstände, wobei der Speicher (1) eine Eingabestation (3) und eine Ausgabestation (4), die in Serie entlang eines Zufuhrfads bzw. -wegs (P) der Produkte (2) angeordnet sind; einen Endlosförderer (8), umfassend einen Förderzweig (9) zum Zuge der Gegenstände (2) entlang des Pfads (P) und einen Rückführzweig (12), welche jeweils eine erste bzw. eine zweite Spirale (26, 27) gegebener Länge um entsprechende Paare (16, 17) ausbilden; und Einstellmittel (46; 62; 67) zum Einstellen der Längen in umfang; wobei die Paare (16, 17) von Trommeln (18, 19; 20, 21) jeweils eine festgelegte erste Trommel (18; 21) und eine zweite Trommel (19; 20) umfassen, die zu und weg von der jeweiligen ersten Trommel (18, 21) bewegbar ist; wobei die zweiten Trommeln (19, 20) an derselben Seite in bezug auf die jeweiligen ersten Trommeln (18, 21) angeordnet sind; wobei der Speicher (1) dadurch gekennzeichnet ist, daß die Einstellmittel (46; 62; 67) eine Übertragung bzw. ein Getriebe (47; 63; 68), die (das) die zweiten Trommeln (19, 20) verbindet und zum Bewegen der zweiten Trommeln (19, 20) gleich und entgegengesetzt in bezug auf die jeweiligen ersten Trommeln (18, 21); und einen reversiblen Motor (52) umfassen, um das Getriebe (47; 63; 68) mit Leistung zu versorgen bzw. anzutreiben.

2. Speicher nach Anspruch 1, dadurch gekennzeichnet, daß er für jede der zweiten Trommeln (19; 20) Führungsmittel (37; 42); und Gleitmittel (40; 45) umfaßt, die die zweiten Trommeln (19; 20) unterstützen und mit den Führungsmitteln (37; 42) verbunden sind, um die zweite Trommel (19; 20) zu und von der jeweiligen ersten Trommel (18; 21) zu bewegen; wobei das Getriebe (47; 63; 68) die Gleitmittel (40; 45) verbindet.

3. Speicher nach Anspruch 2, dadurch gekennzeichnet, daß die ersten Trommeln (18, 21) nebeneinander bzw. Seite an Seite angeordnet sind und sich die Führungsmittel (37; 42) parallel zueinander von den jeweiligen ersten Trommeln (18, 21) und auf derselben Seite in bezug auf die ersten Trommeln (18, 21) erstrecken.

4. Speichern nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Getriebe (47) einen Gurt bzw. Riem (55) umfaßt, der zwischen den zwei Paaren (16, 17) von Trommeln angeordnet ist und um zwei Riemenscheiben (48, 49) geschlungen ist, um zwei Zweige (56, 57) zu definieren; wobei eine (48) der Riemenscheiben (48, 49) durch den Motor (52) angetrieben ist; und jede zweite Trommel (19; 20) mit einem entsprechenden Zweig (56; 57) des Gurs bzw. Bands (55) so verbunden ist, um gemeinsam mit dem Zweig (56; 57) durch den Motor (52) bewegt zu sein.

5. Speicher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Getriebe (47) eine Kette (55) umfaßt, die zwischen den zwei Paaren (16, 17) von Trommeln angeordnet ist und um zwei Zahnräder (48, 49) geschlungen ist, um zwei Zweige (56, 57) zu definieren; wobei eines (48) der Zahnräder (48, 49) durch den Motor (52) angetrieben ist; und jede zweite Trommel (19; 20) mit einem entsprechenden Zweig (56; 57) der Kette (55) so verbunden ist, um gemeinsam mit dem Zweig (56; 57) durch den Motor (52) bewegt zu sein.

6. Speicher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Getriebe (63) ein Ritzel (64), das zentral zwischen den zwei Paaren (16, 17) von Trommeln angeordnet ist; und zwei Zahnstangen (65, 66) umfaßt, die an gegenüberliegenden bzw. entgegengesetzten Seiten des Ritzels (64) angeordnet sind und mit dem Ritzel (64) verbunden sind; wobei das Ritzel (64) durch den Motor (52) angetrieben ist; und jede zweite Trommel (19; 20) mit einer entsprechenden Zahnstange (65; 66) so verbunden ist, um mit der Zahnstange (65; 66) durch den Motor (52) bewegt zu sein.

7. Speicher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Getriebe (68) einen Kniehebel bzw. Kipphebel bzw. Kulisse bzw. Schwinge umfaßt, der zentral zwischen den zwei Paaren (16, 17) von Trommeln angeordnet ist, und um eine zentrale Welle (50) schwenkt, die durch den Motor (52) angetrieben ist; wobei der Kniehebel zwei Arme (69, 70) gleicher Längen umfaßt; und jeder Arm (69; 70) mit einer entsprechenden zweiten Trommel (19; 20) verbunden ist.

Revendications

1. Magasin à capacité variable pour stocker des objets (2) dans une station d’entrée (3) et une station de sortie (3) disposées en série le long d’une trajectoire de déplacement (P) des objets (2), un convoyeur sans fin (8) comprenant une branche de convoyage (9) pour transporter les objets (2) le long de ladite trajectoire (P) et une branche de retour (12) qui constituent respectivement une première et une seconde spirale (26, 27) de longueurs déterminées enroulées respectivement autour de paires correspondantes (16, 17) de tambours de guidage (18, 19; 20, 21); et des moyens de réglage (46; 62; 67) pour adapter lesdites longueurs de manière complémentaire, lesdites paires (16, 17) de tambours (18, 19; 20, 21) comportant chacun un premier tambour fixe (18; 21) et un second tambour (19, 20) mobile par rapport audit pre-
mier tambour (18 ; 21) et lesdits seconds tambours (19, 20) étant disposés du même côté par rapport aux premiers tambours correspondants (18, 21) ; et le magasin (1) étant caractérisé en ce que lesdits moyens de réglage (46 ; 62 ; 67) comportent une transmission (47 ; 63 ; 68) couplée auxdits seconds tambours (19, 20) et agencée pour entraîner les seconds tambours (19, 20) de façon similaire et opposée par rapport aux premiers tambours correspondants (18, 21) ; et un moteur réversible (52) pour entraîner ladite transmission (47 ; 63 ; 68).

2. Magasin tel que revendiqué dans la revendication 1, caractérisé en ce que qu’il comporte, pour chacun desdits seconds tambours (19 ; 20) des moyens de guidage (37 ; 42) et des moyens de glissement (40 ; 45) supportant ledit second tambour (19, 20) et couplés auxdits moyens de guidage (37 ; 42) pour entraîner le second tambour (19 ; 20) par rapport au premier tambour correspondant (18 ; 21), ladite transmission (47 ; 63 ; 68) étant couplée auxdits moyens de glissement (40 ; 45).

3. Magasin tel que revendiqué dans la revendication 2, caractérisé en ce que lesdits premiers tambours (18, 21) sont disposés côte à côte et lesdits moyens de guidage (37, 42) s’étendent parallèlement entre eux à partir desdits premiers tambours correspondants (18, 21) et du même côté par rapport auxdits premiers tambours (18, 21).

4. Magasin tel que revendiqué dans l’une quelconque des revendications 1 à 3, caractérisé en ce que ladite transmission (47) comporte une courroie (55) disposée entre lesdites deux paires (16, 17) de tambours et enroulée en boucle autour de deux poulies (48, 49) pour définir deux branches (56, 57) ; l’une (48) desdites poulies (48, 49) étant entraînée par ledit moteur (52) ; et chacun desdits seconds tambours (19, 20) étant respectivement couplé à une desdites branches (56, 57) de ladite courroie (55) de manière à être entraînés en même temps que ladite branche (56 ; 57) par ledit moteur (52).

5. Magasin tel que revendiqué dans l’une quelconque des revendications 1 à 3, caractérisé en ce que ladite transmission (47) comporte une chaîne (55) disposée entre lesdites deux paires (16, 17) de tambours et enroulée en boucle autour de deux pignons dentés (48, 49) pour définir deux branches (56, 57) ; l’un (48) desdits pignons dentés (48, 49) étant entraîné par ledit moteur (52) ; et chacun desdits seconds tambours (19, 20) étant respectivement couplé à une desdites branches correspondantes (56 ; 57) de ladite chaîne (55) de manière à être entraînés en même temps que la branche (56 ; 57) par ledit moteur (52).