METHOD AND APPARATUS FOR TORQUE-CONTROLLED ECCENTRIC EXERCISE TRAINING

VERFAHREN UND VORRICHTUNG ZUM DREHMOMENTGESTEUERTEN UND EXZENTRISCHEN TRAINING

PROCEDE ET APPAREIL POUR ENTRAINEMENT EXCENTRIQUE A COMMANDE DE COUPLE

(56) References cited:
- EP-A- 0 194 399
- US-A- 4 865 315

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

[0001] The present invention relates, generally, to a method and apparatus for increasing locomotor muscle size and strength at low training intensities and, more particularly, to a method and apparatus for increasing locomotor muscle size and strength at low training intensities by utilizing eccentric ergometry.

Background of the Invention

[0002] It is commonly accepted that at least minimal physical activity is necessary to maintain muscle mass (see for example document EP-A-0255487). If such minimal activity is lacking, the muscular system becomes atrophied and muscle mass diminishes. Muscular activity is energetically consuming, i.e. oxygen consumption by the muscular system increases heavily during physical activity. For example, oxygen consumption for a healthy person at rest may increase 10-15 times with physical activity. If an adequate amount of oxygen fails to reach the muscle, physical activity will be limited. Inadequate oxygen delivery may be due to a disorder in oxygen reception in the lungs or to insufficient transport of the oxygen to the muscles. Insufficient pumping of the heart is designated heart insufficiency. Muscle reduction begins in those with heart disease as a result of insufficient activation of the heart muscles. This in turn leads to a further reduction of the pumping performance of the heart thereby resulting in circulus vitiosus. The present invention can be used to interrupt this process or condition.

[0003] Strength gains occur when muscle produces force. If the muscle shortens while producing force, it produces concentric (Con) positive work. If it lengthens while producing force, work is done on the muscle resulting in eccentric (Ecc) negative work. A muscle action is designated "concentric" if the force of a muscle overcomes an applied resistance and a muscle action is designated "eccentric" if the muscle force is less than the applied resistance. "Acceleration work" results from concentric contractions and "deceleration work" results from eccentric contractions. For example, one may imagine that ascending a mountain requires exclusively concentric work and that descending the same mountain requires only eccentric work. From a physical point of view, equal energy is converted in both cases. In ascending, potential energy is gained while in descending, the same amount of energy is lost. Although physically the same energy amounts are converted, the amount of energy to be spent by the muscular system for ascending is much higher than the amount of energy lost in descending. Five to seven times more energy is spent for concentric work as is spent for physically equal eccentric work.

[0004] The magnitude of strength gains seems to be a function of the magnitude of the force produced regardless of its Ecc or Con work. Ecc training has the capability of "overloading" the muscle to a greater extent than Con training because much greater force can be produced eccentrically than concentrically. Accordingly, Ecc training can result in greater increases in strength.

[0005] Furthermore, the Ecc mode of contraction has another unique attribute. The metabolic cost required to produce force is greatly reduced; muscles contracting eccentrically get "more for less" as they attain high muscle tensions at low metabolic costs. In other words, Ecc contractions cannot only produce the highest forces in muscle vs. Con or isometric contractions, but do so at a greatly reduced oxygen requirement (Vo2). This observation has been well-documented since the pioneering work of Bigland-Ritchie and Woods (Integrated electromyogram and oxygen uptake during positive and negative work, Journal of Physiology (Lond) 260: 267-277, 1976) who reported that the oxygen requirement of submaximal Ecc cycling is only 1/6-1/7 of that for Con cycling at the same workload.

[0006] Typically, single bouts of Ecc exercise at high work rates (200-250 W for 30-45 minutes) result in muscle soreness, weakness, and damage in untrained subjects. Therefore, the common perception remains that Ecc muscle contractions necessarily cause muscle pain and injury. Perhaps because of this establishes association between Ecc contractions and muscle injury, few studies have examined prolonged exposure to Ecc training and its effect on muscle injury and strength. Nonetheless, Ecc contractions abound in normal activities such as walking, jogging, descending/walking down any incline, or lowering oneself into a chair to name just a few. Obviously, these activities occur in the absence of any muscular damage or injury.

[0007] Accordingly, there is a for providing chronic Ecc training techniques and/or apparatus that can improve locomotor muscle strength without causing muscle injury.

Summary of the Invention

[0008] Because muscles contracting eccentrically produce higher force, and require less energy to do so, Ecc training possesses unique features for producing both beneficial functional (strength increases) and structural (muscle fiber size increases) changes in locomotor muscles. For example, because Ecc work can over load muscle at VO2 levels that have little or no impact on muscle when the work is performed concentrically, then strength and muscle size increases might be possible in patients who heretofore have difficulty maintaining muscle mass due to severe cardiac and respiratory limitations.

[0009] The present invention is directed to a device for applying torque-controlled eccentric training to a human muscular system and includes means for applying a torque transfer to the human muscular system, display...
means for displaying deceleration power data produced by the muscular system in resisting the torque transfer, and means for detecting and processing deceleration data for adjusting the torque transfer to the human muscular system. In one aspect of the invention, the means for applying a torque transfer includes a drive motor coupled to a turning or pedal crank. The drive motor may also be controlled by a controller that can also be optionally coupled to the display means. The controller operates conditions of the drive motor and can comprise a computer program that can process measured motor data and variables measured by the means for detecting and processing the deceleration data with algorithms for obtaining operating conditions of the drive motor.

In another aspect of the invention, the device may also include at least one flywheel positioned between the drive motor and the turning crank. The drive motor can be connected to the turning crank by one or more chains which could also take the form of toothed belts or a cardan shaft. The device may also include at least one idler between the drive motor and the flywheel.

In still another aspect of the invention, the device includes an adjustable seat which is connected to a solid frame along with the drive motor and turning crank in order to stabilize the device. There may also be an on/off switch for the drive motor located near the adjustable seat so that a user can switch the device on and off from a user’s seated position for training.

The present invention also includes a method for torque-controlled eccentric exercise training using the previously described device which includes selecting operation parameters at the turning crank, processing measured data that is detected; monitoring operation conditions of the drive motor; displaying produced deceleration power and operation parameters at the turning crank on a display device; and controlling the drive motor according to selected operation conditions.

Brief Description of the Drawing Figures

The present invention will hereinafter be described in conjunction with the appended drawing figures, wherein like numerals denote like elements, and:

FIG. 1 is a side elevational and partial cross-sectional view of an eccentric ergometer in accordance with the present invention;
FIG. 2 is a top elevational view of the eccentric ergometer shown in FIG. 1 in accordance with the present invention;
FIGS. 3-4 are flowcharts showing a method for torque-controlled eccentric exercise training using the eccentric ergometer shown in FIGS. 1-2;
FIG. 5 is a bar graph comparing whole body and leg exertion measures and total work and oxygen costs during a six week training regimen using a traditional concentric ergometer and the eccentric ergometer shown in FIGS. 1-2;
FIG. 6 is a bar graph comparing leg pain and isometric leg strength measurements both during and after a six week training regimen using a traditional concentric ergometer and the eccentric ergometer shown in FIGS. 1-2;
FIG. 7 is a bar graph comparing eccentric and concentric training intensities measured by maximum heart rate during an eight week training period using a traditional concentric ergometer and the eccentric ergometer shown in FIGS. 1-2;
FIG. 8 is a graph comparing the amount of eccentric and concentric work performed during an eight week training period using a traditional concentric ergometer and the eccentric ergometer shown in FIGS. 1-2;
FIG. 9 is a bar graph comparing the rating of perceived exertion for the body and legs using the Borg scale during an eight week training period using a traditional concentric ergometer and the eccentric ergometer shown in FIGS. 1-2;
FIG. 10 is a graph comparing isometric knee extension strength changes before, during, and after an eight week training period using a traditional concentric ergometer and the eccentric ergometer shown in FIGS. 1-2;
FIG. 11 is a bar graph comparing capillary fiber cross-sectional areas both before and after an eight week training period using a traditional concentric ergometer and the eccentric ergometer shown in FIGS. 1-2; and
FIG. 12 is a bar graph comparing capillary-to-fiber ratio and capillary density both before and after an eight week training period using a traditional concentric ergometer and the eccentric ergometer shown in FIGS. 1-2.

Detailed Description of Exemplary Embodiments

The present invention is directed to a method and apparatus for increasing locomotor muscle size and strength at low training intensities utilizing eccentric ergometry. The apparatus of the present invention comprises means for applying a torque transfer to the human muscular system. The apparatus is directed to an eccentric ergometer device 10, shown in FIGS. 1-2, which includes a motor 12, a turning or pedal crank 14, at least one flywheel 16, and an adjustable seat 18. The motor 12, turning crank 14, and seat 18 are all coupled to a frame 20, preferably comprised of steel, to aid in stabilizing the device 10. The motor 12 is mechanically coupled to the turning crank 14 by one or more chains 22 which may also take the form of toothed belts or cardan shafts. The device 10 further comprises display means 24, such as a monitor, for displaying deceleration power data produced by a user’s muscular system in resisting torque transfer. A magnetic sensor 26 monitors pedal speed.

In constructing the eccentric ergometer device
10, the power train of a standard Monarch cycle ergometer may be used. The adjustable seat 18 may comprise a recumbent seat and the device 10 may be driven, for example, by a three-horsepower direct current (DC) motor with one or more idlers between the motor 12 and the flywheel 16. The gear ratio from the flywheel 16 to the turning or pedal crank 14 is preferably about 1.3.75. As previously stated, all components are mounted to a steel frame 20 for stability. A motor controller 28 controls the motor speed and preferably has a 0 to 10 Volt output for both motor speed and load. The magnetic sensor 26 monitors pedal revolutions per minute (rpm) which is preferably displayed to the rider/user during the training session. The voltage and amperage outputs from the controller 28 are monitored through an analog-to-digital board and dedicated computer. The motor 12 also includes an on/off switch 30 which is accessible by a user in order to switch the device on and off from the position of use. A safety shut off may also be included which may be programmed to automatically shut off the motor once certain predetermined parameters are reached. [0016] The ergometer device 10 can be calibrated by using the original standard ergometers friction band and applying known loads (via weights) as the motor 12 moves the flywheel 16 in a forward direction at a fixed rpm and reading the amperage/voltage of the motor. Therefore, for a fixed load and rpm, the calibration performed in the forward direction also serves to calibrate the reverse direction of the flywheel. Accordingly, the Ecc work rate is maintained by a user resisting the pedal motion at a fixed rate. [0017] FIGS. 3-4 are flowcharts showing a method for torque-controlled exercise training 40 using the eccentric ergometer device 10 shown in FIGS. 1-2. The method 40 is preferably carried out by a software program that controls the functioning of the eccentric ergometric device 10. The method starts by beginning a training session in step 42 and one or more first parameters are read in step 44. The motion control of the device 10 is read in step 46 and a user may then control and display specific parameters for the functioning of the device 10 in step 48. Once the desired controls are displayed in step 48, the program recipe is created and sent to the motion control for the device in step 50. Once the user has trained or practiced at the desired setting for a desired time period (programmed recipe), the user determines whether or not to end the training session in step 52. If the user elects to end the previously programmed training session, the user may then return to step 46 to read the motion control and continue on through steps 48-50 to train on another set of preprogrammed parameters. Alternatively, if the user elects to end the training session in step 52, the parameters of the training session can be saved in step 54 and the training session then ends in step 56. [0018] Turning now to FIG. 4, there is shown a flowchart which depicts a more detailed procedure for the control and display step 48 in FIG. 3. The first step in controlling and displaying parameters for a training session involves calculating the values and ranges of parameters in step 60 that are required to achieve certain desired outcomes. In step 62, a determination is made as to whether or not an emergency shut off is appropriate. If so, an emergency shutdown takes place in step 64 which is then reflected by displaying the same in display step 66. If there is no emergency in step 62, a determination is made in step 68 as to whether the limits set for the training program are acceptable. If the limits are not acceptable, the timer is shut off and reset in step 70 and the training session is shutdown in step 72. This shutdown in step 72 is then displayed in display step 66. If the limits settings for the training session are acceptable, a user determines whether or not to press the start button in step 74. If the start button is not pressed in step 74, the timer is shut off and reset and step 70 and the training session is shutdown in step 72. Again, this shutdown in step 72 is displayed in display step 66. Alternatively, if the user selects to press the start button in step 74, the timer is turned on in step 76 and the training session enters the control mode in step 78. The control mode is then displayed in display step 66. [0019] Subjects and training regimen: Nine healthy subjects 18-34 (mean 21.5) years old were assigned at random to one of two exercise training groups: 1) an Ecc cycle ergometer like that shown in FIGS. 1-2, two males (1 sedentary, 1 regular moderate exerciser) and two females (1 regular moderate exerciser, 1 competitive triathlete), or 2) traditional Con ergometer, two irregularly exercising males and three light exercising females. Both the Ecc and Con groups trained for six weeks with a progressively increasing frequency and duration of training (and a pedal rpm of 50-60). During the first week, each group trained two times for 10-20 minutes. Both groups then exercised three times during the second week for 30 minutes and finally five times per week for 30 minutes during the third-sixth weeks. During the first four weeks, the Ecc group began with threefold greater work rates than the Con group. During the fifth week, work rates were adjusted in an attempt to equalize VO2 between the groups. [0020] Measurements: To assess skeletal muscle strength changes, maximal voluntary isometric strength produced by the knee extensors was measured with a Cybex dynamometer before, after and during training. VO2 was measured once a week while training with an open spirometric system with subjects wearing a loose fitting mask. A visual analog scale (VAS) was used to determine the perception of lower extremity muscle soreness. Subjects were asked to report a rating of perceived exertion (RPE) on a scale rating.
The results of the study demonstrated that if the Ecc work rate is ramped up during the first four weeks and then maintained for at least two weeks, strength gains can be made with minimal muscle soreness and without muscle injury as noted by the VAS and no loss in leg strength at any time during the study. In fact, leg strength increased significantly in the Ecc group. (See FIG. 6). Progressive ramping of the Ecc work prevented nearly all of the typical or expected muscle injury and eliminated all muscle soreness associated with the first few weeks of Ecc training. Despite efforts to equalize the exercising VO2 by altering work rates, Ecc was less than Con throughout the fifth week of training and not equalized until the sixth week. gains in leg strength were noted with the Ecc training group whereas no strength changes occurred with the Con group.

With respect to FIG. 5, the only significant differences noted in perceived body and leg exertion were in the RPE (legs) during the first week of training when the Ecc group had a greater perceived leg exertion.

The strength enhancements using the method and apparatus of the present invention, with very minimal cardiac demand, may have profound clinical applications. Despite improvements in strength and muscle mass with high-intensity resistance training in healthy elderly, many with cardiovascular disease cannot exercise at intensities sufficient to improve skeletal muscle mass and function. Exercise intensity in this population is often severely limited by the inability of the cardiovascular system to deliver adequate oxygen to fuel muscles at levels significantly above resting. For many elderly patients, the symptom inducing metabolic limits have been estimated as low as 3 METS which is equivalent to con cycling at approximately 50 W on an ergometer. Such work rates may be insufficient to adequately stress muscle and prevent muscle atrophy and the concomitant functional decline. This group of patients with chronic heart failure and/or obstructive pulmonary disease could maintain their muscle mass and potentially even exercise an increase in muscle strength during their exercise rehabilitation by using the method and apparatus of the present invention.

Eight Week Training Regimen:

Subjects and training regimen: Fourteen healthy male subjects with a mean age of 23.9 years (range, 19-38 years) were systematically grouped to create two groups of seven subjects, each with an equivalent mean peak oxygen consumption (VO2peak). The two groups were assigned at random to one of the following two groups: 1) an Ecc cycle ergometer like that shown in FIGS. 1-2 or 2) a traditional Con cycle ergometer. After two weeks of training, one subject in the Con group dropped out leaving n=7 for the Ecc group and n=6 for the Con group.

Each subject performed a VO2peak test on a traditional Con ergometer and the subject’s peak heart rate (HRpeak) was defined as the heart rate obtained at VO2peak. Training exercise intensity was set to a fixed and identical percentage of HRpeak (%HRpeak) in both groups of subjects and heart rate was monitored over every training session for the 8 weeks of training. %HRpeak was progressively ramped for both groups in an identical fashion during the training period, from an initial 54% to a final 65% HRpeak. (See FIG. 7). The training period extended for eight weeks with a progressively increasing frequency and duration of training. During week 1, all subjects rode 2 times/wk for 15 minutes. Training frequency was 3 times per week for weeks 2 and 3 at 25-30 minutes, 4 times/wk at 30 minutes for week 4, and 5 times/wk for 30 minutes during weeks 5 and 6. The frequency of training was decreased to 3 times/wk, but training duration remained at 30 minutes for weeks 7 and 8 due to the Ecc subjects subjective feeling of “fatigue”. Pedal rpm was identical for both groups (started at 50 rpm and progressively increased to 70 rpm by the fifth week).

Measurements: All measurements were the same as the six week training regimen discussed above in addition to the following: Total work (joules) on the Ecc ergometer per training session was calculated by integrating the work rate (watts), determined directly from a 0 to 10 volt output from the motor, which was calibrated to a known work rate, over the total duration of each training session. The total work per training session was calculated on the Con recumbent ergometer by multiplying the work rate displayed on the calibrated ergometer by the duration of each training session. A single needle biopsy from the vastus lateralis at the midthigh level was taken 2 days before the beginning of the study and 1-2 days after the eight week study ended to measure muscle fiber ultrastructure and fiber area. The capillary-to-fiber ratio was determined by counting the number of capillaries and fibers via capillary and fiber profiles from electron micrographs.

Ecc and Con cycle ergometry training workloads increased progressively as the training exercise intensity increased over the weeks of training. Both groups exercised at the same %HRpeak, and there was no significant difference between the groups at any point during training. But, the increase in work for the Ecc group was significantly greater than the Con group as shown in FIG. 8. Perceived exertion for the body was not significantly different between the Ecc and Con groups but perceived exertion of the legs was significantly greater in the Ecc group over the 8 week training period as shown in FIG. 9. Isometric strength improvements for the left leg were significantly greater every week (except week 2) for the Ecc group as shown in FIG. 10 but no changes in strength were noted in the Con group at any time. There was also a significant right leg/left leg X pre/posttraining interaction for the Ecc group but none for the Con group. Further, as shown in FIG. 11, Ecc fiber area was significantly larger posttraining while no fiber area change was noted for the Con
group. Finally, Ecc capillary-to-fiber ratio significantly increased posttraining (47%), paralleling the increase noted in fiber cross-sectional area, whereas the Con group did not. (See Fig. 12).

This study demonstrates that if the training exercise intensity is ramped up and equalized for both groups over the first 5 weeks and then maintained for three additional weeks, then large differences in muscle force production, measured as total work, result comparing the Ecc and Con groups. This increased force production in the Ecc group apparently stimulated significant increases in isometric strength and fiber size, neither of which occurred in the Con group.

The method and apparatus of the present invention enable an Ecc skeletal muscle paradigm that can be used in clinical settings to deliver greater stress to locomotor muscles (workloads exceeding 100 W), without severely stressing the oxygen delivery capacity of the cardiovascular system. Patients with chronic heart failure and/or obstructive pulmonary disease could at least maintain their muscle mass and perhaps even experience an increase in muscle size and strength using the method and apparatus of the present invention.

The foregoing description is of exemplary embodiments of the subject invention, it will be appreciated that the foregoing description is not intended to be limiting; rather, the exemplary embodiments set forth herein merely set forth some exemplary applications of the subject invention. It will be appreciated that various changes, deletions, and additions may be made to the components and steps discussed herein without departing from the scope of the invention as set forth in the appended claims.

Claims

1. A device (10) for applying torque-controlled eccentric exercise training to a human muscular system comprising:

 a) means (12) for applying a torque transfer to the human muscular system;
 b) display means (24) for displaying deceleration power data produced by the muscular system in resisting the torque transfer; and
 c) means (42-52) for detecting and processing said deceleration data for adjusting said torque transfer to the human muscular system.

2. The device of claim 1, wherein said drive motor (12) comprises an electric motor having a controllable number of revolutions and a power of up to 2000 watts.

3. The device of claim 2, further comprising a controller (28) for said drive motor (12) wherein said controller may be optionally coupled to said display means (24).

4. The device of claim 2, further comprising a controller (28) for said drive motor (12) wherein said controller may be optionally coupled to said display means (24).

5. The device of claim 4, wherein said controller (28) controls operating conditions of the drive motor (12) thereby controlling at least one of a number of revolutions of said turning crank (14), an amount of said torque transfer, and an emergency stop of said driving motor at predetermined torque values of the turning crank.

6. The device of claim 5, wherein said controller (28) comprises a computer program (42-54) capable of processing at least one of measured motor data and variables measured by said means for detecting and processing said deceleration data with algorithms for obtaining the operating conditions of the drive motor.

7. The device of claim 5, wherein said display means (24) further displays the operating conditions of the drive motor.

8. The device of claim 2, wherein said drive motor (12) is mechanically coupled to said turning crank (14) by at least one or more of a chain, a toothed belt, or a cardan shaft.

9. The device of claim 2, comprising at least one flywheel (16) arranged between said driving wheel and said turning crank to ensure an even movement of said turning crank:

10. The device of claim 9, further comprising at least one idler positioned between the drive motor and the flywheel (16).

11. The device of claim 2, wherein said drive motor (12) comprises an on/off switch capable of being switched on and off by a user of the device while the device is in use.

12. The device of claim 1, further comprises an adjustable seat (18) for a user to occupy while the torque transfer is being applied to the human muscular system.

13. The device of claim 11, wherein the driving motor (12), the turning crank (14), and the seat (18) are rigidly coupled to one another.

14. A method (40) for torque-controlled eccentric exercise training using the device (10) of claim 2, com-
prising the steps of:

- selecting operation parameters at the turning crank (14);
- processing (46) measured data that is detected;
- monitoring (48) operation conditions of the drive motor (12);
- displaying (48) produced deceleration power and operation parameters at the turning crank in a display device (24); and
- controlling (50) the drive motor according to selected operation conditions.

15. A method of operating an ergometric device for increasing size and/or strength of a locomotor muscle, comprising the steps of:

- applying a torque transfer to the muscle using an eccentric ergometric device;
- detecting and processing deceleration data produced by the muscular system in resisting the torque transfer; and
- controlling the torque transfer applied to the muscle by controlling the eccentric ergometric device.

16. The method of claim 15, wherein the step of controlling the torque transfer comprises the steps of:

- a) sensing (44) deceleration power data produced by the muscle in resisting the torque transfer;
- b) selecting (48) parameters and parameter levels to achieve a desired outcome;
- c) creating (50) a program recipe based upon the sensed deceleration power data and the selected parameters and parameter levels; and
- d) controlling (50) the torque transfer applied to the muscle in accordance with the program recipe.

17. The method of claim 16, wherein steps b) through d) are repeated using different parameters and parameter levels.

18. The method of claim 16, further comprising the step of saving (54) the program recipe for future use.

19. The method of claim 16, wherein said step (48) of selecting parameters and parameter levels comprises the step of calculating (60) values and ranges of desired parameters that are required to achieve the desired outcome.

20. The method of claim 15, further comprising the step of employing an emergency shut off (64) for eccentric ergometric device.
8. Einrichtung nach Anspruch 2, bei welcher der Antriebsmotor (12) mechanisch mit der Drehkurbel (14) verbunden ist, durch zumindest entweder eine Kette, einen Zahnriemen, oder eine Kardanwelle oder eine Kombination hieinaus.

9. Einrichtung nach Anspruch 2, welche zumindest ein Schwungrad (16) aufweist, dass zwischen dem Antriebsrad und der Drehkurbel angeordnet ist, um eine gleichmäßige Bewegung der Drehkurbel sicherzustellen.

10. Einrichtung nach Anspruch 9, welche weiterhin zumindest eine Spannrolle aufweist, die zwischen dem Antriebsmotor und dem Schwungrad (16) angeordnet ist.

11. Einrichtung nach Anspruch 2, bei welcher der Antriebsmotor (12) einen Ein/Ausschalter aufweist, der durch einen Benutzer der Einrichtung, während diese in Gebrauch ist, ein- und ausgeschaltet werden kann.

12. Einrichtung nach Anspruch 1, welche weiterhin einen einstellbaren Sitz (18) zum Einnehmen durch einen Benutzer aufweist, während die Drehmomentübertragung an das menschliche Muskelsystem angelegt wird.

13. Einrichtung nach Anspruch 11, bei welcher der Antriebsmotor (12), die Drehkurbel (14), und der Sitz (18) starr miteinander verbunden sind.

14. Verfahren (40) zum Drehmoment gesteuerten exzentrischen Bewegungstraining unter Verwendung der Einrichtung (10) nach Anspruch 2 mit folgenden Schritten:

 Auswahl von Betriebsparametern an der Drehkurbel (14);
 Verarbeiten (46) gemessener Daten, die erfasst werden;
 Überwachung (48) von Betriebsbedingungen des Antriebsmotors (12);
 Anzeigen (48) erzeugter Verzögerungsleistungs- und Betriebsparameter an der Drehkurbel in einer Anzeigeeinrichtung (24); und
 Steuern (50) des Antriebsmotors entsprechend ausgewählten Betriebsbedingungen.

15. Verfahren zum Betrieb einer ergometrischen Einrichtung zum Erhöhen der Größe und/oder Stärke eines lokomotorischen Muskels, mit folgenden Schritten:

 a) Messen (44) von Verzögerungsleistungsdaten, die von dem Muskel beim Widerstand gegen die Drehmomentübertragung erzeugt werden;
 b) Auswählen (48) von Parametern und Parameterpegeln zur Erzielung eines gewünschten Ergebnisses;
 c) Erzeugen (50) eines Programmrezepts auf Grundlage der gemessenen Verzögerungsleistungsdaten unter ausgewählten Parametern und Parameterpegel; und
 d) Steuern (50) der Drehmomentübertragung, die an den Muskel angelegt wird, entsprechend dem Programmrezept.

16. Verfahren nach Anspruch 15, bei welchem der Schritt des Steuerns der Drehmomentübertragung folgende Schritte umfasst:

 a) Messen (44) von Verzögerungsleistungsdaten, die von dem Muskel beim Widerstand gegen die Drehmomentübertragung erzeugt werden;
 b) Auswählen (48) von Parametern und Parameterpegeln zur Erzielung eines gewünschten Ergebnisses;
 c) Erzeugen (50) eines Programmrezepts auf Grundlage der gemessenen Verzögerungsleistungsdaten unter ausgewählten Parametern und Parameterpegel; und
 d) Steuern (50) der Drehmomentübertragung, die an den Muskel angelegt wird, entsprechend dem Programmrezept.

17. Verfahren nach Anspruch 16, bei welchem die Schritte b) bis d) unter Verwendung unterschiedlicher Parameter und Parameterpegel wiederholt werden.

18. Verfahren nach Anspruch 16, mit dem weiteren Schritt, das Programmrezept für zukünftigen Einsatz zu speichern.

20. Verfahren nach Anspruch 15, mit dem weiteren Schritt des Einsatzes einer Notabschaltung (64) der exzentrischen, ergometrischen Einrichtung.
Revendications

1. Dispositif (10) pour appliquer un exercice d’entraînement excentrique commandé par couple à un système musculaire humain, comprenant :
 a) des moyens (12) pour appliquer un transfert de couple à un système musculaire humain ;
 b) des moyens d’affichage (24) pour afficher des données de puissance de décélération produites par le système musculaire pour résister au transfert de couple ; et
 c) des moyens (42 à 52) pour détecter et traiter lesdites données de décélération prévues pour régler ledit transfert de couple vers le système musculaire humain.

2. Dispositif selon la revendication 1, dans lequel lesdits moyens pour appliquer un transfert de couple comprennent un moteur d’entraînement (12) coupé à une manivelle rotative (14), ledit moteur d’entraînement pouvant être mis en marche ou à l'arrêt.

3. Dispositif selon la revendication 2, dans lequel ledit moteur d’entraînement (12) comprend un moteur électrique dont le nombre de tours peut être réglé et dont la puissance est supérieure à 2000 watts.

4. Dispositif selon la revendication 2, comprenant, en outre, un dispositif de commande (28) pour ledit moteur d’entraînement (12), dans lequel ledit dispositif de commande peut être couplé, éventuellement, auxdits moyens d’affichage (24).

5. Dispositif selon la revendication 4, dans lequel ledit dispositif de commande (28) commande les conditions de fonctionnement du moteur d’entraînement (12), ayant, ainsi, au moins, une des fonctions de commander un nombre de tours de ladite manivelle rotative (14), une quantité dudit transfert de couple, et un arrêt d’urgence dudit moteur d’entraînement pour des valeurs de couples prédéterminées de la manivelle rotative.

6. Dispositif selon la revendication 5, dans lequel ledit dispositif de commande (28) comprend m programme informatique (42 à 54) capable de traiter au moins une des données de moteur mesurées et des variables mesurées par lesdits moyens pour détecter et traiter lesdites données de décélération avec des algorithmes en vue d’obtenir les conditions de fonctionnement du moteur d’entraînement.

7. Dispositif selon la revendication 5, dans lequel lesdits moyens d’affichage (24) affichent, en outre, les conditions de fonctionnement du moteur d’entraînement.

8. Dispositif selon la revendication 2, dans lequel ledit moteur d’entraînement (12) est couplé mécaniquement à ladite manivelle rotative (14) par au moins un ou plusieurs des éléments suivants : une chaîne, une courroie à dents, ou un arbre à cardan.

9. Dispositif selon la revendication 2, comprenant au moins un volant (16) agencé entre ladite roue d’entraînement et ladite manivelle rotative afin de garantir un mouvement uniforme de ladite manivelle rotative.

10. Dispositif selon la revendication 9, comprenant, en outre, au moins une roue folle placée entre le moteur d’entraînement et le volant (16).

11. Dispositif selon la revendication 2, dans lequel ledit moteur d’entraînement (12) comprend un interrupteur de marche/arrêt qui peut être fermé ou ouvert par un utilisateur du dispositif alors que celui-ci est utilisé.

12. Dispositif selon la revendication 1, comprenant, en outre, un siège réglable (18) pouvant être occupé par un utilisateur alors que le couple de transfert est appliqué au système musculaire humain.

13. Dispositif selon la revendication 11, dans lequel le moteur d’entraînement (12), la manivelle rotative (14), et le siège (18) sont couplés les uns aux autres de manière rigide.

14. Méthode (40) pour exercice d’entraînement excentrique commandé par couple faisant appel au dispositif (10) selon la revendication 2, comprenant les étapes consistant à :

 choisir les paramètres de fonctionnement au niveau de la manivelle rotative (14) ;
 traiter (46) les données mesurées qui sont détectées ;
 surveiller (48) les conditions de fonctionnement du moteur d’entraînement (12) ;
 afficher (48) la puissance de décélération produite et les paramètres de fonctionnement au niveau de la manivelle rotative sur un dispositif d’affichage (24) ; et
 commander (50) le moteur d’entraînement selon les conditions de fonctionnement choisies.

15. Méthode de fonctionnement d’un dispositif ergométrique pour augmenter la taille et/ou la force d’un muscle locomoteur, comprenant les étapes consistant à :

 appliquer un couple de transfert au muscle en utilisant un dispositif ergométrique excentrique ;
détecter et traiter les données de décélération produites par le système musculaire pour résister au transfert de couple ; et commander le transfert de couple appliqué au muscle en commandant le dispositif ergométrique excentrique.

16. Méthode selon la revendication 15, dans laquelle l’étape consistant à commander le transfert de couple comprend les étapes consistant à :

a) capter (44) les données de puissance de décélération produites par le muscle pour résister au transfert de couple ;

b) choisir (48) des paramètres et des niveaux de paramètres pour obtenir un résultat souhaité ;

c) générer (50) des instructions informatiques basées sur les données de puissance de décélération captées et les paramètres et niveaux de paramètres choisis ; et

d) commander (50) le transfert de couple appliqué au muscle conformément aux instructions informatiques.

17. Méthode selon la revendication 16, dans laquelle les étapes b) à d) sont répétées en utilisant différents paramètres et niveaux de paramètres.

18. Méthode selon la revendication 16, comprenant, en outre, les étapes consistant à sauvegarder (54) les instructions informatiques en vue d’une utilisation future.

19. Méthode selon la revendication 16, dans laquelle ladite étape (48) consistant à choisir les paramètres et les niveaux de paramètres comprend l’étape consistant à calculer (60) les valeurs et les plages de paramètres souhaités qui sont nécessaires pour obtenir le résultat souhaité.

20. Méthode selon la revendication 15, comprenant, en outre, l’étape consistant à utiliser un arrêt d’urgence (64) pour le dispositif ergométrique excentrique.
FIG. 4
FIG. 5

A

RPE BODY

ECCENTRIC TRAINING
CONCENTRIC TRAINING

B

RPE LEGS

C

$\text{O}_2 \text{(L/min)}$

CON

ECC

0.8
1.0
1.2
1.4
1.6

4
5
6

WEEKS

3:1
4:1
7:1

WEEKS OF TRAINING

WORK (NM-10^5)
FIG. 6