EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 26.01.2005 Bulletin 2005/04
Application number: 00980872.6
Date of filing: 30.11.2000

A HORIZONTALLY LOADABLE CARRIAGE FOR AN INK-JET PRINTER
HORIZONTAL LADBARE DRUCKWAGEN FÜR EINEN TIN TENSTRAHLDRUCKER
CHARIOT A CHARGEMENT HORIZONTAL POUR IMPRIMANTE A JET D’ENCRE

Designated Contracting States: DE FR GB
Priority: 05.01.2000 US 477644
Date of publication of application: 02.10.2002 Bulletin 2002/40
Proprietor: Hewlett-Packard Company Palo Alto, California 94304-1112 (US)
Inventors:
• KLINE, Daniel, S.
 Encinitas, CA 92024 (US)
• YAMAMOTO, Junji
 San Diego, CA 92131 (US)
• CHEN, Chee, Meng
 Singapore 520130 (SG)
Representative: Jackson, Richard Eric et al
Carpmaels & Ransford,
43 Bloomsbury Square
London WC1A 2RA (GB)
References cited:
EP-A-0 379 151
EP-A-0 756 936

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

[0001] The present invention generally relates to inkjet printers and, more particularly, to the components and subsystems therein.

BACKGROUND OF THE INVENTION

[0002] The general design and construction of carriages that retain and align inkjet print cartridges in printers and scan these print cartridges through print zones is well known. Examples of the patents that have issued in this field of technology include:

[0004] US Patent 4,872,026 entitled "Ink-jet Printer with Print Head Carriage Alignment Mechanism" by Rasmussen et al. issued 3 October 1989

[0007] Prior carriages have been designed to be loaded and unloaded either vertically or with a steep, inclined, arcuate motion. Such carriages have proven to be satisfactory as long as vertical access to the printer is provided. This has meant, however, that nothing could be permanently stacked on top of the printer.

[0008] Further, previous top loading ink-jet printer designs have fostered an increasing growth in printer height so that with each new printer design, the profile of the product grew and grew.

[0009] Additionally, it is believed that end users want a printer for home use that can be stacked in an entertainment center or used in living rooms. This is a printer that has flat top and bottom walls, that is front loading with all controls and status indicators on the front wall, and that is about the same size as a conventional stereo amplifier or a video cassette recorder (VCR). In other words, this is a horizontally loadable ink-jet printer with an overall height of less than 101.6 mm (four inches (4")), surfaces is unavailable for unloading the print cartridge from the printer.

[0011] Thus, it is apparent from the foregoing that although there are many different carriage designs, designing a front loading, stackable, low height inkjet printer presents many challenges.

[0012] US-A-5 500 664 discloses a horizontally loadable carriage for an ink-jet print cartridge comprising:
a) a carriage base translatable within an ink-jet printer;
b) a chute mounted on the carriage base for receiving an ink-jet print cartridge, said chute having a sidewall and an end wall; and
c) a generally horizontal guide rail on the sidewall of the chute for guiding an ink-jet print cartridge into the carriage.

SUMMARY OF THE INVENTION

[0014] According to the invention, there is provided a horizontally loadable carriage for an ink-jet print cartridge as set forth in the accompanying claim 1.

[0015] Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Fig. 1 is a perspective view, in section and partially cut away, of an inkjet printer embodying the principles of the invention.

Fig. 2 is a perspective view, in section and partially cut away of the carriage of the inkjet printer of Fig. 1.

Fig. 3 is a side elevational view, in section, taken along line 3-3 of the carriage of Fig. 2, with the print cartridge removed.

Fig. 4 is a perspective view of the latch spring of the carriage of Fig. 2.

Figs. 5 and 6 are front perspective views of the carriage of Fig. 2, with the print cartridges removed.

Fig. 7 is a rear perspective view of the carriage of Fig. 2, with the print cartridges removed.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0017] As shown in the drawings for the purposes of illustration, the invention is embodied in a front loading, stackable, low height, ink-jet printer.

[0018] The apparatus offers a simple, inexpensive solution, easy self-evident operation, and leverages the datum structure from a print cartridge currently in production.

[0019] Referring to Fig. 1, reference numeral 14 generally indicates an ink-jet printer partially cut away and with its front loading door removed. The printer includes a case part 15 and a DC drive motor 16 mounted on a chassis. Mounted on the shaft of the motor 16 is a pulley 17 that drives a belt 18 back and forth as the drive motor reverses in direction. The drive belt 18 is attached to a carriage 19 that scans laterally back and forth from left to right and right to left. The carriage 19 contains two thermal ink-jet print cartridges 20, 20' located side by side. Print cartridge 20 contains black ink, and print cartridge 20' has three ink chambers containing magenta, yellow and cyan inks. The horizontal scanning motion of the carriage is guided by a slide rod 21. Located in the rear of the carriage 19 is an encoder, not shown, that reads an encoder strip 22 that enables the electronic circuits in the printer to locate the carriage 19 along its scanning path. After the printer 14 prints a sheet of media, the media is ejected into an output tray on which a handle 23 is mounted.

[0020] In Fig. 2, the "X" axis is parallel with the longitudinal axis of the slide rod 21, Fig. 1. The "Y" axis is pointed to the rear and into the printer 14, Fig. 1, and is in the reverse direction to the path of the paper through the print zone. The "Z" axis is pointing vertically upward.

[0021] Referring now particularly to Figs. 2 and 7, the carriage 19 includes a carriage base 26 that supports the structure. The carriage base has two "C" shaped arch supports 28 located at its ends. These arch supports provide bearing support and engage the slide rod 21, Fig. 1.

[0022] Referring to Figs. 2, 5, and 6, the carriage 19 also includes two chutes 31 that each receive, hold, and align an ink-jet print cartridge 20 as illustrated in Fig. 2. Both chutes are constructed and operate in the same manner; so for brevity only the left chute will be described. The chute 31 has a left side wall 33, a right side wall 34, and a rear or end wall 35. Located on the rear wall 35 of the chute is a dimpled contact pad 37. The contact pad has an elastomeric backing and contains electrical contacts that are urged against corresponding contacts on the print cartridge 20. In this manner the printer 14 makes electrical contact with the print cartridge and supplies electrical energy to the firing resistors during printing.

[0023] Dimpled contact pads for thermal ink-jet print cartridges and carriages are disclosed in US Patent 4,706,097 entitled "Near-Linear Spring Connect Structure for Flexible Interconnect Circuits" by Harmon issued 10 November 1987. The dimpled contact pads 37, Figs. 3, 5, and 6, are held in place against the rear wall 35 of each chute 31 by six pins 42. Pin 42 locates the dimpled contact pad left and right and vertically in the carriage 19. The other five pins prevent the contact pad from rotating about the center pin 42 and inducing any stress in the contact pad.

[0024] Referring to Figs. 3, 5, and 6, located on each side wall 33, 34, of the chute 31 is a guide rail 40. The guide rails are the guiding feature for installing and removing print cartridges from the printer 14. Referring to Fig. 3, in particular, each guide rail is generally horizontal, curved, arcuate, and inclined slightly upward in the positive "Y" direction as illustrated in Fig. 2. The guide rails 40 engage the bottom of the lips located on the sidewalls of certain print cartridges.

Further, the guide rails 40 in the chutes 31, Figs. 5 and 6 serve many functions. First, the rails act as a target for the user when initially installing a print cartridge. They aid in locating the print cartridge 20 in the carriage 19, Fig. 1 which is only partially visible to the user. Second, once the print cartridge is resting on the guide rails and the print cartridge is pushed forward by the user, the rails guide the print cartridge up and over the primary and secondary carriage datums, described in detail below. Third, when a print cartridge is being unlatched from the carriage by the user, the guide rails limit the rotation of the print cartridge so that it does not come tumbling out of the printer.

Referring to Figs. 3 and 5, located in the right side wall 34 of each chute 31 is a cantilever spring 46. The spring 46 has a major axis that is horizontal. The cantilever spring biases or urges the print cartridge horizontally in the negative "X" direction as illustrated in Fig. 2, against the primary datums, as described in detail below.

[0025] In Figs. 2, 3, 4, 5, and 6, reference numeral 48 indicates a latch spring having a horizontal tab pointing rearward in an ink-jet printer 14, Fig. 1, along the "Y" axis as illustrated in Fig. 2. The spring is directed in this manner to achieve the low printer height objective. The latch spring engages a latch molded into the lid of the print cartridge as illustrated in Fig. 2. There is a latch spring for each chute 31, and they are fabricated from a single sheet metal part as illustrated in Fig. 4. The part is attached to features molded in the outside walls of the chutes 31. The part is also attached to an arresting finger 50 located on the center side wall of the carriage 19. The arresting finger has the shape of an "L" and prevents the mechanical strain from installing a print cartridge in one chute from affecting the print cartridge in the chute along side.

[0026] Referring to Figs. 5, 6, and 7, located on the inside of the left side wall 33 at the bottom of the chute 31 are the primary datums 52. The corresponding datums on the print cartridge are urged against the primary datums 52 in the chute by the cantilever spring 52 in the
right side wall 34 of the chute 31. Located on the inside of the right side wall 34 at the bottom of the chute 31 and directly opposite the primary datums 52 are the secondary datums 54. There is a single tertiary datum 56 located in the rear wall 35 of the chute 31 above the dimpled contact pad 37. The tertiary datum locates the rotation of a print cartridge about the "X" axis to a known point.

Claims

1. A horizontally loadable carriage (19) for an ink-jet print cartridge (20) comprising:
 a) a carriage base (26) translatable within an ink-jet printer (14);
 b) a chute (31) mounted on the carriage base (26) for receiving the ink-jet print cartridge (20), said chute having two sidewalls (33, 34) and an end wall (35), and
 c) a generally horizontal guide rail (40) on each of the sidewalls (33, 34) of the chute (31) for guiding the ink-jet print cartridge (20) into the carriage (19).

2. A carriage according to claim 1 wherein the horizontal guide rails (40) are arcuate.

3. A carriage according to claim 1 wherein the horizontal guide rails (40) are inclined slightly upward.

4. A carriage according to any preceding claim wherein the sidewall (34) includes a horizontal cantilever spring (46) having a horizontal axis for urging a print cartridge (20) along a horizontal axis.

5. A carriage according to any of claims 1-3, further including a cantilever latch spring (48) having a horizontal tab pointing rearward in an ink-jet printer (14).

6. A carriage according to claim 5 wherein the carriage (19) includes two chutes (31) with a latch spring (48) for each chute and the latch springs are a single unitary part.

7. A carriage according to claim 6 further including a medial arresting finger (50) that prevents the two latch springs (48) from affecting each other.

8. A carriage according to any preceding claim wherein the rear wall (35) of the chute (31) contains a datum (56) for preventing rotation of a print cartridge (20) into the printer (14).

9. The carriage according to any preceding claim further including:

 carriage datums (52, 54) disposed at a bottom of said chute (31) proximate to said end wall (35); and

 wherein said guide rails (40) guide the print cartridge (20) up and over said carriage datums (52,54).

Patentansprüche

1. Ein horizontal ladbarer Wagen (19) für eine Tintenstrahldruckkassette (20), der folgende Merkmale umfasst:
 a) eine Wagenbasis (26), die in einem Tintenstrahldrucker (14) verschiebbar ist;
 b) eine Rutsche (31) zum Aufnehmen der Tintenstrahldruckkassette (20), die auf der Wagenbasis (26) befestigt ist, wobei die Rutsche zwei Seitenwände (33, 34) und eine Rückwand (35) aufweist; und
 c) eine allgemein horizontale Führungsschiene (40) auf jeder der Seitenwände (33, 34) der Rutsche (31) zum Führen der Tintenstrahlkassette (20) in den Wagen (19).

2. Ein Wagen gemäß Anspruch 1, bei dem die horizontalen Führungsschienen (40) bogenförmig sind.

3. Ein Wagen gemäß Anspruch 1, bei dem die horizontalen Führungsschienen (40) leicht nach oben geneigt sind.

4. Ein Wagen gemäß einem der vorhergehenden Ansprüche, bei dem die Seitenwand (34) eine horizontale Auslegerfeder (46) umfasst, die eine horizontale Achse aufweist, zum Zwingen einer Druckkassette (20) entlang einer horizontalen Achse.

5. Ein Wagen gemäß einem der Ansprüche 1 bis 3, der ferner eine Auslegerverriegelungsfeder (48) umfasst, die einen horizontalen Vorsprung aufweist, der in einem Tintenstrahldrucker (14) nach hinten weist.

7. Ein Wagen gemäß Anspruch 6, der ferner einen mittleren Arretierungsfinger (50) umfasst, der verhindert, dass sich die beiden Verriegelungsfedern (48) gegenseitig beeinträchtigen.
8. Ein Wagen gemäß einem der vorhergehenden Ansprüche, bei dem die Rückwand (35) der Rutsche (31) einen Bezugspunkt (56) zum Verhindern der Drehung einer Druckkassette (20) in den Drucker (14) enthält.

9. Ein Wagen gemäß einem der vorhergehenden Ansprüche, der ferner folgende Merkmale umfasst:

- Wagenbezugspunkte (52, 54), die an einer Unterseite der Rutsche (31) nahe zu der Rückwand (35) angeordnet sind; und

- wobei die Führungsschienen (40) die Druckkassette (20) auf und über die Wagenbezugspunkte (52, 54) führen.

Revendications

1. Chariot à chargement horizontal (19) pour une cartouche d'impression à jet d'encre (20), comprenant :

 a) une embase de chariot (26) mobile en translation à l'intérieur d'une imprimante à jet d'encre (17).
 b) une goulotte (31) montée sur l'embase de chariot (26) pour recevoir la cartouche d'impression à jet d'encre (20), ladite goulotte ayant deux parois latérales (33, 34) et une paroi d'extrémité (35) ; et
 c) un rail de guidage (40) généralement horizontal sur chacune des parois latérales (33, 34) de la goulotte (31) pour guider la cartouche d'impression à jet d'encre (20) dans le chariot (19).

2. Chariot selon la revendication 1, dans lequel les rails de guidage horizontaux (40) sont arqués.

3. Chariot selon la revendication 1, dans lequel les rails de guidage horizontaux (40) sont légèrement inclinés vers le haut.

4. Chariot selon l'une quelconque des revendications précédentes, dans lequel la paroi latérale (34) comprend un ressort horizontal en porte à faux (46) ayant un axe horizontal afin de forcer une cartouche d'imprimante (20) le long d'un axe horizontal.

5. Chariot selon l'une quelconque des revendications 1 à 3, comprenant en plus un ressort de verrouillage en porte à faux (47) ayant une languette horizontale dirigée vers l'arrière dans une imprimate à jet d'encre (14).

6. Chariot selon la revendication 5, dans lequel le cha-