EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 26.01.2005 Bulletin 2005/04

Application number: 00974986.2

Date of filing: 14.11.2000

EUROPEAN PATENT APPLICATION

(54) PROCESS FOR THE PRODUCTION OF PYRIDINE DERIVATIVES

VERFAHREN ZUR PRODUKTION VON PYRIDINDERIVATEN

PROCEDE RELATIF A L’ELABORATION DE DERIVES DE PYRIDINE

(P) Designated Contracting States:

DE GB

(30) Priority: 30.11.1999 JP 34072999

(43) Date of publication of application: 25.09.2002 Bulletin 2002/39

(73) Proprietor: Sankio Chemical Co., Ltd.
Chuo-ku, Tokyo 104-0031 (JP)

(72) Inventors:

• SHINTOU, Taichi, Sankio Chemical Co., Ltd.
Hiratsuka-shi, Kanagawa 254-0016 (JP)

• IKEUCHI, Fumiaki, Sankio Chemical Co., Ltd.
Hiratsuka-shi, Kanagawa 254-0016 (JP)

(74) Representative: Grünecker, Kinkeldey,
Stockmair & Schwanhäusser Anwaltssozietät
Maximilianstrasse 58
80538 München (DE)

(56) References cited:

• BENSON, SCOTT C. ET AL: "Indole as a dienophile in inverse electron demand Diels-Alder reactions: reactions with 1,2,4-triazines and 1,2-diazines." J. ORG. CHEM., vol. 55, no. 10, 1990, pages 3257-3269, XP002223285

• A.M. D’A.ROCHA GONSALVES ET AL: 'Diels-Alder reactions of 1,2,4-triazines with cyclic vinyl ethers.' TETRAHEDRON vol. 49, no. 24, 1993, pages 5277 - 5290, XP002936542

• PFÜLLER, O.C.; SAUER, J.: 'The new and simple 'LEGO' system for the synthesis of thienyl substituted 2,6-oligopyridines.' TETRAHEDRON LETT. vol. 39, no. 48, 1998, pages 8821 - 8824, XP002936543

• SAGI, M. ET AL: 'Studies on as-triazine derivatives. XV. Intramolecular reverse-electron demand Diels-Alder reaction of 1,2,4-triazine derivatives.' HETEROCYCLES vol. 30, no. 2, 1990, pages 1009 - 1021, XP002936545

• DITTMAR W.; SAUER J.; SEIGEL A.: '(4+2)-CYCLOADDITION DER 1,2,4-TRIAZINE-EIN NEUSER WEG ZU 4-H-AZEPINEN.' TETRAHEDRON LETT. vol. 10, no. 59, 1969, pages 5171 - 5174, XP002936075

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

<Technical Field>

[0001] The present invention relates to a process capable of producing, at a low cost in a high yield, high-purity pyridine derivatives serving as an important intermediate for the production of pharmaceuticals, agrichemicals, catalyst ligands, silver halide photosensitive materials, liquid crystals and electrophotography, and organic photosensitive materials or dyes used in the field of organic electroluminescence.

<Background Art>

[0002] A variety of production processes of substituted pyridines have been reported. For example, reported is a process of condensing a pyridine compound and the N-oxide of another pyridine compound under heating in the presence of platinum-added Pd-C (Yakugaku Zasshi, 99(12), pp. 1176, 1181(1976)). The production yield is however low in this process. Also reported is cross-coupling reaction (Japanese Patent Laid-Open No. Sho 64-003169) making use of Grignard reaction, which is however accompanied with the such problems as difficulty in gaining or synthesizing a pyridine iodide compound necessary for obtaining a Grignard reagent of pyridines and necessity of special equipment.

[0004] For mass production, however, they involve many problems such as high cost of the catalyst or reagent employed for the reaction and necessity of special treatment for the metal waste. Moreover, existence of many by-products of these reactions makes separation difficult and a product pure enough to use as an intermediate for pharmaceuticals or electron materials have not yet been obtained.

[0005] A process for synthesizing pyridine derivatives from a 1,2,4-triazine compound by using 2,5-norbornadiene is conventionally known (for example, Tetrahedron Lett., 39, pp. 8817, 8821, 8825 (1988)).

[0006] Upon use for mass production, however, 2,5-norbornadiene is accompanied with many problems that a large excess, more specifically, at least 10 equivalents is required relative to the amount of a substrate, reaction is not completed in a short time, it is expensive, it is so toxic that even slight suction of it causes headaches, and it has a problem in stable supply on an industrial scale.

[0007] A process for obtaining pyridine compounds by using 1,2,4-triazine and vinyl acetate is reported (Tetrahedron Lett., 59, pp. 5171(1969)), but its yield is low and in addition, a substrate usable for this process is limited to highly active 1,2,4-triazine having an alkoxy carbonyl group at the 3,5,6-positions.

[0008] An object of the present invention is to provide a process for producing high-purity pyridine derivatives useful as an intermediate of pharmaceuticals, agrichemicals or liquid crystals in a high yield and at a low cost, in which the process does not generate pollution problems and can be carried out on an industrial scale.

<Disclosure of the Invention>

[0009] According to the present invention, the below-described processes for producing pyridine derivatives are provided and the above-described object of the present invention is attained.

(1.) A process for producing a pyridine derivative, which comprises reacting a 1,2,4-triazine compound represented by the following formula (III) with a vinyl carboxylate represented by the following formula (I):

\[
\text{(I)} \quad \text{R1} = \begin{array}{c}
\text{N} \\
\text{R2} \\
\text{R3}
\end{array} \\
\text{(III)}
\]

wherein R1 represents an aryl or heterocyclic residue, R2 and R3 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic residue, an alkylthio group, an alkylsulfanyl group, an alkylsulfonyl group, an arylsulfonyl group, an arylsulfanyl group, an alkoxycarbonyl group, an alkoxy group, a phenoxy group, an alkoxy-
carbonyl group or a phenoxycarbonyl group; R2 and R3 may be coupled together to form a ring;

\[
\begin{align*}
\text{R} & \quad \text{O} \\
\text{O} & \quad \text{R}
\end{align*}
\]

wherein R represents an alkyl group having at least 3 carbon atoms, a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl residue.

(2.) The process for producing a pyridine derivative according to the item (1), wherein in the formula (I), R represents an alkyl group having 7 to 17 carbon atoms.

(3.) The process for producing a pyridine derivative according to the item (1), wherein in the formula (I), R represents a substituted or unsubstituted phenyl group or a substituted or unsubstituted nitrogen-containing heterocyclic residue.

(4.) The process for producing a pyridine derivative according to the item (1), wherein in the formula (III), R1 represents a phenyl group or a nitrogen-containing heterocyclic residue.

(5.) The process for producing a pyridine derivative according to the item (1), wherein the vinyl carboxylate is used in an amount of 1.01 to 20 moles per mole of the 1,2,4-triazine compound.

(6.) The process for producing a pyridine derivative according to the item (1), wherein the vinyl carboxylate is used in an amount of 1.5 to 5 moles per mole of the 1,2,4-triazine compound.

(7.) The process for producing a pyridine derivative according to the item (1), wherein a reaction solvent having a boiling point of 100°C or greater is employed.

(8.) The process for producing a pyridine derivative according to the item (1), wherein a reaction solvent having a boiling point of 180 to 250°C is employed.

(9.) A process for producing a pyridine derivative, which comprises reacting a 1,2,4-triazine compound represented by the following formula (III) with a vinyl carboxylate derivative represented by the following formula (II):

\[
\begin{align*}
\text{R1} & \quad \text{N} \quad \text{N} \\
\text{R2} & \quad \text{N} \\
\text{R3}
\end{align*}
\]

wherein R1 represents an aryl or heterocyclic residue, R2 and R3 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic residue, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, an arylsulfinyl group, an arylsulfonyl group, an alkoxy group, a phenoxy group, an alkoxy-carbonyl group or a phenoxycarbonyl group; R2 and R3 may be coupled together to form a ring;
wherein n represents an integer of 0 to 18.

(10.) The process for producing a pyridine derivative according to the item (9), wherein in the formula (II), n represents an integer of 3 to 12.

(11.) The process for producing a pyridine derivative according to the item (9), wherein in the formula (III), R1 is a phenyl group or a nitrogen-containing heterocyclic residue.

(12.) The process for producing a pyridine derivative according to the item (9), wherein the vinyl carboxylate is used in an amount of 0.505 to 10 moles per mole of the 1,2,4-triazine compound.

(13.) The process for producing a pyridine derivative according to the item (9), wherein the vinyl carboxylate is used in an amount of 0.75 to 2.5 moles per mole of the 1,2,4-triazine compound.

(14.) The process for producing a pyridine derivative according to the item (9), wherein a reaction solvent having a boiling point of 100° C or greater is employed.

(15.) The process for producing a pyridine derivative according to the item (9), wherein a reaction solvent having a boiling point of 180 to 250° C is employed.

<Best Mode for Carrying Out the Invention>

[0010] The present invention will hereinafter be described more specifically.

[0011] In the vinyl carboxylate represented by the formula (I) or (II), R represents a linear, branched or cyclic alkyl group having at least 3 carbon atoms, a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl residue. As the substituent for the aryl or heteroaryl residue, those having a Hammett σm substituent constituent falling within a range of -0.21 to 0.39 are usable. They may be monosubstituted or polysubstituted. When polysubstituted, substituents may be the same or different. Specific examples of the substituent having Hammett σm falling within a range of -0.21 to 0.39 include alkyl groups such as methyl and t-butyl, cycloalkyl groups such as cyclopentyl and cyclohexyl, aryl groups such as phenyl and naphthyl, alkoxy groups such as methoxy and ethoxy, amino groups such as amino and dimethylamino, a nitro group, and halogen atoms such as chlorine atom and bromine atom.

[0012] As R, examples of the linear, branched or cyclic alkyl groups having at least 3 carbon atoms, preferably at least 5 carbon atoms, more preferably 7 to 17 carbon atoms include propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, t-pentyl, 1-methylbutyl, 2-methylbutyl, 1-ethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, cyclohexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1-ethyl-2-methyl-propyl, heptyl, 1-methylhexyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 1-ethylpentyl, 2-ethylpentyl, 3-ethylpentyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,4-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 3,4-dimethylpentyl, 1,1-dimethylpentyl, 2,2-dimethylpentyl, 3,3-dimethylpentyl, 4,4-dimethylpentyl, 2-ethyl-1-methyl-butyl, 1-ethyl-2-methyl-butyl, 1-ethyl-3-methyl-butyl, 1-ethyl-4-methyl-butyl, 1-ethyl-1-methylbutyl, 2-ethyl-2-methylbutyl, 1,2,3-trimethylbutyl, 1,1,2-trimethylbutyl, 1,2,3-trimethylbutyl, 1,1,3-trimethylbutyl, 1,3,3-trimethylbutyl, 2,2,3-trimethylbutyl, 2,3,3-trimethylbutyl, 1-isopropyl-2-methylpropyl, octyl, 1-methylheptyl, 2-methylheptyl, 3-methylheptyl, 4-methylheptyl, 5-methylheptyl, 6-methylheptyl, 1-ethylheptyl, 2-ethylheptyl, 3-ethylhexyl, 4-ethylhexyl, 1-propylpentyl, 2-propylpentyl, 1-butylbutyl, 1,2-dimethylhexyl, 1,3-dimethylhexyl, 1,4-dimethylhexyl, 1,5-dimethylhexyl, 2,3-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 3,4-dimethylhexyl, 3,5-dimethylhexyl, 4,5-dimethylhexyl, 1,1-dimethylhexyl, 2,2-dimethylhexyl, 3,3-dimethylhexyl, 4,4-dimethylhexyl, 5,5-dimethylhexyl, 1,2,3-trimethylpentyl, 1,2,4-trimethylpentyl, 2,3,4-trimethylpentyl, 2-ethyl-1-methylpentyl, 3-ethyl-1-methylpentyl, 1-ethyl-2-methylpentyl, 3-ethyl-2-methylpentyl, 1-ethyl-3-methylpentyl, 2-ethyl-3-methylpentyl, 1-ethyl-4-methylpentyl, 2-ethyl-1-methylpentyl, 1-ethyl-1-methylpentyl, 2-ethyl-2-methylpentyl, 3-ethyl-3-methylpentyl,
1,2-diethylbutyl, 1,1-diethylbutyl, 2,2-diethylbutyl, nonyl, isononyl, s-nonyl, t-nonyl, neononyl, decyl, isodecyl, s-decyl, t-decyl, neodecyl, undecyl, isoundecyl, s-undecyl, t-undecyl, neoundecyl, dodecane, isododecane, s-dodecane, t-dodecane, neododecane, tridecyl, isotridecyl, s-tridecyl, t-tridecyl, neotredecyl, tetradecyl, isotetradecyl, s-tetradecyl, t-tetradecyl, neotetradecyl, pentadecyl, isopentadecyl, s-pentadecyl, t-pentadecyl, neopentadecyl, hexadecyl, isohexadecyl, s-hexadecyl, t-hexadecyl, neohexadecyl, heptadecyl, isohexadecyl, s-heptadecyl, t-heptadecyl, neoheptadecyl, octadecyl, isooctadecyl, s-octadecyl, t-octadecyl, neoctadecyl, nonadecyl, isononadecyl, s-nonadecyl, t-nonadecyl and neononadecyl.

Examples of the aryl group as R include phenyl, naphthyl, tolyl, xylyl, cumenyl, mesityl, dimethylaminophenyl, diphenylaminophenyl, methoxyphenyl, cyclohexylyphenyl, nitrophenyl, chlorophenyl, bromophenyl, fluorophenyl, iodophenyl, trifluorophenyl, hydroxyphenyl, carboxyphenyl, methoxyoxycarbonylphenyl and cyanophenyl.

Examples of the heteroaryl residue as R include pyridyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, pyrrolyl, pyrazolyl, imidazolyl, thienyl, furyl, thiophenyl, pyrazinyl, phenylpyrazinyl, phenylpyridyl, nitropyridyl, chloropyridyl, bromopyridyl, methoxypyridyl, methoxyoxycarbonylpyridyl, phenylpyrazinyl, nitropyrazinyl, chloropyrazinyl, bromopyrazinyl, methoxypyrazinyl and diphenylaminopyrazinyl.

In the formula (II), n stands for an integer of 0 to 18, preferably 3 to 12.

When, in the formula (I), R represents an alkyl group having 1 or 2 carbon atoms, the reaction between the 1,2,4-triazine compound and vinyl carboxylate proceeds very slowly. Such an alkyl group is therefore unsuited for the industrial production of pyridine derivatives.

In the formula (I), R preferably represents a C_{7-17} alkyl group. R representing a substituted or unsubstituted phenyl group or a substituted or unsubstituted nitrogen-containing heterocyclic residue is also preferred.

Specific preferred examples of R include propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, t-pentyl, 1-methylbutyl, 2-methylbutyl, 1-ethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, cyclohexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, heptyl, 1-methylhexyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 1-ethylpentyl, 2-ethylpentyl, 3-ethylpentyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,4-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 3,4-dimethylpentyl, 1,1-dimethylpentyl, 2,2-dimethylpentyl, 3,3-dimethylpentyl, 4,4-dimethylpentyl, 1-octyl, 1-methylheptyl, 2-methylheptyl, 3-methylheptyl, 4-methylheptyl, 5-methylheptyl, 6-methylheptyl, 1-ethylhexyl, 2-ethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 1-propylpentyl, 2-propylpentyl, 1-butylbutyl, 1,2-dimethylhexyl, 1,3-dimethylhexyl, 1,4-dimethylhexyl, 1,5-dimethylhexyl, 2,3-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 3,4-dimethylhexyl, 3,5-dimethylhexyl, 4,5-dimethylhexyl, 1,1-dimethylhexyl, 2,2-dimethylhexyl, 3,3-dimethylhexyl, 4,4-dimethylhexyl, 5,5-dimethylhexyl, 1,2-dimethylbutyl, 1,1-diethylbutyl, 2,2-diethylbutyl, nonyl, isononyl, s-nonyl, t-nonyl, neononyl, decyl, isodecyl, s-decyl, t-decyl, neodecyl, phenyl, naphthyl, tolyl, xylyl, cumenyl, mesityl, nitrophenyl, chlorophenyl, bromophenyl, fluoro phenyl, iodophenyl, trifluorophenyl, cyanophenyl, pyridyl, pyrimidyl, quinolyl, isoquinolyl, pyrrolyl, pyrazolyl, imidazolyl, thiophenyl and furyl.

The 1,2,4-triazine compound is represented by the following formula (III),

wherein, R1 represents an aryl or heterocyclic residue, R2 and R3 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic residue, an alkylthio group, an alkylsulfanyl group, an alkylsulfonyl group, an arylsulfanyl group, an arylsulfonyl group, an alkoxycarbonyl group or a phenoxy carbonyl group; R2 and R3 may be coupled together to form a ring.

One embodiment of reacting the 1,2,4-triazine compound with the vinyl carboxylate will next be described specifically for detailed description of the invention process. It should however be noted that the scope of the present invention is not limited to or by it.

The reaction between the 1,2,4-triazine compound (III) and the vinyl carboxylate proceeds in accordance with the below-described reaction scheme, whereby the corresponding pyridine derivative (a) is produced.
wherein, R has the same meaning as described above, n stands for an integer of 0 to 18, preferably an integer of 3 to 12, and R1, R2 and R3 have the same meanings as described above.

[0022] A detailed description will next be made of R1, R2 and R3 in the formulas (a) and (III).

[0023] As examples of the alkyl group, linear or branched C1-18 alkyl groups can be mentioned. Preferred examples include C1-4 alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl. Of these, a methyl group which can be introduced into a carboxylic acid or aldehyde is more preferred.

[0024] As the aryl group, substituted or unsubstituted phenyl groups, naphthyl group, anthryl group and phenanthryl group can be given. Preferred examples include substituted or unsubstituted phenyl groups and naphthyl groups, with substituted or unsubstituted phenyl groups being more preferred.

[0025] As examples of the substituent for the substituted aryl group, substituents having a Hammett σm substituent constituent falling within a range of -0.21 to 0.39 can be mentioned. They may be monosubstituted or polysubstituted. When polysubstituted, substituents may be the same or different. Specific examples of the substituent having Hammett σm falling within a range of -0.21 to 0.39 include alkyl groups such as methyl and t-butyl, cycloalkyl groups such as cyclopentyl and cyclohexyl, aryl groups such as phenyl and naphthyl, alkoxy groups such as methoxy and ethoxy, amino groups such as amino and dimethylamino, nitro group, and halogen atoms such as chlorine atom and bromine atom.

[0026] Specific examples of the heterocyclic residue include substituted or unsubstituted pyridyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, pyrrolyl, pyrazolyl, imidazolyl, thiethyl, furyl, thiazolyl, isothiazolyl, oxazolyl and isoxazolyl groups. Of these, preferred are substituted or unsubstituted pyridyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, pyrrolyl and pyrazolyl groups, with substituted or unsubstituted pyridyl, pyrazinyl, pyrimidyl, quinolyl and isoquinolyl groups being more preferred.

[0027] As examples of the substituent for the substituted heterocyclic residue, substituents having a Hammett σm substituent constituent falling within a range of -0.21 to 0.39 can be mentioned. They may be monosubstituted or polysubstituted. When polysubstituted, substituents may be the same or different. Specific examples of the substituent having Hammett σm falling within a range of -0.21 to 0.39 include alkyl groups such as methyl and t-butyl, cycloalkyl groups such as cyclopentyl and cyclohexyl, aryl groups such as phenyl and naphthyl, alkoxy groups such as methoxy and ethoxy, amino groups such as amino and dimethylamino, nitro group, and halogen atoms such as chlorine atom and bromine atom.

[0028] Specific examples of the alkylthio group include linear or branched C1-18 alkylthio groups, preferably C1-4 alkylthio groups such as methylthio, ethylthio, propylthio, isopropylthio, butylthio, sec-butylthio and tert-butylthio, more preferably methylthio and ethylthio.

[0029] As examples of the alkylsulfinyl (-SOR) and alkylsulfonyl (-SO2R) groups, alkylsulfinyl and alkylsulfonyl groups having similar alkyl groups to those of the alkylthio group can be given. Preferred are methylsulfinyl, ethylsulfinyl,
methylsulfonyl and ethylsulfonyl groups.

[0030] As examples of the arylsulfinyl (-SOAr) group, arylsulfinyl groups having a substituted or unsubstituted aryl group can be given and preferred are benzenesulfinyl and toluenesulfinyl groups.

[0031] As examples of the substituent for the substituted arylsulfinyl group, substituents having a Hammett \(\sigma_m \) substituent constituent falling within a range of -0.21 to 0.39 can be mentioned. They may be monosubstituted or polysubstituted. When polysubstituted, substituents may be the same or different. Specific examples of the substituent having Hammett \(\sigma_m \) falling within a range of -0.21 to 0.39 include alkyl groups such as methyl and t-butyl, cycloalkyl groups such as cyclopentyl and cyclohexyl, aryl groups such as phenyl and naphthyl, alkoxy groups such as methoxy and ethoxy, amino groups such as amino and dimethylamino, nitro group, and halogen atoms such as chlorine atom and bromine atom.

[0032] As examples of the arylsulfonyl (-SO_2Ar) group, arylsulfonyl groups having a substituted or unsubstituted aryl group can be given and preferred are benzenesulfonyl and toluenesulfonyl groups.

[0033] As examples of the substituent for the substituted arylsulfonyl group, substituents having a Hammett \(\sigma_m \) substituent constituent falling within a range of -0.21 to 0.39 can be mentioned. They may be monosubstituted or polysubstituted. When polysubstituted, substituents may be the same or different. Specific examples of the substituent having Hammett \(\sigma_m \) falling within a range of -0.21 to 0.39 include alkyl groups such as methyl and t-butyl, cycloalkyl groups such as cyclopentyl and cyclohexyl, aryl groups such as phenyl and naphthyl, alkoxy groups such as methoxy and ethoxy, amino groups such as amino and dimethylamino, nitro group, and halogen atoms such as chlorine atom and bromine atom.

[0034] Specific examples of the alkoxy group include linear or branched C_1-18 alkoxy groups. Preferred are C_1-4 alkoxy groups such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy and tert-butoxy, with linear C_1-4 alkoxy groups such as methoxy, ethoxy, propoxy and butoxy being more preferred.

[0035] As the alkoxycarbonyl (-COOR) group, the alkoxycarbonyl groups having the above-described alkoxy group can be mentioned. Preferred are methoxycarbonyl and ethoxycarbonyl groups.

[0036] In the formula (III), R1 represents an aryl or heterocyclic residue, R2 and R3 may be the same or different and preferred examples of R2 and R3 include a hydrogen atom, an alkyl group, an aryl group or a heterocyclic residue. As R1, phenyl and nitrogen-containing heterocyclic residue being especially preferred.

[0037] It is preferred that R2 and R3 represent the same group.

[0038] The 1,2,4-triazine compound which is a starting substance of the present invention can be prepared in any one of the following processes (1) to (4).

(1) A process for obtaining a 1,2,4-triazine compound by reacting a cyanoheterocyclic compound with a hydrazine and then reacting the amidrazozone thus derived by the above reaction with a diketone (Tetrahedron Lett., 39, pp. 8817, 8821, 8825(1998)). A production process of a 1,2,4-triazine compound by adding water to this reaction system has already been found (Japanese Patent Application No. Hei 11-167308). One embodiment of it will be described next.

(2) A process for producing a 1,2,4-triazine compound through a cyanoheterocyclic compound, carbamate and then, amidorazone (J. Korean Chem. Soc., 39(9), pp. 755(1995)). One embodiment of it will be described next.
(3) A process for producing a 1,2,4-triazine compound by reacting an acid hydrazide and a diketone with ammonium acetate in an acetic acid solvent (Tetrahedron, 1, pp. 103(1957)). One embodiment of it will next be described.

(4) A process for producing a 1,2,4-triazine compound by reacting an α-haloketone with an acid hydrazide (Tetrahedron, 33, pp. 1043(1977)). One embodiment of it will next be described.

The vinyl carboxylate of the formula (I) or (II) usable in the present invention can be prepared readily from a carboxylic acid, which contains an alkyl group having at least 3 carbon atoms, a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl residue, by the process as described below, but the production process is not limited thereto. Such vinyl carboxylates are easily available because various ones are put on the market. Commercially available ones may be used as they are.

Specific examples of the vinyl carboxylate include vinyl butyrate, vinyl hexanoate, vinyl octanoate, vinyl deca-noate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl pivalate, vinyl octylate, vinyl monochloroacetate, divinyl adipate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl benzoate, vinyl cinnamate, vinyl neodecanoate, vinyl neononanoate, vinyl 4-t-butylbenzoate, vinyl trifluoroacetate, vinyl-2-pyrid-
9

Of these, preferred are vinyl butyrate, vinyl hexanoate, vinyl octanoate, vinyl decanoate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl cyclohexanecarboxylate, vinyl pivalate, vinyl octylate, vinyl benzoate, vinyl neodecanoate, vinyl neononanoate, vinyl trifluoroacetate, and divinyl adipate, with vinyl hexanoate, vinyl octanoate, vinyl decanoate, vinyl laurate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl benzoate, vinyl neodecanoate, vinyl neononanoate, and divinyl adipate being especially preferred because of their easy separability after completion of the reaction.

There is no limitation imposed on the amount of the vinyl carboxylate insofar as it is at least an equimolar amount relative to the 1,2,4-triazine. The vinyl carboxylate of the formula (I) is usually used in an amount ranging from 1.01 to 20 moles, preferably 1.2 to 10.0 moles, more preferably 1.5 to 5.0 moles, each relative to the 1,2,4-triazine (1 mole). The vinyl carboxylate of the formula (II), on the other hand, has two reaction sites in its molecule so that half the amount of the above case is sufficient for the progress of the reaction. Described specifically, the vinyl carboxylate of the formula (II) is usually employed in an amount ranging from 0.505 to 10 moles, preferably 0.6 to 5.0 moles, more preferably 0.75 to 2.5 moles, each relative to the 1,2,4-triazine (1 mole).

In the present invention, use of the reaction solvent is not indispensable, but preferred is a solvent having a boiling point of 100°C or greater, more preferably 130 to 300°C, still more preferably 180 to 250°C.

As the reaction solvent, aromatic compounds are preferred.

The followings are aromatic compounds having a boiling point of 100°C or greater and usable as the reaction solvent.

(i) Aromatic hydrocarbon compounds

Toluene, xylene, diethylbenzene, diisopropylbenzene, ethylbenzene, propylbenzene, butylbenzene, 1-phenylhexane, chlorobenzene, dichlorobenzene, trichlorobenzene, bromobenzene, dibromobenzene, methoxybenzene, methoxynaphthalene, benzaldehyde, and the like.

(ii) Aromatic heterocyclic compounds

2,4-Dichloropyrimidine, 2,3,5-trichloropyridine, quinoline, quinazoline, 1,4-benzodioxane, 1,4-benzodithione, 1,4-benzodioxine, and the like.

(iii) Hydrogenated aromatic heterocyclic compounds

1,2,3,4-Tetrahydroquinoline, 5,6,7,8-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, 5,6,7,8-tetrahydroisoquinoline, 1-phenylpiperidine, 1-phenylpiperazine, indoline, julolidine and the like.

(iv) Saturated aliphatic compounds

Octane, nonane, decane, undecane, dodecane, tridecane, ethylcyclohexane, 2-methyldecane, 4-ethylundecane, tetradecane, pentadecane, 3,3-dimethyltridecane, hexadecane, heptadecane, 2-methyl-4-ethyltridecane, and the like.

(v) Saturated cyclic aliphatic compounds

Dicyclohexyl, decahydronaphthalene, decaliphaticfluorene and the like.

(vi) Saturated heterocyclic aliphatic compounds

1,3-Dimethyl-2-imidazolidinone (DMI), 1,4,7-trithiacyclononane, 1,4,7-trithiacyclodecane, 1,4,7,10-tetraaxacyclocododecane, 1,4,7,10,13-pentaoxacyclohexadecane, 1,4,7-triazacyclononane and 1,4,7,10-tetraazacyclododecane.

These solvents may be used either singly or in combination as a reaction solvent.

Of the above-described reaction solvents, diethylbenzene, diisopropylbenzene, quinoline, nitrobenzene and 1,3-dimethyl-2-imidazolidinone (DMI) are preferred, with diisopropylbenzene and diethylbenzene being especially preferred. By the use of such a solvent, the reaction time can be shortened and the target compound can be obtained in a high yield.
The reaction solvent is usually employed in an amount ranging from 1 to 1000 ml, preferably 5 to 500 ml, more preferably 10 to 200 ml, relative to 0.1 mole of the 1,2,4-triazine.

The reaction temperature usually ranges from 80 to 350°C, preferably 120 to 300°C, more preferably 180 to 250°C. The disappearance of the 1,2,4-triazine compound can usually be confirmed when reaction is conducted for 3 to 6 hours.

After completion of the reaction, dilute hydrochloric acid is added to transfer the target compound to the water layer, followed by separation into layers. After the water layer is made basic, it is extracted into a solvent such as ethyl acetate or toluene. The solvent is then concentrated under reduced pressure. An alcohol or hexane is added to the residue to crystallize the same, whereby a high-purity pyridine derivative is available. Purification may be conducted through distillation.

Specific preferred examples of the pyridine derivatives available by the present invention will next be shown as (A-1) to (D-11).
(A-16)

(B-1)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)
The present invention will hereinafter be described by Examples in further detail. The purity was evaluated in accordance with high-performance liquid chromatography (which will hereinafter be abbreviated as "HPLC").

When the term "HPLC analysis" is used hereinafter, measurement is conducted under the below-described conditions. If any change, the changed conditions are described specifically.

(Measuring conditions of HPLC analysis)

Column: YMC-A-312
UV detector wavelength: 254 nm
Eluent: acetonitrile/water = 25/75, containing acetic acid and triethylamine, each in an amount of 0.2 mass%, as a buffer.
Flow rate of the eluent: 1.0 ml/min

Synthesis Example 1 (Synthesis of 3-(4-pyridyl)-1,2,4-triazine, a starting material)

In a 2000-ml four-necked flask were charged 200 ml of water, 200.0 g (1.92 mole) of 4-cyanopyridine and 192.0 g (3.84 mole) of hydrazine monohydrate. The mixture was reacted for 4 hours under stirring at 50°C. After confirmation of the disappearance of the raw material by HPLC analysis, 400 ml of toluene was added and excessive hydrazine monohydrate was distilled off. This operation was conducted again. To the residue were successively added 800 ml of water and 278.4 g (1.92 mole) of a 40% aqueous glyoxal solution. The mixture was reacted for 2 hours at an external temperature of 100°C. After completion of the reaction, the reaction mixture was cooled to 5°C, whereby 222.4 g (yield: 85.2%) of the target compound was obtained as pale yellow crystals.

Example 1 (Synthesis of 2,4'-dipyridyl (A-1)

In the next place, 45 ml of diisopropylbenzene, 25.0 g (0.158 mole) of the 3-(4-pyridyl)-1,2,4-triazine synthesized in Synthesis Example 1 and 60.1 g (0.316 mole) of vinyl n-decanoate were charged in a 500-ml four-necked flask. The resulting mixture was reacted under stirring at 210°C for 2 hours. After confirmation of the disappearance of the raw material by HPLC, the reaction mixture was diluted with 100 ml of toluene and made acidic with 180 ml of
1 mole/l hydrochloric acid, followed by separation into layers. The resulting water layer was washed with 90 ml of toluene. This operation was conducted again. After the aqueous layer was made basic with 50 ml of 9 mole/l aqueous sodium hydroxide solution, it was extracted into 120 ml of toluene. The solvent was then distilled off under reduced pressure and the residue was crystallized from hexane, whereby 22.4 g (yield: 90.7%) of the target product was obtained as pale yellow crystals. As a result of HPLC analysis, the product was found to have a purity of 99.3%. Melting point: 60 to 62°C.

Examples 2 to 7

[0065] In a similar manner to Example 1 except for the use of the vinyl carboxylate as shown in Table 1 instead of vinyl n-decanoate, 2,4’-dipyridyl (A-1) was synthesized and its purity as measured by HPLC as well as its yield were evaluated.

Comparative Examples 1 and 2

[0066] In a similar manner to Example 1 except for the use of the vinyl carboxylate as shown in Table 1 instead of vinyl n-decanoate, synthesis was conducted.

Comparative Example 3

[0067] In a 500-ml four-necked flask were charged 145 ml of xylene, 25.0 g (0.158 mole) of 3-(4-pyridyl)-1,2,4-triazine and 146 g (1.58 mole) of 2,5-norbornadiene. The resulting mixture was reacted under reflux for 4 hours. After completion of the reaction, excessive 2,5-norbornadiene and xylene were distilled off under reduced pressure. The residue was crystallized from hexane, whereby 19.8 g (yield: 80.0%) of the target product was obtained as pale yellow crystals. As a result of HPLC analysis, its purity was found to be 99.2%.

Comparative Examples 4 and 5

[0068] In an autoclave were charged 45 ml of diisopropylbenzene, 25.0 g (0.158 mole) of 3-(4-pyridyl)-1,2,4-triazine and 60.1 g (0.316 mole) of vinyl acetate. The resulting mixture was reacted for each of 10 hours (Comparative Example 4) and 72 hours (Comparative Example 5) at 210°C under stirring. At that time, the inner pressure increased to 1010 kPa. The above-described results are shown in Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>To be reacted with</th>
<th>Reaction time (h)</th>
<th>Yield (%)</th>
<th>Purity (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>Vinyl n-decanoate</td>
<td>2</td>
<td>90.7</td>
<td>99.3</td>
<td></td>
</tr>
<tr>
<td>Example 2</td>
<td>Vinyl n-octanoate</td>
<td>3</td>
<td>90.7</td>
<td>99.2</td>
<td></td>
</tr>
<tr>
<td>Example 3</td>
<td>Vinyl n-hexanoate</td>
<td>16</td>
<td>90.4</td>
<td>99.2</td>
<td></td>
</tr>
<tr>
<td>Example 4</td>
<td>Vinyl benzoate</td>
<td>6</td>
<td>88.9</td>
<td>98.9</td>
<td></td>
</tr>
<tr>
<td>Example 5</td>
<td>Vinyl neononanoate</td>
<td>3</td>
<td>91.4</td>
<td>99.0</td>
<td></td>
</tr>
<tr>
<td>Example 6</td>
<td>Vinyl pivalate</td>
<td>48</td>
<td>87.8</td>
<td>98.8</td>
<td></td>
</tr>
<tr>
<td>Example 7</td>
<td>Vinyl n-butyrate</td>
<td>42</td>
<td>88.6</td>
<td>98.5</td>
<td></td>
</tr>
<tr>
<td>Example 8</td>
<td>Vinyl 2-pyridine-carboxylate</td>
<td>6</td>
<td>88.8</td>
<td>99.0</td>
<td></td>
</tr>
<tr>
<td>Example 9</td>
<td>Divinyl adipate</td>
<td>2</td>
<td>91.5</td>
<td>99.0</td>
<td></td>
</tr>
<tr>
<td>Example 10</td>
<td>Vinyl palmitate</td>
<td>2</td>
<td>90.1</td>
<td>99.1</td>
<td></td>
</tr>
<tr>
<td>Comp. Ex. 1</td>
<td>Vinyl acetate</td>
<td>72</td>
<td>9.2</td>
<td>-</td>
<td>Reaction was not completed</td>
</tr>
<tr>
<td>Comp. Ex. 2</td>
<td>Vinyl propionate</td>
<td>72</td>
<td>15.2</td>
<td>-</td>
<td>Reaction was not completed</td>
</tr>
<tr>
<td>Comp. Ex. 3</td>
<td>2,5-Norbornadiene</td>
<td>4</td>
<td>80.0</td>
<td>99.2</td>
<td></td>
</tr>
</tbody>
</table>
From the results as shown in Table 1, it has been revealed that:

By the process (Examples 1 to 10) according to the present invention, 2,4'-dipyridyl (A-1) can be synthesized in a high purity and a high yield.

The reaction is not completed in Comparative Examples 1 and 2 wherein the vinyl carboxylate of the formula (I) has carbon atoms as less as 1 or 2. Neither is the case in Comparative Example 4 and 5 wherein the reaction is conducted in an autoclave under pressure. Even if the post treatment is conducted while the reaction is not completed, separation using an acid or base does not proceed smoothly, resulting in a drop in a yield and purity.

In Comparative Example 3, the conventional process by reacting a 1,2,4-triazine compound with 2,5-norbornadiene was employed. The amount of 2,5-norbornadiene necessary for this reaction is at least 10 equivalents relative to 3-(4-pyridyl)-1,2,4-triazine. Necessity of a large amount of 2,5-norbornadiene and in addition, its expensiveness markedly raise the production cost compared with the invention process.

Examples 11 to 20

In a similar manner to Example 1 except for the use of the triazine derivatives as described below in Tables 2 and 3 instead of 3-(4-pyridyl)-1,2,4-triazine, pyridine derivatives were synthesized. After reaction for 3 hours in Examples 15, 16 and 19, and for 2 hours in the other Examples, the products were evaluated for their yields and, based on HPLC, their purities.
<table>
<thead>
<tr>
<th>Ex. 11</th>
<th>Triazine derivative</th>
<th>Pyridine derivative</th>
<th>Yield (%)</th>
<th>HPLC content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>89.8</td>
<td>99.1</td>
</tr>
<tr>
<td>Ex. 12</td>
<td></td>
<td></td>
<td>93.3</td>
<td>99.5</td>
</tr>
<tr>
<td>Ex. 13</td>
<td></td>
<td></td>
<td>88.7</td>
<td>99.0</td>
</tr>
<tr>
<td>Ex. 14</td>
<td></td>
<td></td>
<td>89.4</td>
<td>99.3</td>
</tr>
<tr>
<td>Ex. 15</td>
<td></td>
<td></td>
<td>90.2</td>
<td>99.1</td>
</tr>
<tr>
<td>Ex. 16</td>
<td></td>
<td></td>
<td>90.8</td>
<td>98.9</td>
</tr>
</tbody>
</table>
As is apparent from Tables 2 and 3, pyridine derivatives can be synthesized in a high yield and high purity according to the invention process.

<Industrial Applicability>

According to the process of the present invention, high-purity pyridine derivatives useful as an intermediate for pharmaceuticals, agrochemicals, catalyst ligands, silver halide photosensitive materials, liquid crystals and electrophotography, and for organic photosensitive materials and dyes in the field of organic electroluminescence can be produced in a high yield at a low cost. This process is free from pollution problems because no organic metal is used. Accordingly, the process of the present invention for producing pyridine derivatives has markedly high utility from the industrial viewpoint.

Claims

1. A process for producing a pyridine derivative, which comprises reacting a 1,2,4-triazine compound represented by the following formula (III) with a vinyl carboxylate represented by the following formula (I):

 $\begin{align*}
 &\begin{array}{c}
 \text{N=N} \\
 \text{R1} & \text{N=N} & \text{R2} \\
 \text{N=N} & \text{R3}
 \end{array} \\
 \text{(III)}
 \end{align*}$

 wherein R1 represents an aryl or heterocyclic residue, R2 and R3 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic residue, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, an aryloxylsulfinyl group, an aryloxylsulfonyl group, an alkoxycarbonyl group or a phenoxy group; R2 and R3 may be coupled together to form a ring;
wherein R represents an alkyl group having at least 3 carbon atoms, a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl residue.

2. The process for producing a pyridine derivative according to claim 1, wherein in the formula (I), R represents an alkyl group having 7 to 17 carbon atoms.

3. The process for producing a pyridine derivative according to claim 1, wherein in the formula (I), R represents a substituted or unsubstituted phenyl group or a substituted or unsubstituted nitrogen-containing heterocyclic residue.

4. The process for producing a pyridine derivative according to claim 1, wherein in the formula (III), R1 represents a phenyl group or a nitrogen-containing heterocyclic residue.

5. The process for producing a pyridine derivative according to claim 1, wherein the vinyl carboxylate is used in an amount of 1.01 to 20 moles per mole of the 1,2,4-triazine compound.

6. The process for producing a pyridine derivative according to claim 1, wherein the vinyl carboxylate is used in an amount of 1.5 to 5 moles per mole of the 1,2,4-triazine compound.

7. The process for producing a pyridine derivative according to claim 1, wherein a reaction solvent having a boiling point of 100°C or greater is employed.

8. The process for producing a pyridine derivative according to claim 1, wherein a reaction solvent having a boiling point of 180 to 250°C is employed.

9. A process for producing a pyridine derivative, which comprises reacting a 1,2,4-triazine compound represented by the following formula (III) with a vinyl carboxylate derivative represented by the following formula (II):

wherein R1 represents an aryl or heterocyclic residue, R2 and R3 may be the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic residue, an alkylthio group, an alkylsulfanyl group, an alkylsulfonyl group, an arylsulfonyl group, an alkoxy group, a phenoxy group, an alkoxy-carbonyl group or a phenoxy carbonyl group; R2 and R3 may be coupled together to form a ring;

10. The process for producing a pyridine derivative according to claim 9, wherein in the formula (II), n represents an integer of 0 to 18.
integer of 3 to 12.

11. The process for producing a pyridine derivative according to claim 9, wherein in the formula (III), R1 is a phenyl group or a nitrogen-containing heterocyclic residue.

12. The process for producing a pyridine derivative according to claim 9, wherein the vinyl carboxylate is used in an amount of 0.505 to 10 moles per mole of the 1,2,4-triazine compound.

13. The process for producing a pyridine derivative according to claim 9, wherein the vinyl carboxylate is used in an amount of 0.75 to 2.5 moles per mole of the 1,2,4-triazine compound.

14. The process for producing a pyridine derivative according to claim 9, wherein a reaction solvent having a boiling point of 100°C or greater is employed.

15. The process for producing a pyridine derivative according to claim 9, wherein a reaction solvent having a boiling point of 180 to 250°C is employed.

Patentansprüche

1. Verfahren zum Herstellen eines Pyridinderivats, welches das Umsetzen einer 1,2,4-Triazinverbindung, die durch die folgende Formel (III) wiedergegeben wird, mit einem Vinilcarboxylat umfasst, das durch die folgende Formel (I) wiedergegeben wird:

 ![Diagram](image)

 wobei R1 einen Arylrest oder heterocyclischen Rest bedeutet, R2 und R3 gleich oder verschieden sein können und jeweils ein Wasserstoffatom, eine Alkylgruppe, eine Arylgruppe, einen heterocyclischen Rest, eine Alkylthio-
 gruppe, eine Alkylsulfanylgruppe, eine Arylsulfanylgruppe, eine Arylsulfonylgruppe, eine Alkoxygruppe, eine Phenoxygruppe, eine Alkoxykarbonylgruppe oder eine Phenoxykarbonylgruppe bedeuten; R2
 und R3 unter Bildung eines Rings miteinander verbunden sein können;

 ![Diagram](image)

 wobei R eine Alkylgruppe mit wenigstens 3 Kohlenstoffatomen, eine substituierte oder unsubstituierte Arylgruppe
 oder einen substituierten oder unsubstituierten Heteroarylrest bedeutet.

2. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 1, wobei in der Formel (I) R eine Alkylgruppe mit
 7 bis 17 Kohlenstoffatomen bedeutet.

3. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 1, wobei in der Formel (I) R eine substituierte oder
 unsubstituierte Phenylgruppe oder einen substituierten oder unsubstituierten stickstoffhaltigen heterocyclischen
 Rest bedeutet.

4. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 1, wobei in der Formel (III) R1 eine Phenylgruppe
 oder einen stickstoffhaltigen heterocyclischen Rest bedeutet.
5. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 1, wobei das Vinylcarboxylat in einer Menge von 1,01 bis 20 mol pro mol der 1,2,4-Triazinverbindung verwendet wird.

6. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 1, wobei das Vinylcarboxylat in einer Menge von 1,5 bis 5 mol pro mol der 1,2,4-Triazinverbindung verwendet wird.

7. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 1, wobei ein Reaktionslösungsmittel mit einem Siedepunkt von 100°C oder mehr eingesetzt wird.

8. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 1, wobei ein Reaktionslösungsmittel mit einem Siedepunkt von 180 bis 250°C eingesetzt wird.

9. Verfahren zum Herstellen eines Pyridinderivats, welches das Umsetzen einer 1,2,4-Triazinverbindung, die durch die folgende Formel (III) wiedergegeben wird, mit einem Vinylcarboxylatderivat umfasst, das durch die folgende Formel (II) wiedergegeben wird:

![Formel III](image)

wobei R1 einen Arylrest oder heterocyclischen Rest bedeutet, R2 und R3 gleich oder verschieden sein können und jeweils ein Wasserstoffatom, eine Alkylgruppe, eine Arylgruppe, einen heterocyclischen Rest, eine Alkythio- gruppe, eine Alkylsulfanylgruppe, eine Arylsulfanylgruppe, eine Arylsulfonylethergruppe, eine Arylsulfonylethergruppe, eine Phenoxygruppe, eine Alkoxygruppe, eine Phenoxygruppe, eine Phenoxycarbonylgruppe oder eine Phenoxycarbonylgruppe bedeuten; R2 und R3 unter Bildung eines Rings miteinander verbunden sein können;

![Formel II](image)

wobei n eine ganze Zahl von 0 bis 18 bedeutet.

10. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 9, wobei in der Formel (II) n eine ganze Zahl von 3 bis 12 bedeutet.

11. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 9, wobei in der Formel (III) R1 eine Phenylgruppe oder ein stickstoffhaltiger heterocyclischer Rest ist.

12. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 9, wobei das Vinylcarboxylat in einer Menge von 0,505 bis 10 mol pro mol der 1,2,4-Triazinverbindung verwendet wird.

13. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 9, wobei das Vinylcarboxylat in einer Menge von 0,75 bis 2,5 mol pro mol der 1,2,4-Triazinverbindung verwendet wird.

14. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 9, wobei ein Reaktionslösungsmittel mit einem Siedepunkt von 100°C oder mehr eingesetzt wird.

15. Verfahren zum Herstellen eines Pyridinderivats nach Anspruch 9, wobei ein Reaktionslösungsmittel mit einem Siedepunkt von 180 bis 250°C eingesetzt wird.
Revendications

1. Procédé de production d'un dérivé de pyridine, qui comprend la réaction d'un composé de 1,2,4-triazine représenté par la formule (III) ci-dessous avec un carboxylate de vinyle représenté par la formule (I) ci-dessous:

 [Diagramme]

 où R1 représente un résidu aryle ou hétérocyclique, R2 et R3 peuvent être identiques ou différents et représentent chacun un atome d'hydrogène, un groupe alkyle, un groupe aryle, un résidu hétérocyclique, un groupe alkylthio, un groupe alkylsulfinate, un groupe alkylsulfonate, un groupe arylsulfinate, un groupe arylsulfonate, un groupe alcoxy, un groupe phénoxy, un groupe alcoxycarbonyle ou un groupe phénoxycarbonyle; R2 et R3 peuvent être couplés entre eux pour former un cycle;

 [Diagramme]

 où R représente un groupe alkyle d'au moins 3 atomes de carbone, un groupe aryle substitué ou non substitué ou un résidu hétéroatyle substitué ou non substitué.

2. Procédé de production d'un dérivé de pyridine selon la revendication 1, dans lequel, dans la formule (I), R représente un groupe alkyle de 7 à 17 atomes de carbone.

3. Procédé de production d'un dérivé de pyridine selon la revendication 1, dans lequel, dans la formule (I), R représente un groupe phényle substitué ou non substitué ou un résidu hétérocyclique contenant de l'azote substitué ou non substitué.

4. Procédé de production d'un dérivé de pyridine selon la revendication 1, dans lequel, dans la formule (III), R1 représente un groupe phényle ou un résidu hétérocyclique contenant de l'azote.

5. Procédé de production d'un dérivé de pyridine selon la revendication 1, dans lequel on utilise le carboxylate de vinyle en une quantité de 1,01 à 20 mol par mol de composé de 1,2,4-triazine.

6. Procédé de production d'un dérivé de pyridine selon la revendication 1, dans lequel on utilise le carboxylate de vinyle en une quantité de 1,5 à 5 mol par mol de composé de 1,2,4-triazine.

7. Procédé de production d'un dérivé de pyridine selon la revendication 1, dans lequel on utilise un solvant de réaction ayant un point d'ébullition d'au moins 100°C.

8. Procédé de production d'un dérivé de pyridine selon la revendication 1, dans lequel on utilise un solvant de réaction ayant un point d'ébullition de 180 à 250°C.

9. Procédé de production d'un dérivé de pyridine, qui comprend la réaction d'un composé de 1,2,4-triazine représenté par la formule (III) ci-dessous avec un dérivé de carboxylate de vinyle représenté par la formule (II) ci-dessous:
où R1 représente un résidu aryle ou hétérocyclique, R2 et R3 peuvent être identiques ou différents et représentent chacun un atome d'hydrogène, un groupe alkyle, un groupe aryle, un résidu hétérocyclique, un groupe alkylthio, un groupe alkylsulfényle, un groupe alkylsulfonyle, un groupe arylsulfényle, un groupe arylsulfonyle, un groupe alcoxy, un groupe phénoxy, un groupe alcoxy carbonyle ou un groupe phénomécarbonyle; R2 et R3 peuvent être couplés entre eux pour former un cycle;

où n représente un entier de 0 à 18.

10. Procédé de production d'un dérivé de pyridine selon la revendication 9, dans lequel, dans la formule (II), n représente un entier de 3 à 12.

11. Procédé de production d'un dérivé de pyridine selon la revendication 9, dans lequel, dans la formule (III), R1 est un groupe phényle ou un résidu hétérocyclique contenant de l'azote.

12. Procédé de production d'un dérivé de pyridine selon la revendication 9, dans lequel on utilise le carboxylate de vinyle en une quantité de 0,505 à 10 mol par mol de composé de 1,2,4-triazine.

13. Procédé de production d'un dérivé de pyridine selon la revendication 9, dans lequel on utilise le carboxylate de vinyle en une quantité de 0,75 à 2,5 mol par mol de composé de 1,2,4-triazine.

14. Procédé de production d'un dérivé de pyridine selon la revendication 9, dans lequel on utilise un solvant de réaction ayant un point d'ébullition d'au moins 100°C.

15. Procédé de production d'un dérivé de pyridine selon la revendication 9, dans lequel on utilise un solvant de réaction ayant un point d'ébullition de 180 à 250°C.