EP 1 235 664 B1

EUROPEAN PATENT SPECIFICATION

<table>
<thead>
<tr>
<th>Date of publication and mention of the grant of the patent:</th>
<th>Date of publication of application:</th>
</tr>
</thead>
</table>

Application number: 00978577.5

Date of filing: 14.11.2000

Int Cl.:

- B24D 3/32 (2006.01)
- B24D 15/04 (2006.01)
- B24D 11/02 (2006.01)

Designated Contracting States:

- AT
- BE
- CH
- CY
- DE
- DK
- ES
- FI
- FR
- GB
- GR
- IE
- IT
- LI
- LU
- MC
- NL
- PT
- SE
- TR

Priority: 09.12.1999 US 458166

Proprietor: 3M Innovative Properties Company

- St. Paul, MN 55133-3427 (US)

Inventors:

- LISE, Jonathan, M.
 - Saint Paul, MN 55133-3427 (US)

- MINICK, Chris, A.
 - Saint Paul, MN 55133-3427 (US)

Representative: Hilleringmann, Jochen et al Patentanwälte

- Von Kreisler-Selting-Werner,
 - Bahnhofsvorplatz 1 (Deichmannhaus am Dom)
 - 50667 Köln (DE)

References cited:

- EP-A- 0 638 392

- WO-A-00/03840

Notes:

Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
The present invention relates to resilient flexible abrading devices of the type sometimes called sanding sponges that each comprise a thin backing layer of foam and includes a layer of abrasive particles adhered together and to the backing layer by a layer of flexible adhesive.

Resilient flexible sanding sponges that comprise a thin backing layer (e.g., about 3/16 inch or 0.5 cm thick) of urethane foam and include a layer of abrasive particles adhered together and to the foam backing layer along one of its major surfaces by a layer of flexible adhesive are well known in the prior art. One such sanding sponge is commercially available from Minnesota Mining and Manufacturing Company, St. Paul, MN, under the trade designation "Softback Sanding Sponge". Typically, a user of that sanding sponge places the surface of the backing layer opposite the abrasive against the palm of his or her hand and rubs the abrasive over a surface to be abraded while conforming the layer of abrasive to the surface being abraded. While such sanding sponges work quite well to abrade objects having parallel surfaces, their backings are too easily torn when they are used to abrade the intersecting surfaces of projections such as the corners of a table top. Hand pressure on the sanding sponge can cause such a projection to penetrate and tear the backing layer of the sanding sponge as it is moved over the projection. With previously used methods for forming the urethane foam backing, the tear strength of that backing has been largely a function of the urethane chemistry used in making the foam. Obtaining a high tear strength for the backing has been difficult, often requiring a great deal of experimentation, experience and luck; and the maximum tear strengths obtained have still been less than those that are desired.

Also, the layer of flexible adhesive in such a sanding sponge that adheres the layer of abrasive particles together and to the foam backing layer along one of its major surfaces must have sufficient integrity and adhesion to the abrasive particles and to the foam backing layer so that it will not break, or release the abrasive particles, or release from the foam backing layer as the resilient flexible sanding sponge is conformed and used to abrade a surface. Such integrity is provided by applying a layer of adhesive material that has a major portion overlaying the major surface of the backing layer to which it is adhered (in which major portion the abrasive particles are imbedded), and only has tentacle like portions extending into the cells open to that major surface of the foam backing layer to attach the adhesive layer to the foam. While such a layer of flexible adhesive material can provide the desired integrity and adhesion to the abrasive particles and to the foam backing layer, its major portion that overlays the major surface of the backing layer is sufficiently thick that it envelopes more of the abrasive particles than might be desired, thereby somewhat restricting the ability of the abrasive particles to abrade a surface over which the sanding sponge is rubbed.

The present invention provides a resilient flexible sanding sponge having a thin backing layer that is about as flexible and conformable as the urethane backing layers on known prior art sanding sponges while providing significantly improved tear strength compared to the backing layers of those prior art sanding sponges.

The sanding sponge according to the present invention includes a foam backing layer having a layer of abrasive particles along one of its major surfaces that are adhered together and to that backing layer by a layer of flexible adhesive material. The backing layer, when measured in accordance with A.S.T.M. test method ASTM D 3574-95, has a compression force deflection of less than 64kPa (4 pounds per square inch) at 50% deflection (as do prior art sanding sponges) to provide good conformability with a surface being abraded, while having a tear strength of at least 880 Newtons per meter (5 pounds per inch) which gives the sanding sponge significantly improved tear resistance compared to known prior art sanding sponges so that the sanding sponge will not be easily torn when it is used to abrade projections.

That high tear strength backing layer can be provided by using for the backing layer either (1) felted urethane foam; or (2) foam that encompasses a layer of reinforcing material between its major surfaces. Felted urethane foam having a compression ratio of at least 2, and preferably having a compression ratio in the range of about 3 to 4 is useful as the backing layer. Felted urethane foams having compression ratios above 4 could also be useful as the backing layer, however, increasing the compression ratio increases both the stiffness and the cost of the backing layer.

When the backing layer of the sanding sponge is of felted urethane foam it can also encompass a major portion of the layer of flexible adhesive material adhering the layer of abrasive particles together along its surface to provide the needed structural integrity, adhesion to the abrasive particles and adhesion to the foam backing layer that is required of the layer of adhesive material so that it will not break, or release the abrasive particles, or release from the foam backing layer as the sanding sponge is conformed to a surface and used to abrade it, while leaving large portions of the
abrasive particles projecting above the layer of adhesive material where they can effectively abrade a surface over which the sanding sponge is rubbed.

Sanding sponges are typically made by coating liquid make coat adhesive over one major surface of the backing layer, coating a layer of the abrasive particles on the adhesive coated surface of the backing layer, and then drying the adhesive. When the backing layer is of felted foam, more of that layer of make coat adhesive will be wicked into and adsorbed in the backing layer than when the backing layer is a layer of non-felted urethane foam, apparently because of the smaller cell size and crushed cell walls of the felted foam. This greater adsorption of the make coat adhesive has several desirable effects. (1) It forms a major structurally sound portion of the layer of flexible adhesive below the surface of the backing layer along which the layer of abrasive particles is adhered (i.e., the portion of the layer of flexible adhesive below the surface of the backing layer is firmly adhered to the cell walls of the foam backing layer and has very few voids that could weaken its structural integrity). (2) Wicking of the make coat adhesive into the felted urethane foam backing material causes the adhesive to draw backing from around the abrasive particles while leaving meniscuses of the adhesive around the abrasive particles to hold them in place, thereby exposing a higher percentage of the abrasive particles for contact with a surface to be abraded than is exposed if less of the make coat adhesive is wicked into the backing layer. Also, (3) wicking of the make coat adhesive into the felted urethane foam backing material appears to cause most of the abrasive particles to become supported closely along the surface of the backing layer (rather than having some abrasive particles supported on portions of the layer of adhesive of different thicknesses as appears to be the case with prior art sanding sponges), thereby providing an outer surface defined by the ends of the abrasive particles opposite the backing layer that is almost as smooth as the surface of the backing layer along which the abrasive particles are adhered, and which appears to be more smooth than the surfaces defined by the tips of the abrasive particles on prior art sanding sponges.

Detailed Description of the Invention

Referring now to Figures 1 and 2 of the drawing, there is illustrated a first embodiment of a resilient flexible sanding sponge according to the present invention generally designated by the reference numeral 10.

Generally the sanding sponge 10 comprises a backing layer 12 of high tear strength felted urethane foam having opposite major surfaces 14 and 15; a layer of abrasive particles 16 distributed along its major surface 14, and a layer 18 of flexible adhesive material adhering the abrasive particles 16 together and to the backing layer 12. A layer of hard anti-loading size coating (not shown) extends over the surfaces of the layer 18 of flexible adhesive and the abrasive particles 16 opposite the backing layer 12. As can be seen in Figure 2, a major structurally sound portion of the layer 18 of flexible adhesive extends below the surface 14 of the backing layer 12. By "major portion" we mean that more than half the thickness of the layer 18 of flexible adhesive is below the surface 14 of the backing layer 12. We estimate from observation that about 60 to 80 percent of the thickness of the layer 18 of flexible adhesive is below the surface 14 of the backing layer 12. That major portion of the layer 18 of flexible adhesive below the surface 14 of the backing layer 12 is firmly adhered to the cell walls of the foam backing layer 12 and has very few voids that could weaken its structural integrity. Thus, that major portion of the layer 18 of flexible adhesive below the surface 14 of the backing layer 12 together with the minor portion of the layer 18 of flexible adhesive above the surface 14 of the backing layer 12 provide the needed integrity for the layer 18 of flexible adhesive so that it will not break as it is flexed to conform to a surface as the sanding sponge 10 is used. That major portion of the layer 18 of flexible adhesive below the surface 14 of the backing layer 12 provides the needed firm adhesion of the layer 18 of flexible adhesive to the foam backing layer 12 so the it will not release from the foam backing layer 12 as the sanding sponge 10 is flexed to conform to various surfaces while abrading them. The minor portion of the layer 18 of flexible adhesive above the surface 14 of the backing layer 12 provides needed firm adhesion of the layer 18 of flexible adhesive to the abrasive particles 16 that is required so that the abrasive particles 16 will not release from the layer 18 of flexible adhesive as the sanding sponge 10 is used, while still leaving major portions of the abrasive particles 16 projecting above the layer 18 of flexible adhesive material where they can effectively
engage and abrade a surface over which the sanding sponge 10 is rubbed. [0012] The felted urethane foam used for the backing layer 12 is formed by compressing one or more layers of heated urethane foam (a thermoplastic foam) in a first direction to reduce the thickness of the layers and provide a desired density for the foam. Felted polyurethane foam is available from Crest Foam Industries, Inc., Moonachie, New Jersey, in a range of compression ratios at least including from 2 to 10 (i.e., the compression ratio of the felted foam is the ratio of the thickness of the foam before it is compressed to the thickness of the foam after it is compressed). Non-reticulated felted urethane foam having a compression ratio of 3 (e.g., felted urethane foam obtained from Crest Foam Industries, Inc., Moonachie, New Jersey, under the trade designation "Felt 7018 NAT N/R 0.3450/0.118 x 46 x 56") has been found to work well as the backing layer 12 of the sanding sponge 10, as it both provides the desired combination of softness and tear strength while allowing or causing the major structurally sound portion of the layer 18 of flexible adhesive material to be formed below its surface 14, apparently by wicking the adhesive material when it is applied as a liquid into several layers of cells below the surface of the backing layer 12. Felted foams having other lower or higher compression ratios (e.g., 2, 4, or 5) should also be useful. Felted urethane foams with lower compression ratios are more flexible and less expensive than those with a compression ratio of 3 but offer less tear resistance and may not as readily wick in the layer 18 of flexible adhesive. Presumably the tear resistance and ability to wick in a major structurally sound portion of the layers of flexible adhesive increases for felted urethane foams with higher compression ratio numbers, but such felted urethane foams also become more stiff and more expensive as their compression ratios increase. [0013] The backing layer 12, when made of felted urethane foam with a compression ration of 3, should be less than 1.27 cm (one half inch) thick, and preferably is about 0.5 cm (three sixteenths inch) thick between its opposite major surfaces so that it will be sufficiently flexible to conform to the contour of surfaces to be abraded by the sanding sponge 10. [0014] The abrasive particles 16 can be any of the abrasive particles described in U.S.-A-6,059,850, particularly including particles of aluminum oxide, ceramic, or silicon carbide in the range of about 36 to 400 grit. [0015] The layer 18 of flexible adhesive material that bonds the layer of abrasive particles 16 together and to the backing layer 12 should firmly adhere the abrasive particles 16 together and to that backing layer 12 while being sufficiently flexible to conform with the backing layer 12 to the contour of surfaces to be abraded by the sanding sponge 10. A make coat adhesive formulation and method of applying it described in U.S.-A-6,059,850 can be used to form that layer 18 of flexible adhesive. That make coat adhesive formulation will be wicked into and adsorbed in a backing layer 12 of felted urethane foam with a firmness number of 3 so that a major portion of the layer of flexible adhesive formed is below its surface 14, presumably because of the small cell size and crushed cell walls of the felted foam. This adsorption of the adhesive causes the adhesive material to be securely bonded with the layer of felted urethane foam backing material. Wicking of the make coat adhesive into the felted urethane foam backing material as the sanding sponge 10 is made causes the adhesive material to draw backing from around the abrasive particles while leaving meniscuses of the adhesive around the abrasive particles 16 to hold them in place, thereby exposing a high percentage of the abrasive particles 16 for contact with a surface to be abraded. Also, that wicking of the make coat adhesive formulation into the felted urethane foam backing layer 12 as the sanding sponge 10 is made appears to cause most of the abrasive particles 16 to become supported closely along the surface 14 of the backing layer 12 rather than having abrasive particles supported on portions of the layer of adhesive of different thicknesses, thereby providing an outer surface defined by the ends of the abrasive particles 16 opposite the backing layer 12 that is almost as smooth as the surface 14 of the backing layer 12 to which the abrasive particles are adhered. [0016] The layer of hard anti-loading size coating that extends over the surfaces of the layer 18 of flexible adhesive and the abrasive particles 16 opposite the backing layer 12 can be applied using the formulation and method of applying it described in U.S.-A-6,059,850. [0017] Referring now to Figures 3 and 4 of the drawing, there is illustrated a second embodiment of a resilient flexible sanding sponge according to the present invention generally designated by the reference numeral 20. [0018] Generally the sanding sponge 20 comprises a backing layer 22 of high tear strength reinforced foam (e.g., urethane foam) having opposite major surfaces 24 and 25; a layer of abrasive particles 26 distributed along its major surface 24, and a layer 28 of flexible adhesive material adhering the abrasive particles 26 together and to the backing layer 22. A layer of hard anti-loading size coating (not shown) extends over the surfaces of the layer 28 of flexible adhesive and the abrasive particles 26 opposite the backing layer 22. [0019] The reinforced foam used for the backing layer 22 is made by forming the foam around (or including within the foam as it is made) strong reinforcing material 30 (e.g., separate metal or polymeric fibers (e.g., nylon) or a porous layer of attached non woven metal or polymeric fibers, or woven metal or polymeric strands (e.g., window screen)) that increases the strength and tear resistance of the foam cast around it. One such reinforced polyurethane foam, available from Fulflex, Inc., Middletown, RI, under the trade designation "Polycryl 500" which appears to be reinforced by fine denier fibers has been found to work well as the backing layer 22 of the sanding sponge 20. [0020] The reinforced urethane foam backing layer 22 should be less than 1.27 cm (one half inch) thick, and preferably is about 0.5 cm (three sixteenths inch) thick between its opposite major surfaces 24 and 25 so that it will be sufficiently flexible to conform to the contour of surfaces to be abraded by the sanding sponge 20.
The abrasive particles 26 and the layer 28 of flexible adhesive material that bonds the abrasive particles 26 to the backing layer 22 can be the same as those described above for use in the sanding sponge 10 and or the same as those described in U.S.-A-6,059,850.

Comparative tests were performed in accordance with A.S.T.M. test method ASTM D 3574 95 entitled “Standard Test Methods for Flexible Cellular Materials - Slab, Bonded, and Molded Urethane Foams.” Those comparative tests were performed on (1) standard open cell urethane foam of the type currently used as the backing for the sanding sponges currently available from Minnesota Mining and Manufacturing Company, St. Paul, MN, under the trade designation “Soft-backed Sanding Sponge”; (2) felted urethane foam having a compression ratio of 3 obtained from Crest Foam Industries, Inc., Moonachie, New Jersey, under the trade designation “Felt 7018 NAT N/R 0.3450/0.118 x 46 x 56” which is believed to be a felted urethane foam having 70 cells per 2.54cm (inch), a density of 29kg/m³ (1.8 pounds per cubic foot), natural color, which foam is non-reticulated, has a ratio between its starting and final thicknesses of 0.3450 to 0.118 or 2.92, and comes in a 2.54 cm (1 inch) thick 116.84 cm (46 inch) wide by 142.24 cm (56 inch) long sheet; and (3) reinforced polyurethane foam obtained from Fulflex , Inc., Middletown, RI, under the trade designation “Polycryl 500” which appears to be foam reinforced by fine denier nylon fibers.

The test results were as follows:

<table>
<thead>
<tr>
<th>Foam Tested</th>
<th>Density</th>
<th>CFD 50%</th>
<th>Comp. Set</th>
<th>Tensile Strength</th>
<th>Elongation at 50%</th>
<th>Tear Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Urethane</td>
<td>(5.8 lb/ft³) 93 kg/m³</td>
<td>(3.6 psi) 58 kPa</td>
<td>38 %</td>
<td>(57 psi) 916 kPa</td>
<td>169 %</td>
<td>(3.6 lb/in) 625 N/m</td>
</tr>
<tr>
<td>Felted Foam</td>
<td>(5.4 lb/ft³) 86 kg/m³</td>
<td>(3.4 psi) 54 kPa</td>
<td>26 %</td>
<td>(68 psi) 1097 kPa</td>
<td>199 %</td>
<td>(7.3 lb/in) 1284 N/m</td>
</tr>
<tr>
<td>Reinforced Foam</td>
<td>(6.9 lb/ft³) 110 kg/m³</td>
<td>(3.5 psi) 56 kPa</td>
<td>32 %</td>
<td>(187 psi) 2996 kPa</td>
<td>34 %</td>
<td>(18.0 lb/in) 3158 N/m</td>
</tr>
</tbody>
</table>

* compression force deflection, a measure of hardness at 50% compression
** Compression set after 50% deflection

Generally, the tear strength is measured by preparing a sample of the foam to be tested 2.54 cm by 2.54 cm by 15.2 cm (1 inch by 1 inch by 6 inches), cutting a 3.81 cm (one and one half inch) long slit through the sample from one end of the sample to form two 2.54 cm by 1.27 cm by 3.81 cm (one inch by one half inch by one and one half inch) long portions adjacent that end of the sample, and then pulling apart those end portions at a steady speed using a force measuring machine to determine the force required to tear apart the test sample beginning at the end of the slit. As can be seen from the test results, the tear strength of the felted urethane foam having a compression ratio of 3 and the tear strength of the fiber reinforced polyurethane foam were both significantly greater than the tear strength of the standard urethane foam, while the conformability of those felted and reinforced foams were similar to the conformability of the standard urethane foam as is indicated by the similar compression force deflection values at 50% deflection for those foams. These results corresponded with our experience that, when abrading projections with sanding sponges made with backing layers of the felted urethane foam and the fiber reinforced foam described above, the backings of those sanding sponges had significantly less tendency to tear than did sanding sponges having backings of standard urethane foam, while having almost the same conformability as sanding sponges having backings of standard urethane foam. From our experience, we would expect that backings for sanding sponges having a slightly lower tear strength of at least about 880 Newtons per meter (5 pounds per inch) would also provide a significant improvement in tear resistance over prior art sanding sponges.

A 90 degree puncture test was also preformed on (1) standard open cell urethane foam of the type currently used as the backing for the sanding sponges currently available from Minnesota Mining and Manufacturing Company, St. Paul, MN, under the trade designation “Soft-backed Sanding Sponge”; and (2) felted urethane foam having a compression ratio of 3 obtained from Crest Foam Industries, Inc., Moonachie, New Jersey, under the trade designation “Felt 7018 NAT N/R 0.3450/0.118 x 46 x 56” Both materials were coated with the same amounts of abrasive granules per unit area using the same amounts of liquid make coat adhesive per unit area. 2.54 cm (1 inch) Strips by 15.2 cm (6 inches) were attached to a horizontal plane at one end, had the point of a projection 0.32 cm (1/8 inch) thick with diverging sides disposed at 90 degrees with respect to each other positioned transversely along their top surfaces sides with the point half way along their lengths and widths, and had their ends opposite that attached to the plane attached to the
head of an Instron testing machine which was moved at a right angle to the plane toward the projection at a speed of 25.4 cm per minute (10 inches per minute) and which measured the force required before the projection punctured the sample. The samples of the felted urethane foam were 0.49 cm (0.194 inch) thick, and the samples of the standard urethane foam were 0.45 cm (0.179 inches) thick. As an average after testing 6 samples of each material it was found that the Load per thickness at maximum load was 3.12 kN (58.6 foot pounds per inch) for the felted foam, and 1.6 kN (29.94 foot pounds per inch) for the standard foam, thus indicating that the felted foam had significantly higher puncture resistance.

The present invention has now been described with reference to two embodiments and possible modifications thereof. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the present invention. For example, a rectangular flexible resilient sanding sponge of a known type that has a backing layer that is thicker than that of the sanding sponge described above (e.g., 2.54 cm thick (1 inch) and has layers of abrasive on 4 or 6 sides adhered to that backing layer by layers of flexible adhesive could be made using a felted foam backing layer or a reinforced backing layer of the types described above to provide high tear strength for that backing layer. It should be possible to make a urethane foam backing layer for a sanding sponge that is both slightly felted and includes reinforcing material to provide a low cost backing layer that has both a desired level of tear strength and will encompass a significant or major portion of the layer of flexible adhesive material. Sanding sponges that are slurry coated (i.e., the abrasive particles and the liquid make coat adhesive are simultaneously coated on the backing layer as a slurry which typically contains proportionally more adhesive than is applied when the adhesive and abrasive particles are separately coated on the backing layer) should be improved by using a backing layer of felted foam because of wicking of the make coat adhesive into the backing layer to better expose the abrasive). Thus, the scope of the present invention should not be limited to the structures described in this application, but only by the structures described by the language of the claims and the equivalents thereof.

Claims

1. A resilient flexible sanding sponge comprising

 - a backing layer (12; 22) comprising urethane foam having opposite major surfaces (14,15;24,25),
 - a layer of abrasive particles (16; 26) distributed along one of said major surfaces (14,15; 24,25), and
 - a layer of flexible adhesive material (18; 28) adhering said abrasive particles (16; 26) together and to said backing layer (12; 22),

 characterised in that

 - said backing layer (12; 22) comprising felted urethane foam,
 - said backing layer (12; 22) has a compression force deflection value of less than 64 kPa (4 pounds per square inch) at 50% deflection and having a tear strength of at least 880 Newtons per meter (5 pounds per inch) when measured in accordance with A.S.T.M. test method D 3574 - 95, and
 - less than half of said layer of flexible adhesive material (18) is external to said backing layer (12) and around said abrasive particles (16), and more than half of said layer of flexible adhesive material (18) is structurally sound and in the backing layer (12) below said major surface (14,15;24,25), said less than half portion of said layer of flexible adhesive material (18) external to said backing layer (12) comprising meniscuses of the adhesive material (18) around the abrasive particles (16) to hold them in place.

2. A sanding sponge according to claim 1, wherein said backing layer (12; 22) of felted urethane foam has a compression ratio of at least 2.

3. A sanding sponge according to claim 1 or 2, wherein said backing layer (12; 22) of felted urethane foam has a compression ratio in the range of about 2 to 4.

4. A sanding sponge according to any one of claims 1 to 3, wherein said backing layer (12) is less than 1.27 cm (0.5 inch) thick between said opposite major surfaces (14,15;24,25).

5. A sanding sponge according to claim 4, wherein said backing layer (12; 22) is about 0.5 cm (3/16 inch) thick between said opposite major surfaces (14,15;24,25).

6. A sanding sponge according to any one of claims 1 to 3, wherein said backing layer (12; 22) is 2.54 cm (1 inch)
7. A sanding sponge according to any one of claims 1 to 6, wherein said backing layer (12;22) further comprises reinforcing material (30) encompassed by said urethane foam between said first and second surfaces (14,15;24,25).

8. A sanding sponge according to claim 7, wherein said reinforcing material (30) is selected from the group of reinforcing materials consisting of separate fibers, a layer of attached non woven polymeric fibers, and woven metal strands.

9. A sanding sponge according to any one of claims 1 to 8, wherein said backing layer (12;22) has a length of about 11.4 cm (4.5 inches) and a width of about 14 cm (5.5 inches) along said major surfaces (14,15;24,25).

10. A sanding sponge according to any one of claims 1 to 9 wherein 60 to 80 percent of the thickness of said layer of flexible adhesive material (18) is in the backing layer (12) below said major surface (14,15;24,25).

Patentansprüche

1. Elastischer flexibler Schleifschwamm, mit:

- einer Trägerschicht (12;22), welche einen Urethan-Schaum mit gegenüberliegenden Hauptflächen (14, 15; 24, 25) aufweist,
- einer Schicht aus Schleifpartikeln (16; 26), welche entlang einer der Hauptflächen (14, 15; 24, 25) verteilt sind, und
- einer Schicht eines flexiblen Klebstoffmaterials (18; 28), welche die Schleifpartikel (16; 26) aneinander und an der Trägerschicht (12;22) haften lässt,

dadurch gekennzeichnet, dass

- die Trägerschicht (12; 22) Urethan-Schaum mit vliesartiger Struktur aufweist,
- die Trägerschicht (12; 22) einen Kompressionskraft-Biegewert von weniger als 64 kPa (4 pound je Quadrat-Inch) bei 50%iger Durchbiegung aufweist, und eine Reißfestigkeit von mindestens 880 Newton je Meter (5 pound je Inch) aufweist, gemessen gemäß dem ASTM-Testverfahren D 3574-95, und
- sich weniger als die Hälfte der Schicht des flexiblen Klebstoffmaterials (18) außerhalb der Trägerschicht (12) und um die Schleifpartikel (16) herum befindet, und mehr als die Hälfte der Schicht des flexiblen Klebstoffmaterials (18) fest strukturiert ist und sich in der Trägerschicht (12) unter der Hauptfläche (14, 15; 24; 25) befindet, wobei der weniger als die Hälfte ausmachende Teil der Schicht des flexiblen Klebstoffmaterials (18), der sich außerhalb der Trägerschicht (12) befindet, Menisken des Klebstoffmaterials (18) um die Schleifpartikel (16) herum aufweist, um diese in Position zu halten.

2. Schleifschwamm nach Anspruch 1, wobei die Trägerschicht (12; 22) aus einem Urethan-Schaum mit vliesartiger Struktur ein Kompressionsverhältnis von mindestens 2 aufweist.

3. Schleifschwamm nach Anspruch 1 oder 2, wobei die Trägerschicht (12; 22) aus einem Urethan-Schaum mit vliesartiger Struktur ein Kompressionsverhältnis im Bereich von etwa 2 bis 4 aufweist.

4. Schleifschwamm nach einem der Ansprüche 1 bis 3, wobei die Trägerschicht (12) zwischen den gegenüberliegenden Hauptflächen (14, 15; 24, 25) weniger als 1,27 cm (0,5 Inch) dick ist.

5. Schleifschwamm nach Anspruch 4, wobei die Trägerschicht (12;22) zwischen den gegenüberliegenden Hauptflächen (14, 15; 24, 25) etwa 0,5 cm (3/16 Inch) dick ist.

6. Schleifschwamm nach einem der Ansprüche 1 bis 3, wobei die Trägerschicht (12;22) zwischen den gegenüberliegenden Hauptflächen (14, 15; 24, 25) 2,54 cm (1 Inch) dick ist.

7. Schleifschwamm nach einem der Ansprüche 1 bis 6, wobei die Trägerschicht (12;22) ferner ein verstärkendes Material (30) aufweist, welches von dem zwischen der ersten und zweiten Fläche (14, 15; 24, 25) gelegenen Urethanschaum umgeben ist.

9. Schleifschwamm nach einem der Ansprüche 1 bis 8, wobei die Trägerschicht (12;22) entlang den Hauptflächen (14, 15; 24, 25) eine Länge von etwa 11,4 cm (4,5 Inch) und eine Breite von etwa 14 cm (5,5 Inch) aufweist.

10. Schleifschwamm nach einem der Ansprüche 1 bis 9, wobei sich 60 bis 80 Prozent der Dicke der Schicht des flexiblen Klebstoffmaterials (18) in der Trägerschicht (12) unter der Hauptfläche (14, 15; 24, 25) befinden.

Revendications

1. Éponge de ponçage résiliente flexible, comprenant :

- une couche de soutien (12 ; 22) comprenant une mousse d’uréthane ayant des surfaces principales opposées (14, 15 ; 24, 25),
- une couche de particules abrasives (16 ; 26) répartie le long de l’une desdites surfaces principales (14, 15 ; 24, 25), et
- une couche de matériau adhésif flexible (18 ; 28) faisant adhérer lesdites particules abrasives (16 ; 26) les unes aux autres et à ladite couche de soutien (12 ; 22),

caractérisée en ce que

- ladite couche de soutien (12 ; 22) comprenant une mousse d’uréthane à structure feutrée,
- ladite couche de soutien (12 ; 22) ayant une valeur de contrainte de compression en fonction de la déformation inférieure à 64 kPa (4 livres par pouce carré) à une déformation de 50 % et ayant une résistance au déchirement d’au moins 880 Newtons par mètre (5 livres par pouce) quand celle-ci est mesurée selon la méthode d’essai A.S.T.M. D 3574-95, et
- moins de la moitié de ladite couche de matériau adhésif flexible (18) se trouve à l’extérieur de ladite couche de soutien (12) et autour desdites particules abrasives (16), et plus de la moitié de ladite couche de matériau adhésif flexible (18) a une structure correcte et se trouve dans la couche de soutien (12) en dessous de ladite surface principale (14, 15 ; 24, 25), ladite partie représentant moins de la moitié de ladite couche de matériau adhésif flexible (18) qui se trouve à l’extérieur de ladite couche de soutien (12) comprenant des ménisques du matériau adhésif (18) autour des particules abrasives (16) pour maintenir celles-ci en place.

2. Éponge de ponçage selon la revendication 1, dans laquelle ladite couche de soutien (12 ; 22) de mousse d’uréthane à structure feutrée a un rapport de compression d’au moins 2.

3. Éponge de ponçage selon la revendication 1 ou 2, dans laquelle ladite couche de soutien (12 ; 22) de mousse d’uréthane à structure feutrée a un rapport de compression environ 2 et 4.

4. Éponge de ponçage selon l’une quelconque des revendications 1 à 3, dans laquelle ladite couche de soutien (12) mesure moins de 1,27 cm (0,5 pouce) d’épaisseur entre lesdites surfaces principales opposées (14, 15 ; 24, 25).

5. Éponge de ponçage selon la revendication 4, dans laquelle ladite couche de soutien (12 ; 22) mesure environ 0,5 cm (3/16 pouce) d’épaisseur entre lesdites surfaces principales opposées (14, 15 ; 24, 25).

6. Éponge de ponçage selon l’une quelconque des revendications 1 à 3, dans laquelle ladite couche de soutien (12 ; 22) mesure 2,54 cm (1 pouce) d’épaisseur entre lesdites surfaces principales opposées (14, 15 ; 24, 25).

7. Éponge de ponçage selon l’une quelconque des revendications 1 à 6, dans laquelle ladite couche de soutien (12 ; 22) comprend en outre un matériau de renforcement (30) englobé par ladite mousse d’uréthane entre lesdites première et deuxième surfaces (14, 15 ; 24, 25).

8. Éponge de ponçage selon la revendication 7, dans laquelle ledit matériau de renforcement (30) est sélectionné dans le groupe de matériaux de renforcement constitué de fibres séparées, d’une couche de fibres polymères non tissées fixées, et de brins métalliques tissés.

9. Éponge de ponçage selon l'une quelconque des revendications 1 à 8, dans laquelle ladite couche de soutien (12 ; 22) a une longueur d'environ 11,4 cm (4,5 pouces) et une largeur d'environ 14 cm (5,5 pouces) le long desdites surfaces principales (14, 15 ; 24, 25).

10. Éponge de ponçage selon l'une quelconque des revendications 1 à 9, dans laquelle 60 à 80 % de l'épaisseur de ladite couche de matériau adhésif flexible (18) se trouve dans la couche de soutien (12) en dessous de ladite surface principale (14, 15 ; 24, 25).