Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a spacer type pressure reducing valve mounted between a switching valve which switches a direction of flow of pressurised fluid and a base which supplies pressurised fluid to the switching valve, for adjusting output fluid pressures to required valves.

[0002] When a fluid pressure device is actuated by pressurised fluid such as compressed air supplied through a switching valve, it is desirable to adjust the pressure of the fluid to be supplied to the fluid pressure according to a set pressure or actuating state of the device. Therefore, a pressure reducing valve that is a pressure-adjusting valve is usually mounted in a pipe that connects an output port of the switching valve and the fluid pressure device.

[0003] However, since known pressure reducing valves are generally large in size, if the pressure reducing valve is connected to the switching valve by piping, there is a problem that the piping operation is extremely troublesome and large installation space is required.

[0004] This problem is especially prone to arise when a plurality of switching valves are mounted on a base such as a manifold or sub-plate having a piping port, which makes it difficult, in some cases, to mount the pressure reducing valve depending upon the number of switching valves to be used.

[0005] In order to solve the above problems, a spacer type pressure reducing valve has been proposed that is directly sandwiched and mounted between the switching valve and the base, see Japanese Publication Nos. 10-96404, 10-133744 and 10-283037.

[0006] This spacer type pressure reducing valve comprises a valve body having substantially the same lateral width as that of the switching valve, a plurality of communication passages for independently detecting fluid pressures of the two output ports, a pressure-adjusting valve mounted between a switching valve and the base, two pressure-adjusting valve holes for adjusting the fluid pressure output from the output communication passages, a pressure-adjusting chamber at one end of each pressure-adjusting valve rod, and a returning chamber at the other end of the pressure-adjusting valve rods, a pressure-adjusting piston slidably in each pressure-adjusting chamber, a pressure adjusting spring for biasing each pressure-adjusting piston toward the associated pressure-adjusting valve rod, a returning spring in each returning chamber for biasing the respective pressure-adjusting valve rod toward the associated pressure-adjusting piston, a communication flow-passage for connecting the pressure-adjusting chamber and the returning chamber on the opposite ends of the one pressure-adjusting valve rod with one output communication passage, and a communication flow-passage for connecting the pressure-adjusting chamber and the returning chamber on the opposite ends of the other pressure-adjusting valve rod with the other output communication passage, wherein one pressure-adjusting valve seat and one pressure-adjusting valve body are provided for adjusting the fluid pressure output from the one output communication passage, and the other pressure-adjusting valve seat and the other pressure-adjusting valve body are provided for adjusting the fluid pressure output from the other output communication passage.

[0010] Preferably, said pressure-adjusting piston includes a discharge hole for discharging out the pressurised fluid in the pressure-adjusting chamber, and the pressure-adjusting valve rod is provided at its end with an opening/closing portion for opening and closing the discharge hole.

[0011] Moreover, said valve body is provided at its end closer to the pressure-adjusting chamber with two adjusting screws capable of independently adjusting the two pressure-adjusting springs, and two pressure gauges for independently detecting fluid pressures of the two pressure-adjusting chambers.

[0012] Further, said communication flow-passage comprises a pressure-adjusting passage formed in the pressure-adjusting valve rod and brought into communication with the returning chamber and a pressure-introducing gap formed between the pressure-adjusting valve...
hole and the pressure-adjusting valve rod for connecting the pressure-adjusting passage and the pressure-adjusting chamber, and a pressure intake hole is provided for bringing the returning chamber and the pressure-adjusting passage into communication with the output communication passage.

[0013] In one embodiment, said supply communication passage in the valve body extends through portions of the two pressure-adjusting valve holes, and the pressure-adjusting valve seats are formed at positions of the pressure-adjusting valve holes through which the supply communication passage pass.

[0014] In another embodiment, the two output communication passages in the valve body respectively extend through the two pressure-adjusting valve holes, and the pressure-adjusting valve seats are formed at positions of the pressure-adjusting valve holes through which the output communication passages pass.

[0015] With the above described spacer type pressure reducing valve, since the two pressure-reducing portions are integrally disposed in the valve body, the structure can be made compact and the size thereof can be reduced.

[0016] Further, since in the preferred embodiment the pressure gauge is disposed in the vicinity of the adjusting screw, the operability of the pressure setting of the pressurised fluid is enhanced.

[0017] The invention will now be further described by way of example only with reference to the accompanying drawings in which

Fig. 1 is a sectional view showing a spacer type pressure reducing valve according to a first embodiment of the invention mounted between a base and a solenoid valve.

Fig. 2 is a sectional view of the spacer type pressure reducing valve of the first embodiment of the invention.

In Fig. 3, (a) is a sectional view taken along arrows IIIa - IIIa in Fig. 2, (b) is a sectional view taken along arrows IIIb - IIIb in Fig. 2, (c) is a sectional view taken along arrows IIIc - IIIc in Fig. 2, (d) is a sectional view taken along arrows IIIId - IIIId in Fig. 2, (e) is a sectional view taken along arrows IIle - IIle in Fig. 2, and (f) is a sectional view taken along arrows IIIIf - IIIIf in Fig. 2. Fig. 4 is a perspective view of a valve body of the spacer type pressure reducing valve of the first embodiment of the invention.

Fig. 5 is a sectional view of a spacer type pressure reducing valve of a second embodiment of the invention mounted between a base and solenoid valve. In the illustrated solenoid valve, if pilot pressure reducing valve 3 which is a switching valve by means of mounting means (not shown) such as mounting bolts or the like. The base 2 is directly fixed between a base 2 and a solenoid valve 3 which is a switching valve by means of mounting means (not shown) such as mounting bolts or the like.

Fig. 5 and (g) is a sectional view taken along arrows Vtg - Vtg in Fig. 5.

[0018] In describing embodiments of the spacer type pressure reducing valve like parts are identified with like numerals.

[0019] Fig. 1 is a sectional view showing a spacer type pressure reducing valve of a first embodiment of the invention mounted between a base and solenoid valve.

Fig. 2 is a sectional view for explaining details of the spacer type pressure reducing valve of the first embodiment.

Figs. 3(a) to (f) are sectional views taken along positions IIIa - IIIa to IIIIf - IIIIf in Fig. 2. Fig. 4 is a perspective view of a valve body of the first embodiment of the invention. Fig. 5 and subsequent drawings show a second embodiment.

[0020] In Fig. 1, a spacer type pressure reducing valve 1 is directly fixed between a base 2 and a solenoid valve 3 which is a switching valve by means of mounting means (not shown) such as mounting bolts or the like.

[0021] The base 2 is a member such as a manifold or sub-plate having a piping port, and capable of having one or more solenoid valves therein. The illustrated base 2 is a single type base having one solenoid valve 3.

[0022] The base 2 includes a supply flow passage P, a first discharge flow-passage EA and a second discharge flow-passage EB for pressurized fluid (compressed air) formed such as to pass through the base 2. The base 2 is formed with a first output port A and a second output port B opening at other side surface.

The base 2 is provided at its upper surface with a mounting surface 2a for a flat pressure reducing valve. In the mounting surface 2a and a supply communication hole 5 being respectively in communication with each flow passage and a port, a first output communication hole 6A and a second output communication hole 6B, a first discharge communication hole 7A and a second discharge communication hole 7B are opened in single file.

[0023] The solenoid valve 3 is a single or double type electromagnetically actuated switching valve having a main valve portion 8 and a pilot valve portion 9. The main valve portion 8 has a fiat mounting surface 4a formed on a lower surface of the valve body 4. A supply communication hole 10, a first output communication hole 11A and a second output communication hole 11B, a first discharge communication hole 12A and a second discharge communication hole 12B are opened in single file in the mounting surface 4a. A valve hole 13 with which the above communication holes are in communication are formed in the valve body 4. A valve rod 14 for switching flow-paths is slidably and air-tightly inserted in the valve hole 13.

[0024] In the illustrated solenoid valve 3, if pilot pressure is output from the pilot valve portion 9 to the main valve portion 8 by excitation of solenoid, the valve rod 14 moves rightward as viewed in the drawing, the supply communication hole 10 and the first output communication hole 11A are brought into communication with each other, and the second output communication hole 11B
and the second discharge communication hole 12B are brought into communication with each other. If the excitation of solenoid is released, pilot fluid in the main valve portion 8 is discharged, the valve rod 14 is returned into a state shown in the drawing by fluid pressure supplied to a chamber opposite from the pilot valve portion 9, thereby switching the state so that the supply communication hole 10 and the second output communication hole 11B are brought into communication with each other and the first output communication hole 11A and the first discharge communication hole 12A are brought into communication with each other.

[0025] In Figs. 2 to 4, the pressure reducing valve 1 includes a thin valve body 15 having rectangular cross section. A first pressure-reducing portion 1A and a second pressure-reducing portion 1B are superposed on each other and disposed in the valve body 15. Upper and lower surfaces of the valve body 15 are flat mounting surfaces 15a and 15b to which the base 2 and the solenoid valve 3 with each other is directly sandwiched and mounted between the base 2 and the solenoid valve 3.

[0026] The first pressure-reducing portion 1A and the second pressure-reducing portion 1B in the valve body 15 are provided with a plurality of communication passages 16, 17A and 17B, 18A and 18B for connecting the communication holes of the solenoid valve 3 and the base 2. The communication passages 16, 17A and 17B, 18A and 18B are opened on the upper and lower surfaces 15a and 15b in single file respectively. Pressure-adjusting valve holes 19a and 19b that are in parallel to the mounting surface are provided in a direction crossing the communication passages 16, 17A and 17B, 18A and 18B. In the pressure-adjusting valve holes 19a and 19b, pressure-adjusting valve rods 20A and 20B are respectively inserted movably.

[0027] The supplying communication passage 16 among the communication passages 16, 17A, 17B, 18A and 18B for connecting the supply communication hole 5 of the base 2 and the supply communication hole 10 of the solenoid valve 3 with each other is a communication passage which has pressure-adjusting valve seats 25a and 25b and which is capable of opening and closing. Outputting communication passages 17A and 17B for connecting first and second output communication holes 6A and 6B and first and second output communication holes 11A and 11B, and discharging communication passages 18A and 18B for connecting first and second discharge communication holes 7A and 7B and first and second discharge communication holes 12A and 12B are direct communication passages for connecting the communication holes straightly.

[0028] The supplying communication passage 16 comprises a first path-portion 16a which is in communication of the supply communication hole 5 on the side of the base 2 and opened at a pressure-adjusting valve hole 19a and a second path-portion 16b which is in communication with the supply communication hole 10 on the side of the solenoid valve 3 and opened at a pressure-adjusting valve hole 19b at a position slightly deviated in a lateral direction from the first path-portion 16a and a third path-portion 16c for bringing the first path-portion 16a and the second path-portion 16b into communication with each other. The pressure-adjusting valve seat 25a is provided on a portion of the pressure-adjusting valve hole 19a between the first path-portion 16a and the third path-portion 16c. The pressure-adjusting valve seat 25b is provided on a portion of the pressure-adjusting valve hole 19b between the second path-portion 16b and the third path-portion 16c. Opening between the first and third path-portions 16a and 16c, and opening between the second and third path-portions 16b and 16c are adjusted by pressure-adjusting valve bodies 21a and 21b respectively provided on the pressure-adjusting valve rods 20A and 20B.

[0029] The one output communication passage 17A is in communication with the pressure-adjusting valve hole 19b through the pressure intake hole 22A. The other output communication passage 17B is in communication with the pressure-adjusting valve hole 19a through the pressure intake hole 22B.

[0030] One end of the valve body 15 is formed with a pressure-adjusting portion 29. The pressure-adjusting portion 29 comprises pressure-adjusting chambers 38a and 38b formed between the valve body 15 and the pressure-adjusting side cover 30 such as to be in communication with the pressure-adjusting valve holes 19a and 19b respectively, and pressure-adjusting springs 35a and 35b provided between pressure-adjusting piston 33a and 33b slidably accommodated in the pressure-adjusting chambers 38a and 38b and spring seats 32a and 32b disposed behind the pressure-adjusting pistons 33a and 33b in the spring chambers 34a and 34b. The pressure-adjusting springs 35a and 35b respectively bias the pressure-adjusting pistons 33a and 33b toward the pressure-adjusting valve rods 20A and 20B. Spring forces of the pressure-adjusting springs 35a and 35b can be adjusted by rotating adjusting screws 31a and 31b threadedly engaged in the end of the pressure-adjusting side cover 30 forward and backward. In the drawings, reference symbols 36a and 36b represent lock nuts for locking the adjusting screws 31a and 31b.

[0031] The pressure-adjusting pistons 33a and 33b are respectively provided with discharge holes 39a and 39b which bring the spring chambers 34a and 34b and breathing holes 40a and 40b formed in the pressure-adjusting side cover 30 into communication with each other to communicate with atmosphere. Ends of the discharge holes 39a and 39b are provided with relief valve members 37a and 37b. Valve-opening/closing portions 41a and 41b formed on tip ends of the pressure-adjusting valve rods 20A and 20B abut against the relief valve members 37a and 37b such that the valve-opening/closing portions 41a and 41b can be in contact or out of contact with respect to the relief valve members 37a and 37b so that
the discharge holes 39a and 39b can be opened and closed.

[0032] Returning chambers 45a and 45b are formed on the other end of the valve body 15 between the valve body 15 and the returning-side cover 42. In the returning chambers 45a and 45b, returning springs 44a and 44b for biasing the pressure-adjusting valve rods 20A and 20B toward the pressure-adjusting pistons 33a and 33b are respectively provided. The biasing force of each of the returning springs 44a and 44b is set smaller than that of each of the pressure-adjusting springs 35a and 35b. As will be explained later, the returning chambers 45a and 45b are in communication with the pressure-adjusting chambers 38a and 38b through communication flow-passages for introducing pressure-adjusting pressurized fluid into pressure-adjusting chambers and returning chambers on the opposite ends of a pair of pressure-adjusting valve rods 20A and 20B.

[0033] The pressure-adjusting valve rods 20A and 20B have enough outer diameter to be inserted into the pressure-adjusting valve holes 19a and 19b, respectively. Pressure-introducing gaps 24a and 24b for communication flow-passages are respectively provided between outer peripheries of the pressure-adjusting valve rods 20A and 20B and the pressure-adjusting valve holes 19a and 19b.

[0034] Pressure-adjusting passages 20a and 20b which are respectively in communication with the returning chambers 45a and 45b are formed in the pressure-adjusting valve rods 20A and 20B. The pressure-adjusting passages 20a and 20b form the communication flow-passages together with the pressure-introducing valve rods 20A and 20B and the pressure-adjusting valve holes 19a and 19b.

[0035] The communication passage 17A and the returning chamber 45b are in communication with each other through the pressure intake hole 22A and the pressure-introducing gap 24b. The communication passage 17B and the pressure-adjusting chamber 38a are in communication with each other through the pressure intake hole 22B and the pressure-introducing gap 24a.

[0036] The pressure-introducing gaps 24a and 24b around the pressure-adjusting valve rods 20A and 20B on the opposite sides of the communication passage 16 are sealed by seal members 46a and 47a and seal members 46b and 47b respectively provided on the pressure-adjusting valve rods 20A and 20B.

[0037] The pressure-adjusting chambers 38a and 38b are in communication with detection ports 43a and 43b provided in pressure-adjusting side cover 30 through connection passages 50a and 50b so that adjusting air pressure of the pressure-adjusting chambers 38a and 38b can be detected by pressure gauges 51a and 51b mounted to the detection ports 43a and 43b. In this case, the pressure gauges 51a and 51b are disposed in the vicinity of the pair of adjusting screws 31a and 31b so that operability of the adjusting screws 31a and 31b is enhanced.

[0038] A housing 52 is retained and fixed to an end of the returning-side cover 42 through a pawl 52a. First and second electric connectors 53 and 55 which are respectively connected to the base 2 and the pilot valve portion 9 of the solenoid valve 3 electrically are provided in the housing 52. The first electric connector 53 and the second electric connector 55 are electrically connected to each other through an electric conductor 54. The second electric connector 55 is connected to a power source through a feeder line 58.

[0039] Fig. 4 shows opening ends of the communication passages 16, 17A, 17B, 18A and 18B formed in the valve body 15, and a state in which the third path-portions 16c is sealed by a plate 56 through a gasket 57, or sealed by directly welding the plate 56 to the opening end.

[0040] Next, operation of the spacer type pressure reducing valve having the above structure will be explained.

[0041] First, when pressurized fluid, e.g., compressed air is not supplied to the supply flow passage P of the base 2, since the biasing forces of the pressure-adjusting springs 35a and 35b are greater than those of the returning springs 44a and 44b, the pressure-adjusting pistons 33a and 33b and the pressure-adjusting valve rods 20A and 20B move leftward as viewed in Fig. 2, the pressure-adjusting valve bodies 21a and 21b open the pressure-adjusting valve seats 25a and 25b, the supply flow passage P of the base 2 and the supply communication hole 10 of the solenoid valve 3 are brought into communication with each other through the first, second and third path-portions 16a, 16b and 16c of the communication passage 16.

[0042] If the pressurized fluid is supplied to the supply flow passage P of the base 2 and the communication passage 16 of the pressure reducing valve 1 and the communication passage 17B are brought into communication with each other through the solenoid valve 3 and the communication passage 17A and the communication passage 18A are brought into communication with each other, the pressurized fluid passes through the pressure intake hole 22B and the pressure-introducing gap 24a via the communication passage 17B and is introduced into the pressure adjusting chamber 38a and at the same time, the pressurized fluid passes through the pressure adjusting passage 20a and is introduced into the returning chamber 45a. Therefore, the pressure-adjusting valve body 21a opens and closes the pressure-adjusting valve seat 25a with opening in accordance with a difference between a biasing force of the pressure-adjusting spring 35a and a combination force of a fluid pressure acting force acting on the pressure-adjusting piston 33a and a biasing force of the returning spring 44a. In this state, the communication passage 17A is in communication with the second discharge flow-passage EB through the communication passage 18A. Therefore,
pressurized fluid in the pressure-adjusting chamber 38b and the returning chamber 45b flows out from the pressure intake hole 22A into the communication passage 17A through the pressure-introducing gap 24b. Thus, the pressure-adjusting valve body 21b is maintained in a state in which the pressure-adjusting valve seat 25b is opened by the biasing force of the pressure-adjusting spring 35b.

[0043] During a time period in which the combined force of the fluid pressure acting force acting on the pressure-adjusting piston 33a and the biasing force of the returning spring 44a is smaller than the biasing force of the pressure-adjusting spring 35a in a state in which the pressurized fluid from the supply flow passage P is introduced into the pressure-adjusting chamber 38a and the returning chamber 45a, the pressure-adjusting piston 33a together with the pressure-adjusting rod 20a moves leftward, the pressure-adjusting valve body 21a opens the pressure-adjusting valve seat 25a, and in accordance with the opening, pressurized fluid is output to the second output port B. The fluid pressure in the output port B is increased to the set pressure, and if the combined force of the fluid pressure acting force acting on the pressure-adjusting piston 33a and the biasing force of the returning spring 44a becomes equal to the biasing force of the pressure-adjusting spring 35a, the pressure-adjusting valve body 21a closes the pressure-adjusting valve seat 25a and thus, the pressure of the pressurized fluid supplied from the supply flow passage P to the second output port B is maintained at the set pressure.

[0044] In a state in which the pressure-adjusting valve body 21a closes the pressure-adjusting valve seat 25a, if the pressure of the fluid pressure in the second output port B is further increased, and if the fluid pressure acting force acting on the pressure-adjusting piston 33a from the communication passage 17B becomes greater than the biasing force of the pressure-adjusting spring 35a, the pressure-adjusting piston 33a moves rightward as viewed in the drawing, and the relief valve member 37a is opened.

[0045] With this, the pressurized fluid in the pressure-adjusting chamber 38a is discharged outside through the discharge hole 39a and the breathing hole 40a. Therefore, the balance between the fluid pressure acting force and the biasing force of the pressure-adjusting spring 35a is maintained, and the fluid pressure in the second output port B is adjusted to a pressure set by the pressure-adjusting spring 35a.

[0046] The fluid pressure in the second output port B is detected by a pressure gauge 51a mounted in the detection port 43a. The fluid pressure is set by threadedly rotating the pressure-adjusting screw 31a to move the same forward or backward to adjust a resilient force of the pressure-adjusting spring 35a.

[0047] Next, if the communication passage 16 of the pressure reducing valve 1 and the communication passage 17A are brought into communication with each other through the solenoid valve 3, and the communication passage 17B and the communication passage 18B are brought into communication with each other, pressurized fluid in the pressure-adjusting chamber 38a and the returning chamber 45a is discharged out from the second discharge flow passage EB from the pressure-adjusting passage 20a and the pressure-introducing gap 24a through the pressure intake hole 22B and the communication passages 17B and 18B.

[0048] With this, fluid pressure in the pressure-adjusting chamber 38a and the returning chamber 45a is lowered, the pressure-adjusting rod 20A moves leftward as viewed in the drawing by the biasing force of the pressure-adjusting spring 35a, and the pressure-adjusting valve body 21a opens the pressure-adjusting valve seat 25a.

[0049] The pressurized fluid in the supply flow passage P is introduced into the pressure-adjusting chamber 38b and the returning chamber 45b respectively through the pressure intake hole 22A, the pressure-adjusting passage 20b and the pressure-introducing gap 24b from the communication passage 17A. The pressurized fluid in the communication passage 17A is supplied to the fluid pressure device from a first output port A of the base 2.

[0050] During a time period in which the combined force of the fluid pressure acting force acting on the pressure-adjusting piston 33b and the biasing force of the returning spring 44b is smaller than the biasing force of the pressure-adjusting spring 35b, the pressure-adjusting valve rod 20B moves leftward, the pressure-adjusting valve body 21b opens the pressure-adjusting valve seat 25b, and the fluid pressure in the first output port A is increased to the set pressure. When the combined force of the fluid pressure acting force acting on the pressure-adjusting piston 33b and the biasing force of the returning spring 44b becomes greater than the biasing force of the pressure-adjusting spring 35b, the pressure-adjusting valve rod 20B moves rightward, the pressure-adjusting valve body 21b closes the pressure-adjusting valve seat 25b, and the fluid pressure of the first output port A is maintained at the set pressure.

[0051] As described above, if the fluid pressure of the first output port A becomes high in the state in which the pressure-adjusting valve body 21b closed the pressure-adjusting valve seat 25b, the pressure-adjusting piston 33b moves rightward as viewed in the drawing, the relief valve member 37b is opened, the pressurized fluid in the pressure-adjusting chamber 38b is discharged out through the discharge hole 39b and the breathing holes 40a and 40b, and the fluid pressure in the first output port A is adjusted to a pressure set by the pressure-adjusting spring 35b.

[0052] The fluid pressure of the first output port A is detected by a pressure gauge 51b mounted to the detection port 43b, and setting of the fluid pressure is changed by advancing/retracting the pressure-adjusting screw 31b to adjust the resilient force of the pressure-adjusting spring 35.

[0053] Fig. 5 is a sectional view of a second embodi-
ment of the spacer type pressure reducing valve according to the present invention, and Figs. 6(a) to (g) are sectional views taken along V1a - V1a to Vlg - Vlg in Fig. 5 positions.

[0054] In the spacer type pressure reducing valve of the first embodiment shown in Figs. 1 to 3, the communication passage 16 which is in communication with the supply communication hole 10 of the solenoid valve 3 is provided with the pressure-adjusting valve seats 25a and 25b, and their openings are adjusted by the pressure-adjusting valve bodies 21a and 21b. Whereas, in the second embodiment, a communication passage which is in communication with an output communication hole of the solenoid valve 3 is provided with a pressure-adjusting valve seat and a pressure-adjusting valve body for adjusting its opening.

[0055] That is, in this second embodiment, a communication passage 17C connecting the first output communication hole 11A of the solenoid valve 3 and the first output port A of the base 2 is brought into communication with the pressure-adjusting valve hole 19b, and the communication passage 17D connecting the second output communication hole 11B the solenoid valve 3 and the second output port B of the base 2 is brought into communication with the pressure-adjusting valve hole 19a, so that the communication passages 17C and 17D can function as pressure-adjusting communication passages which are independently opened and closed by the pressure-adjusting valve bodies 21a and 21b and the pressure-adjusting valve seats 25a and 25b, and the communication passage 16 is formed into a direct-communication passage for directly bringing the supply communication hole 10 of the solenoid valve 3 and the supply flow passage P of the base 2 into communication with each other. In a communication passage 17C extending from the pressure-adjusting valve seat 25b to the first output port A of the base 2, a pressure intake hole 60b for introducing fluid pressure of the communication passage 17C to the pressure-adjusting passage 20b is provided in the pressure-adjusting valve rod 21B. In a communication passage 17D extending from the pressure-adjusting valve seat 25a to the second output port B of the base 2, a pressure intake hole 60a for introducing the fluid pressure of the communication passage 17D to the pressure-adjusting passage 20a is provided in the pressure-adjusting valve rod 21A.

[0056] Other structure is the same as that of the spacer type pressure reducing valve shown in Fig. 2 and thus, detailed explanation will be omitted.

[0057] In the spacer type pressure reducing valve of the second embodiment, like the first embodiment, when the pressurized fluid is not supplied to the supply flow passage P of the base 2, the pressure-adjusting pistons 33a and 33b and the pressure-adjusting valve rods 20A and 20B move leftward as viewed in the drawing, and the pressure-adjusting valve bodies 21a and 21b open the pressure-adjusting valve seats 25a and 25b.

[0058] If the communication passages 16 and 17d of the pressure reducing valve 1 are brought into communication with each other and the communication passages 17C and 18A are brought into communication with each other by the solenoid valve 3 in a state in which the pressurized fluid is supplied to the supply flow passage P, the pressurized fluid is introduced into the pressure-adjusting chamber 38a and the returning chamber 45a through the pressure intake hole 60a, the pressure-adjusting passage 20a and the pressure-introducing gap 24a by the communication passage 17D, and is supplied to the fluid pressure device by the communication passage 17D through the second output port B of the base 2.

[0059] In this case, an opening of the pressure-adjusting valve seat 25a is adjusted in accordance with a difference between the biasing force of the pressure-adjusting spring 35a and the combined force of the fluid pressure acting force acting on the pressure-adjusting piston 33a and the returning spring 44a. The pressurized fluid supplied to the supply flow passage P is reduced to a pressure set by the pressure-adjusting spring 35a, and is supplied to the second output port B.

[0060] If the combined force of the fluid pressure acting force acting on the pressure-adjusting piston 33a and the returning spring 44a becomes greater than the biasing force of the pressure-adjusting spring 35a, the pressure-adjusting rod 20A moves rightward, the pressure-adjusting valve body 21a opens the pressure-adjusting passage 20a and the pressure-adjusting valve seat 25a, and the fluid pressure of the second output port B is maintained at the set pressure. If the fluid pressure of the communication passage 17D becomes higher than the set pressure in a state in which the pressure-adjusting valve body 21a closed the pressure-adjusting valve seat 25a, the pressure-adjusting piston 33a moves rightward as viewed in the drawing, and the relief valve member 37a is opened.

[0061] With this, the pressurized fluid of the pressure-adjusting chamber 38a is discharged out through the discharge hole 39a and the breathing hole 40a, and the fluid pressure of the second output port B is adjusted to a pressure set by the pressure-adjusting spring 35a.

[0062] Next, if the communication passages 16 and 17C of the pressure reducing valve 1 are brought into communication with each other and the communication passages 17D and 18B are brought into communication with each other by the solenoid valve 3, the pressurized fluid of the pressure-adjusting chamber 38a and the returning chamber 45a is discharged from the second discharge flow passage EB through the pressure-adjusting passage 20a, the pressure-introducing gap 24a, the communication passages 17D and 18B, the fluid pressure of the pressure-adjusting chamber 38a and the returning chamber 45a is reduced, and the pressure-adjusting valve body 21a opens the pressure-adjusting valve seat 25a.

[0063] The pressurized fluid from the supply flow passage P is introduced into the pressure-adjusting chamber 38b and the returning chamber 45b through the pressure-adjusting passage 20b and the pressure-introducing gap 24b.
A spacer type pressure reducing valve according to claim 1 wherein each pressure-adjusting piston (33a, 33b) includes a discharge hole (39a, 39b) for discharging pressurized fluid in the respective pressure-adjusting chamber (38a, 38b), and each pressure-adjusting valve rod (20A, 20B) is provided at its end with an opening/closing portion (41a, 41b) for opening and closing the respective discharge hole (39a, 39b).

2. A spacer type pressure reducing valve according to claim 2 wherein the valve body (15) is provided at the end closer to the pressure-adjusting chambers (38a, 38b) with two adjusting screws (31 a, 31 b) capable of independently adjusting the two pressure-adjusting springs (35a, 35b), and two pressure gauges (51a, 51b) for independently detecting fluid pressure in the two pressure-adjusting chambers (38a, 38b).

3. A spacer type pressure reducing valve according to either claim 1 or claim 2 wherein the valve body (15) is provided at the end closer to the pressure-adjusting chambers (38a, 38b) with two adjusting screws (31 a, 31 b) capable of independently adjusting the two pressure-adjusting springs (35a, 35b), and two pressure gauges (51a, 51b) for independently detecting fluid pressure in the two pressure-adjusting chambers (38a, 38b).
4. A spacer type pressure reducing valve according to any preceding claim wherein each communication flow-passage comprises a pressure-adjusting passage (20a, 20b) formed in the respective pressure-adjusting valve rod (20a, 20b) and in communication with the respective returning chamber (45a, 45b) and a pressure-introducing gap (24a, 24b) formed between the respective pressure-adjusting valve hole (19a, 19b) and the respective pressure-adjusting valve rod (20a, 20b) for connecting the respective pressure-adjusting passage (20a, 20b) and the respective pressure-adjusting chamber (38a, 38b), and wherein a pressure intake hole (22A, 22b, 60b, 60a) connects each returning chamber (45a, 45b) and the associated pressure-adjusting passage (20a, 20b) to the respective output communication passage (17A, 17B, 17C, 17D).

5. A spacer type pressure reducing valve according to any preceding claim wherein the supply communication passage (16) in the valve body (15) extends through portions of the two pressure-adjusting valve holes (19a, 19b), and the pressure-adjusting valve seats (25a, 25b) are formed at positions of the pressure-adjusting valve holes through which the supply communication passage (16) passes.

6. A spacer type pressure reducing valve according to any one of claims 1 to 4 wherein the two output communication passages (17C, 17D) in the valve body (15) respectively extend through the two pressure-adjusting valve holes (19a, 19b), and the pressure-adjusting valve seats (25b, 25a) are formed at positions of the pressure-adjusting valve holes through which the output communication passages (17C, 17D) pass.

Patentansprüche

1. = Druckreduzierventil mit einem Abstandhalterprofil (1), das bei der Verwendung zwischen einem Schaltventil (3) mit einer Zufuhrverbindungsohre (10), zwei Ausgangsverbindungsohren (11A, 11B) und einer Ablassverbindungsohre (12A, 12B) und einer Basis (2) mit einer Vielzahl entsprechender Verbindungsohren (5, 6A, 6B, 7A, 7B) angeordnet ist, wobei das Druckreduzierventil mit einem Abstandhalterprofil einen Ventilkörper (15) umfasst, der im Betrieb zwischen dem Schaltventil und der Basis eingeklebt ist, sowie zwei Druckregelventil-Bohren (19a, 19b), die im Ventilkörper parallel zueinander ausgebildet sind, und Zuführ-, Ausgangs- und Ablass-Verbindungsgänge (16, 17A, 17B, 17C, 17D, 18A, 18B) im Ventilkörper (15) zur jeweiligen Verbindung entsprechender Zuführ-, Ausgangs- und Ablass-Verbindungsohren des Schaltventils (3) und der Basis (2), sowie einen Druckregelventil-Sitz (25a, 25b), der in jeder der Druckregelventil-Bohren (19a, 19b) ausgebildet ist, eine Druckregelventil-Stange (20A, 20B) mit einem darauf in jede der Druckregelventil-Bohren (19a, 19b) beweglichen Druckregelventil-Körper (21a, 21b) zum Regeln des Flüssigkeits-Ausgangsdrucks von den Ausgangs-Verbindungsgängen (17A, 17B, 17C, 17D), eine Druckregelkammer (38a, 38b) an einem Ende jeder Druckregelventil-Stange (20A, 20B) und eine Rücklaufkammer (45a, 45b) am anderen Ende der Druckregelventil-Stangen, einen in jeder Druckregelkammer (38a, 38b) einschiebbaren Druckregelkolben (33a, 33b), eine Druckgelfeder (35a, 35b) zur Vorspannung jedes Druckregelkolbens (33a, 33b) gegen die dazugehörige Druckregelventil-Stange (20A, 20B), eine Rückkehrfeder (44a, 44b) in jeder Rücklaufkammer (45a, 45b) zur Vorspannung der jeweiligen Druckregelventil-Stange (20A, 20B) gegen den dazugehörigen Kolben (33a, 33b), einen Verbindungsflussdurchgang (20a, 24a) zur Verbindung der Druckregelkammer (38a) und der Rücklaufkammer (45a) an den entgegengesetzten Enden der einen Druckregelventil-Stange (20A) mit einem Ausgangs-Verbindungsdurchgang (17B, 17D) und einen Verbindungsflussdurchgang (20b, 24b) zur Verbindung der Druckregelkammer (38b) und der Rücklaufkammer (45b) an den entgegengesetzten Enden der anderen Druckregelventil-Stange (20B) mit dem anderen Ausgangs-Verbindungsdurchgang (17A, 17C), wobei ein Druckregelventil-Sitz (25a) und ein Druckregelventil-Körper (21a) zur Regelung des Flüssigkeits-Ausgangsdrucks aus dem einem Ausgangs-Verbindungsdurchgang (17B, 17D) bereitgestellt sind und wobei der andere Druckregelventil-Sitz (25b) und der andere Druckregelventil-Körper (21b) zur Regelung des Flüssigkeits-Ausgangsdrucks aus dem anderen Ausgangs-Verbindungsdurchgang (17A, 17C) bereitgestellt sind.

2. Druckreduzierventil mit einem Abstandhalterprofil nach Anspruch 1, wobei jeder Druckregelkolben (33a, 33b) eine Ablassbohre (39a, 39b) zum Ablassen von mit Druck beaufschlagter Flüssigkeit in die jeweilige Druckregelkammer (38a, 38b) umfasst und wobei jede Druckregelventil-Stange (20A, 20B) an ihrem Ende mit einem Öffnungs-/Schließabschnitt (41a, 41b) zum Öffnen und Schließen der entsprechenden Ablassbohrung (39a, 39b) versehen ist.

3. Druckreduzierventil mit einem Abstandhalterprofil nach Anspruch 1 oder 2, wobei der Ventilkörper (15) an dem Ende, das näher an den Druckregelkammern (38a, 38b) liegt, mit zwei Einstellschrauben (31a, 31b) bereitgestellt ist, die die beiden Druckregelfedern (35a, 35b) unabhängig voneinander einstellen können, sowie mit zwei Druckmessvorricht-
4. Druckreduzierventil mit einem Abstandhalterprofil nach einem der vorstehenden Ansprüche, wobei jeder Verbindungsluftdurchgang einen in der jeweiligen Druckregelventil-Stange (20A, 20B) ausgebildeten Druckeinhufspalt (24a, 24b) zur Verbindung des jeweiligen Druckregelldurchgangs (20a, 20b) und der entsprechenden Druckregelkammer (38a, 38b), und wobei eine Druckeinst grassierung (22A, 22B; 60b, 60a) jede Rücklaufkammer (45a, 45b) und den dazugehörigen Druckregel- durchgang (20a, 20b) mit dem entsprechenden Aus- gangs-Verbindungs durchgang (17A, 17B, 17C, 17D) verbindet. 

5. Druckreduzierventil mit einem Abstandhalterprofil nach einem der vorstehenden Ansprüche, wobei der Zufuhr-Verbindungsdurchgang (16) im Ventilkörper (15) durch Abschnitte der beiden Druckregelventil- Bohrungen (19a, 19b) verläuft und wobei die Druckregelventil-Sitze (25a, 25b) an Positionen der Druckregelventil-Bohrungen, die der Zufuhr-Verbindungs durchgang (16) durchläuft, ausgebildet sind.

6. Druckreduzierventil mit einem Abstandhalterprofil nach einem der Ansprüche 1 bis 4, wobei die beiden Ausgangs-Verbindungsdurchgänge (17C, 17D) im Ventilkörper (15) jeweils durch die beiden Druckregelventil-Bohrungen (19a, 19b) verlaufen und wobei die Druckregelventil-Sitze (25b, 25a) an Positionen der Druckregelventil-Bohrungen ausgebildet sind, die die Ausgangs-Verbindungsdurchgänge (17C, 17D) durchlaufen.

Revendications

1. Vanne de réduction de pression formant entretoise (1) qui est disposée dans le cadre de son utilisation entre une vanne de commutation (3) ayant un trou de communication d’alimentation (10), deux trous de communication de sortie (11A, 11B) et un trou de communication de décharge (12A, 12B) et une base (2) ayant une pluralité de trous de communication correspondants (5, 6A, 6B, 7A, 7B), la vanne de réduction de pression formant entretoise comportant un corps de vanne (15) pris en sandwich dans le cadre de son utilisation entre la vanne de commutation et la base, deux trous de vanne de réglage de pression (19a, 19b) réalisés dans le corps de vanne de manière parallèle l’un par rapport à l’autre, des passages de communication d’alimentation, de sortie et de décharge (16, 17A, 17B, 17C, 17D, 18A, 18B) dans le corps de vanne (15) pour connecter de manière respective les trous de communication d’alimentation, de sortie et de décharge correspondants de la vanne de commutation (3) et la base (2), un siège de vanne de réglage de pression (25a, 25b) réalisé dans chacun des trous de vanne de réglage de pression (19a, 19b), une tige de vanne de réglage de pression (20A, 20B) ayant un corps de vanne de réglage de pression (21a, 21b) sur celle-ci mobile dans chacun des trous de vanne de réglage de pression (19a, 19b) afin d’ajuster la sortie de pression du fluide en provenance des passages de communication de sortie (17A, 17B, 17C, 17D), une chambre de réglage de pression (38a, 38b) au niveau d’une extrémité de chaque tige de vanne de réglage de pression (20A, 20B), et une chambre de retour (45a, 45b) au niveau de l’autre extrémité des tiges de vanne de réglage de pression, un piston de réglage de pression (33a, 33b) pouvant coulisser dans chaque chambre de réglage de pression (38a, 38b), un ressort de réglage de pression (35a, 35b) permettant de pousser chaque piston de réglage de pression (33a, 33b) vers la tige de vanne de réglage de pression associée (20A, 20B), un ressort de retour (44a, 44b) dans chaque chambre de retour (45a, 45b) permettant de pousser la tige de vanne de réglage de pression respective (20A, 20B) vers le piston de réglage de pression associé (33a, 33b), un passage d’écoulement de communication (20a, 24a) permettant de connecter la chambre de réglage de pression (38a) et la chambre de retour (45a) au niveau des extrémités opposées de la une tige de vanne de réglage de pression (20A) avec un passage de communication de sortie (17B, 17D), et un passage d’écoulement de communication (20b, 24b) permettant de connecter la chambre de réglage de pression (38b) et la chambre de retour (45b) au niveau des extrémités opposées de l’autre tige de vanne de réglage de pression (20B) avec l’autre passage de communication de sortie (17A, 17C), où un siège de vanne de réglage de pression (25a) et un corps de vanne de réglage de pression (21a) sont mis en oeuvre pour ajuster la sortie de pression du fluide en provenance d’un passage de communication de sortie (17B, 17D), et où l’autre siège de vanne de réglage de pression (25b) et l’autre corps de vanne de réglage de pression (21b) sont mis en oeuvre pour ajuster la sortie de pression du fluide en provenance de l’autre passage de communication de sortie (17A, 17C).

2. Vanne de réduction de pression formant entretoise selon la revendication 1, dans laquelle chaque piston de réglage de pression (33a, 33b) comprend un trou de décharge (39a, 39b) permettant de décharger le
fluide pressurisé dans la chambre de réglage de pression respective (38a, 38b), et dans laquelle chaque tige de vanne de réglage de pression (20A, 20B) est munie au niveau de son extrémité d’une portion d’ouverture / de fermeture (41 a, 41b) permettant d’ouvrir et de fermer le trou de décharge respectif (39a, 39b).

3. Vanne de réduction de pression formant entretoise selon l’une quelconque de la revendication 1 ou de la revendication 2, dans laquelle le corps de vanne (15) est muni, au niveau de l’extrémité la plus proche des chambres de réglage de pression (38a, 38b), de deux vis de réglage (31a, 31b) capables d’ajuster indépendamment les deux ressorts de réglage de pression (35a, 35b), et de deux manomètres (51a, 51b) permettant de détecter indépendamment la pression du fluide dans les deux chambres de réglage de pression (38a, 38b).

4. Vanne de réduction de pression formant entretoise selon l’une quelconque des revendications précédentes, dans laquelle chaque passage d’écoulement de communication comporte un passage de réglage de pression (20a, 20b) réalisé dans la tige de vanne de réglage de pression respective (20A, 20B) et en communication avec la chambre de retour respective (45a, 45b) et un espace d’introduction de pression (24a, 24b) réalisé entre le trou de vanne de réglage de pression respectif (19a, 19b) et la tige de vanne de réglage de pression respective (20A, 20B) afin de connecter le passage de réglage de pression respectif (20a, 20b) et la chambre de réglage de pression respective (38a, 38b), et dans laquelle un trou de prise de pression (22A, 22B ; 60b, 60a) connecte chaque chambre de retour (45a, 45b) et le passage de réglage de pression associé (20a, 20b) sur le passage de communication de sortie respectif (17A, 17B, 17C, 17D).

5. Vanne de réduction de pression formant entretoise selon l’une quelconque des revendications précédentes, dans laquelle le passage de communication d’alimentation (16) dans le corps de vanne (15) se prolonge au travers des portions des deux trous de vanne de réglage de pression (19a, 19b), et dans laquelle les sièges de vanne de réglage de pression (25a, 25b) sont réalisés au niveau de positions des trous de vanne de réglage de pression que traverse le passage de communication d’alimentation (16).

6. Vanne de réduction de pression formant entretoise selon l’une quelconque des revendications 1 à 4, dans laquelle les deux passages de communication de sortie (17C, 17D) dans le corps de vanne (15) se prolongent respectivement au travers des deux trous de vanne de réglage de pression (19a, 19b), et dans laquelle les sièges de vanne de réglage de pression (25b, 25a) sont réalisés au niveau de positions des trous de vanne de réglage de pression que traversent les passages de communication de sortie (17C, 17D).