Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention relates to the use of sapogenin derivatives in treating cognitive dysfunction and allied conditions. The invention is also concerned with the treatment of conditions that are characterised by a deficiency in the number or function of membrane-bound receptors. In the following, the present invention will be described principally with reference to the treatment of Alzheimer’s disease (AD) and senile dementia of the Alzheimer’s type (SDAT), where deficiencies in a number of receptor types have been demonstrated. However, it is to be understood that the present invention is of interest generally to the treatment of conditions attributable to intrinsic pathological conditions and/or exposure to adverse environmental conditions these conditions being characterised by a deficiency in the number or function of membrane-bound receptors or a deficiency in transmission at the junctions between neurones or at the junctions of neurones and effector cells.

[0002] Conditions of the type mentioned above include Parkinson’s disease, Lewi body dementia, postural hypotension, autism, chronic fatigue syndrome, Myasthenia Gravis, Lambert Eaton disease, diseases and problems associated with Gulf War Syndrome, occupational exposure to organophosphorus compounds and problems associated with ageing.

[0003] Alzheimer’s disease (AD) and senile dementia of the Alzheimer’s type (SDAT) are grave and growing problems in all societies where, because of an increase in life expectancy and control of adventitious disease, the demographic profile is increasingly extending towards a more aged population. Agents which can treat, or help in the management of, AD/SDAT are urgently required.

[0004] Age-associated memory impairment (AAMI) is a characteristic of older patients who, while being psychologically and physically normal, complain of memory loss. It is a poorly defined syndrome, but agents which are effective in treatment of AD/SDAT may also be of value in these patients.

[0005] Research into AD/SDAT is being carried out by traditional and conventional medical research methods and disciplines. In conventional medicine, there are several approaches to the treatment of AD/SDAT. It is known that the biochemical processes subserving memory in the cerebral cortex are (at least in part) cholinergically-mediated. Those skilled in the art will know that “cholinergically mediated” mechanisms may be directly attributable to acetylcholine acting on receptors, and these are direct effects. Other, clinically useful effects may also be caused by modulation of release of acetylcholine from pre-synaptic nerve endings or inhibition of enzymes that destroy acetylcholine. These modulating factors may be exerted through neurones where the mediator is non-cholinergic; these are referred to as indirect effects. Some attempts at treatment have focussed on the role of other mediators such as 5-hydroxytryptamine, which is a mediator in other areas of brain, such as the mid-brain nuclei. However, since fibres from these areas are projected forward into the cerebral cortex where the primary transmitter is acetylcholine, attention has focussed on the management of this mediator in the search for appropriate therapeutic agents.

[0006] Cholinergic strategies for the treatment of AD/SDAT have been directed at several points along the pathway of formation, synaptic release and removal of released acetylcholine.

[0007] One approach involves treatment with high doses of lecithin and other precursors of acetylcholine. This is of limited use in producing sustained improvements in cognitive performance.

[0008] Another approach involves the use of vegetable drugs such as Polygalae root extract, which has been shown to enhance choline-acetylcholine transferase (CAT) activity and nerve growth factor (NGF) secretion in brain. Oral administration of NGF has no effect on central nervous system neurones because it is a high molecular weight protein that cannot pass through the blood-brain barrier. However, agents which can pass through the blood-brain barrier and have a stimulating effect on NGF synthesis in the central nervous system have been proposed for the improvement of memory-related behaviour.

[0009] The results of a third clinical approach, which uses cholinesterase inhibitors such as tacrine hydrochloride, have been marginally more positive than the above. Substances obtained from plants used in Chinese and Western medicine, for example huperzine, galanthamine, and physostigmine have all been shown to be of some - although limited - benefit in the treatment of AD/SDAT in clinical studies and also in laboratory models. All of these substances are inhibitors of acetylcholine esterase (AChE). In patients with AD/SDAT, there may be reduced synthesis of acetylcholine (ACh), reduced efficiency in release of ACh from presynaptic stores, and a decrease in the number or function of postsynaptic M1 receptors. Reductions in pre-synaptic M2 receptors have also been shown. The beneficial effect of AChE inhibitors is attributed to enhancement of acetylcholine levels at synapses in brain by slowing down the destruction of released transmitter.

[0010] Compositions which modulate cholinergic function are known to affect memory and recall. For example, nicotine stimulates nicotinic acetylcholine receptors, and the short lived memory enhancing effects of cigarette smoking are thought to be due to the effect of nicotine. Scopolamine, an antagonist of acetylcholine, will produce amnesia and impaired cognitive function manifesting in psychomotor tests as a prolongation of simple reaction times, possibly as a result of impaired attention, and is used for this purpose as an adjunctive analgesic treatment. The amnesic effect of scopolamine can be antagonised by nicotine.

[0011] There are two families of nicotinic receptor subtypes (α and β), and each includes four subgroups which differ
in ligand specificity. The role of nicotinic receptors in the CNS is not well understood at the molecular level. It is possible
that agents binding to nicotinic receptors may modify the rate of turnover at muscarinic receptor sites in brain. Nicotinic
receptors are ligand-gated ion channels, and their activation causes a rapid (millisecond) increase in cellular permeability
to Na+ and Ca++, depolarisation and excitation.

Another class of cholinergic receptors can be stimulated by muscarine. Such muscarinic (M) receptors are G
protein-coupled receptors. Responses of muscarinic receptors are slower; they may be excitatory or inhibitory. They
are not necessarily linked to changes in ion permeability. Five types of muscarinic receptors have been detected by
cholinergic receptor cloning, and are designated as m1-m5. Pharmacological effects are associated with four of the
cloned receptors and they are designated as M1-M4 based on pharmacological specificity.

Using specific receptor proteins and monoclonal antibodies, it has been possible to further localise muscarinic
receptors in brain as m1 (postsynaptic) and m2 (presynaptic). In heart, m2 receptors are postsynaptic. Presynaptic
muscarinic receptors are thought to be inhibitory, the binding of ACh to these receptors attenuating the release of further
ACh to provide a negative feedback mechanism for ACh release. Selective M2 receptor antagonists which are preferen-
tially distributed to the brain may therefore be useful in treating Alzheimer’s disease.

It is known that, in disease states such as AD/SDAT, there is general neuronal loss and deficits in cholinergic
nerve function. It has been speculated that the high affinity nicotinic binding sites in the remaining cholinergic neurons
might be converted to low affinity binding sites in treating such diseases, thereby sustaining transmitter release. By
lowering the affinity of the nicotinic binding sites, a quick desensitising process is avoided.

A decreased affinity of the nicotinic receptors will reduce the desensitisation process. Schwarz R.D. et al (J. Neuro Chem 42, (1984), 1495-8) have shown
that nicotine binding sites are presynaptically located on cholinergic (and also 5-hydroxytryptaminergic and catecho-
laraminergic) axon terminals. A change in high affinity binding sites on AD/SDAT may also induce a change in the modulatory
effect the nicotinic binding sites may have on other transmitter systems.

Presynaptic cholinergic mechanisms are also under inhibitory control by GABAergic neurons and this inhibition
is thought to be intensified in AD/SDAT. Removal or reduction of this inhibition intensifies presynaptic cortical cholinergic
activity and enhances cognitive processing.

The interactions of interneuronal fibres innervated by nicotine (reducing binding affinity), and dis-inhibition of
GABAergic fibres both have a presynaptic locus.

This is a simplistic model of central transmission, but provides a framework for understanding the attempts
which have been made to increase the effective concentration of acetylcholine in central synapses. This further illustrates
the concept of direct and indirect action. There are disadvantages attaching to the three conventional therapeutic ap-
proaches to AD/SDAT treatment mentioned above:

ACh precursor supplementation, agonist replacement and acetylcholine esterase inhibition. These treatments
may result in a short-term increase in the availability of ACh which may activate feedback mechanisms resulting in the
desensitisation of postsynaptic receptors. On theoretical grounds, long term benefits would not be predicted and when
inhibitory control is interrupted, any benefits in management of AD/SDAT and AAMI disappear and the condition may even be
grave.

It has been shown that a compound with M1 agonist and M3 antagonist activity improved cognitive perform-
ance in SDAT patients (Sramak et al, Life Sciences vol. 2, No. 3,193-202, 1997). However, this compound causes
unacceptable cholinergic side effects, such as fatigue, diarrhoea and nausea.

A more radical approach to AD/SDAT and AAMI aims to increase the number of postsynaptic (M1) receptors,
in brain. It is known from Chinese Patent No. CN1096031A, that sarsasapogenin (SaG) can up-regulate M1 cholinergic
receptors.

Patent applications have been published which claim the usefulness of a number of steroid sapogenins having
spirostane, furo-spirostan, spirosolane or solanidine structures in the treatment of diseases. Two patent publications
are of particular relevance here: Chinese patent application No CN1096031A discloses two-way regulatory effects of the
spirostane sapogenin, sarsasapogenin, on β-adrenergic and M-cholinergic receptors. The disclosure in this docu-
ment, however, is brief. The other document of relevance is patent publication DE 4303214A1 which claims the use of a
very wide range of saponins and sapogenins in the treatment of a whole range of diseases that the inventors consider
to be of viral origin. This disclosure is however of dubious value in that it is well recognised that there is no infective
element to a very large number of the conditions that are characterised by deficient synaptic transmission and thus the
basic premise of the alleged invention is flawed. In addition they present no data of any kind that allows one skilled in
the art to be able select a preferred compound from the large number that are claimed.

(1→2)-β-D-xylpyranosyl(1→3)-β-D-glucopyranosyl(1→4)-β-D-galactopyranosyl] derivatives of tigogenin and neotigoge-
genin (A/B-trans sapogenins), and also (compounds I, II) 3-O-galactose-glucose-26-O-glucose derivatives of compounds
that can be considered as sapogenins in which the F ring of the fused ring system has been cleaved, with unsaturation
between C20 and C22. Furthermore, the reference describes (compounds III, IV) 3-O-galactose-glucose-26-O-glucose
derivatives of compounds that can be considered as sapogenins in which the F ring of the fused ring system has been cleaved, without unsaturation between C20 and C22. A pharmacological activity in rats is shown for compound III, principally an effect on cerebral blood circulation and metabolism and on proliferation on hippocampus cells. The compounds are proposed for the prophylaxis or treatment of dementia.

[0024] In Synthesis and Applications of Isotopically Labelled Compounds 1997, pp. 315-320, Ningyu et al. describe the use of the sapogenin sarsasapogenin in treating senile dementia.

[0026] The inventors have found that certain sapogenin derivatives exhibit the ability to regulate receptors. In particular, these compounds have been found to increase the number of M2 receptors in the brain. Thus, according to one aspect of the invention, there is provided the use of a sapogenin derivative of general formula (I) or (II) in the manufacture of a medicament for the treatment of a condition characterised by a deficiency in membrane-bound receptor number or function.

[0027] Those skilled in the art will be aware of the relationship between saponins and their sapogenins, and that the latter tend to be fat-soluble whereas the saponins tend to be water-soluble. Sapogenins are therefore better able to cross the blood-brain barrier. The skilled man will also be aware of the epimerisation of certain sapogenins under conditions of acid hydrolysis.

[0028] The variation in pharmacological properties and pharmacodynamic actions of various types of sapogenins underlines the need for selection of those agents which are most useful in the treatment of AD/SDAT. The discovery of novel facts about the action of sapogenin derivatives has made it possible to determine which substances are most useful for the treatment of AD/SDAT and the like.

[0029] The inventors have found that the above-described properties are exhibited by sapogenin derivatives wherein the A/B ring conformation of the fused ring system is Cis.

[0030] The present invention is defined in the appended claims.

[0031] Accordingly, the sapogenin derivatives of interest in this invention have the following general formulas (I) or (II):
and their pharmaceutically acceptable salts.

[0032] In the general Formula (I):

- R_1, R_2, R_4, R_5, R_6, R_7, R_8, R_{10}, are, independently of each other, either H, OH, =O, and OR where R = optionally substituted alkyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_3 is either H, =O or OR where R= optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_9, R_{12}, R_{11}, R_{13} can be either a H, OH, OR where R = optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_{14} = optionally substituted alkyl group.

$: \text{---}$ represents an optional double bond.

[0033] Preferably, in the compounds of general formula (I):

- R_4, R_9, R_{12}, R_{13} = H
- R_1, R_2, R_5, R_6, R_7, R_8, R_{10}, can be independently of each other either H, OH, =O, OR where R = optionally substituted alkyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_3 is either H, =O or OR where R= optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_{11} = H, OH, OR where R = optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_{14} = optionally substituted alkyl group

and --- represents an optional double bond.

[0034] More preferably, in the compounds of general formula (I):

- R_1 = R_2 = R_4 = R_5 = R_6 = R_7 = R_8 = R_{10} = R_{11} = R_{12} = R_{13} = H,
- R_3 = H, -OMe, -OCOCH$_3$, =O, -O-CO-OEt, -O-CO-(CH$_2$)$_2$-CO$_2$H
- R_{14} = CH$_3$.

[0035] In the general formula (II):

- R_1, R_2, R_4, R_5, R_6, R_7, R_8, R_{10}, are, independently of each other, either H, OH, =O, or OR where R = optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_3 is either H, =O or OR where R= optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_9, R_{12}, R_{11}, R_{13} can be either a H, OH, OR where R= optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_{14} = optionally substituted alkyl group;
- R_{15} = H, optionally substituted alkyl, optionally substituted acyl, or glucosyl;

$: \text{---}$ represents an optional double bond.

[0036] Preferably, in the general formula (II):

- R_4, R_9, R_{12}, R_{13} = H
- R_1, R_2, R_5, R_6, R_7, R_8, R_{10}, can be independently of each other either H, OH, =O, OR where R = optionally substituted alkyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_3 is either H, =O or OR where R= optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- R_{11} = H, OH, OR where R = optionally substituted alkyl, optionally substituted acyl, Optionally substituted carbamoyl, alkoxycarbonyl;
- R_{14} = optionally substituted alkyl group
- R_{15} = H, optionally substituted alkyl, optionally substituted acyl, or glucosyl;

and --- represents an optional double bond.

[0037] The following compounds are particularly preferred:
More generally, however, the following compounds may be specifically mentioned for use in the present invention:
As used hereabove and hereafter:

"Acyl" means an H-CO- or alkyl-CO- group wherein the alkyl group is as herein described. Preferred acyls contain a lower alkyl. Exemplary acyl groups include formyl, acetyl, propanoyl, 2-methylpropanoyl, butanoyl and palmitoyl.

"Alkyl" means an aliphatic hydrocarbon group which may be straight or branched having for example about 1 to about 20 carbon atoms in the chain. Preferred alkyl groups have 1 to about 12 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl are attached to a linear alkyl chain. "Lower
alkyl” means about 1 to about 4 carbon atoms in the chain which may be straight or branched. Exemplary alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, n-pentyl, 3-pentyl.

"Optionally substituted” means that the said group may be substituted with one or more substituents which may be the same or different, and include halo, alkyl, cycloalkyl, hydroxy, alkoxy, amino, acylamino, aryl, aroylamino, carboxy, alkoxy carbonyl, aralkoxy carbonyl, heteroaralkoxy carbonyl, optionally substituted carbamoyl.

The term "pharmaceutical composition" means a composition comprising a compound of formula I or II and at least one component selected from the group comprising pharmaceutically acceptable carriers, diluents, adjuvants, excipients, or vehicles, such as preserving agents, fillers, disintegrating agents, wetting agents, emulsifying agents, suspending agents, sweetening agents, flavoring agents, perfuming agents, antibacterial agents, antifungal agents, lubricating agents and dispensing agents, depending on the nature of the mode of administration and dosage forms.

"Pharmaceutically acceptable” means it is, within the scope of sound medical judgement, suitable for use in contact with the cells of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.

"Pharmaceutically acceptable dosage forms” means dosage forms of the compound of the invention, and includes, for example, tablets, dragees, powders, elixirs, syrups, liquid preparations, including suspensions, sprays, inhalants tablets, lozenges, emulsions, solutions, granules, capsules and suppositories, as well as liquid preparations for injections, including liposome preparations. Techniques and formulations generally may be found in Remington: Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, latest edition.

"Pharmaceutically acceptable salts” means the relatively non-toxic, inorganic and organic acid addition salts, and base addition salts, of compounds of the present invention. These salts can be prepared in situ during the final isolation and purification of the compounds. In particular, acid addition salts can be prepared by separately reacting the purified compound in its free base form with a suitable organic or inorganic acid and isolating the salt thus formed. See, for example S. M. Berge, et al., Pharmaceutical Salts, J. Pharm. Sci., 66: p.1-19 (1977) which is incorporated herein by reference. Base addition salts can also be prepared by separately reacting the purified compound in its acid form with a suitable organic or inorganic base and isolating the salt thus formed. Base addition salts include pharmaceutically acceptable metal and amine salts.

Some sapogenin derivatives of interest in the present invention may occur naturally in a range of plant species, notably from the genera Smilax, Asparagus, Anemarrhena, Yucca and Agave. The species presently of greatest interest include Smilax regelii Kilip & Morton - commonly known as Honduran sarsaparilla; Smilax aristolochiifolia Miller - commonly known as Mexican sarsaparilla; Smilax ornata Hooper - commonly known as Jamaican sarsaparilla; Smilax aspera - commonly known as Spanish sarsaparilla; Smilax glabra Roxburgh; Smilax febrifuga - Kunth - commonly known as Ecuadorian or Peruvian sarsaparilla; Anemarrhena asphodeloides Bunge; Yucca schidigera Roezl ex Ortgies; and Yucca brevifolia Engelm. Sapogenin derivatives which may be of interest may also occur naturally in other genera, for example Dioscorea, Trillium, Solanum, Strophanthus, Digitalis and Trigonella. However, some sapogenin derivatives from these sources possess undesirable properties and are thus not recommended for use in the invention.

Sapogenin derivatives of interest in the present invention may also be commercially available; suppliers are well-known from the one skilled in the art and may include Sigma Aldrich, Research Plus Inc., Steraloids Inc., etc...

Substituted sapogenins of interest in the present invention may be prepared by synthetic methods. For instance, they may be prepared from unsubstituted sapogenin derivatives, which may occur naturally or be commercially available, as stated above.

Starting from these unsubstituted sapogenins, the reaction may involve at least one substitution step, wherein the functional group is substituted on the sapogenin derivative; usually, the starting product is an unsubstituted sapogenin having the required stereoisomer, and the reaction may involve the substitution of one OH-group by the functional radical desired; smilagenin and epismilagenin are preferred as starting products.

Compounds useful according to the invention may be prepared by the application or adaptation of known methods, by which is meant methods used heretofore or described in the literature, for example those described by R. C. Larock in Comprehensive Organic Transformations, VCH publishers, 1989.

In the reactions described hereinafter it may be necessary to protect reactive functional groups, for example hydroxy or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions. Conventional protecting groups may be used in accordance with standard practice, for examples see T.W. Green and P.G.M.Wuts in "Protective Groups in Organic Chemistry” John Wiley and Sons, 1991; J. F. W. McOmie in “Protective Groups in Organic Chemistry” Plenum Press, 1973.

The compound thus prepared may be recovered from the reaction mixture by conventional means. For example, the compounds may be recovered by distilling off the solvent from the reaction mixture or, if necessary after distilling off the solvent from the reaction mixture, pouring the residue into water followed by extraction with a water-immiscible organic solvent and distilling off the solvent from the extract. Additionally, the product can, if desired, be further purified by various well techniques, such as recrystallization, reprecipitation or the various chromatography techniques, notably column chromatography or preparative thin layer chromatography.
The present invention may be put into effect using pharmaceutical composition having cognitive function enhancing properties which comprises an effective amount of a sapogenin derivative of the invention.

In another aspect, the invention may be put into effect using a pharmaceutical composition having cognitive function enhancing properties which comprises an effective amount of a sapogenin derivative of the invention in the form of an extract derived from a plant of the genus Smilax, Asparagus, Anemarrhena, Yucca or Agave.

It will be appreciated that the invention enables a method of enhancing cognitive function which comprises administering to a human or animal an effective dosage of a composition prepared using the invention.

In another aspect, the invention may be put into effect using a pharmaceutical composition having cognitive function enhancing properties which comprises an effective amount of a sapogenin derivative of the invention in the form of an extract derived from a plant of the genus Smilax, Asparagus, Anemarrhena, Yucca or Agave.

It will be appreciated that the invention enables a method of enhancing cognitive function which comprises administering to a human or non-human animal, which comprises administering an effective dose of sapogenin derivatives by a composition prepared using the invention. Also, it enables the use of the sapogenin derivatives in food product or beverage for enhancing cognitive function.

As used herein, the term “cognitive function” refers to functions such as thinking, reasoning, remembering, imagining and learning.

The invention may be put into effect using a composition having cognitive function enhancing properties which comprises at least two, preferably two, sapogenin derivatives of the invention.

In identifying compounds that would have use in the treatment of SDAT and other diseases characterised by reductions in receptor numbers or synaptic transmission, the inventors have given consideration to the need to identify compounds that would have the desired effect but would be devoid of any oestrogenic effects, as these would be unacceptable, particularly in male patients. A number of the compounds claimed to have activity in patent application DE 4303214A have marked oestrogenic activity and are therefore unacceptable. Preferably, sapogenin derivatives for use in the present invention however, do not display oestrogenic activity. In addition these compound were tested at other steroid receptors and were found to have no activity at any of the following receptors:

- Progesterone
- Glucocorticoid
- Testosterone

Sapogenin derivatives for use in the present invention have also been tested for activity in a number of in-vitro assays. The assays/experiments that were considered of key importance in determining possible activity in the elevation of membrane bound receptor numbers were as follows:

Chinese hamster ovary (CHO) cells transfected with the a DNA fragment coding for a muscarinic receptor. The cell line used for the majority of the experiments was a cell line expressing the m2 receptor.

The methods and the results of these experiments are now described in turn.

CHO cell line experiments

The effects of various compounds on the expression of m2 receptors on CHO cells transfected with DNA for the m2 receptor were investigated. Receptor numbers were assayed using tritiated QNB binding and subtracting non-specific binding. Compounds were dissolved in DMSO and DMSO was used as a control. Compounds were tested at a range of final concentrations. Compounds were also tested in the presence and absence of tamoxifen to try to distinguish an oestrogen receptor mediated mechanism.

Compounds are active when the effect on receptor expression given as a percentage increase compared to control is more than 15%.

The results are summarised in the Table 1 below.

Table 1 Effects of sapogenin derivatives on the expression of m2 receptors on CHO cells
<table>
<thead>
<tr>
<th>Compound</th>
<th>Molar concentration</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td>Compound</td>
<td>Value</td>
<td>Activity</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Smilagenin</td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td>Epismilagenin</td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td>Sarsasapogenin acetate</td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td>Smilagenin acetate</td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td>Epismilagenin acetate</td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td>Smilagenone</td>
<td>10^{-5}</td>
<td>Active</td>
</tr>
<tr>
<td>Compound</td>
<td>IC₅₀ (M)</td>
<td>Activity</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Rockogenin</td>
<td>10⁻⁵</td>
<td>Not active</td>
</tr>
<tr>
<td>11-Ketotigogenin</td>
<td>10⁻⁵</td>
<td>Not active</td>
</tr>
<tr>
<td>Hecogenin</td>
<td>10⁻⁵</td>
<td>Not active</td>
</tr>
<tr>
<td>Sinalagenin</td>
<td>10⁻⁶</td>
<td>Not active</td>
</tr>
<tr>
<td>12-Acetoxytigogenin</td>
<td>10⁻⁵</td>
<td>Not active</td>
</tr>
<tr>
<td>Tigogenin</td>
<td>10⁻⁶</td>
<td>Not active</td>
</tr>
<tr>
<td>Gitogenin</td>
<td>10⁻⁵</td>
<td>Not active</td>
</tr>
<tr>
<td>Molecular Structure</td>
<td>Concentration</td>
<td>Activity</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>16α-Hydroxyhecogenin</td>
<td>10^{-5}</td>
<td>Not active</td>
</tr>
<tr>
<td>Diosgenin</td>
<td>10^{-5}</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td>10^{-6}</td>
<td>Not active</td>
</tr>
<tr>
<td>Diosgenin acetate</td>
<td>10^{-5}</td>
<td>Not active</td>
</tr>
<tr>
<td>Diosgenin benzoate</td>
<td>10^{-5}</td>
<td>Not active</td>
</tr>
<tr>
<td>6-Methylbiosgenin</td>
<td>10^{-5}</td>
<td>Not active</td>
</tr>
<tr>
<td>Ruscogenin</td>
<td>10^{-5}</td>
<td>Not active</td>
</tr>
<tr>
<td>7-Ketodosgenin</td>
<td>10^{-5}</td>
<td>Not active</td>
</tr>
</tbody>
</table>
Thus the experiments indicate that the sapogenin derivatives for use in the invention were able to increase the number of muscarinic receptors expressed on the surface of CHO cells cultured in-vitro. The effect was not antagonised by tamoxifen, indicating that the mechanism involved did not involve the oestrogen receptor. It appears from the experimental work conducted that the compounds for use in this invention act to normalise muscarinic receptor number - i.e. they tend to prevent decline in receptor number with time, and also tend to restore receptor number to normal levels when given to cells in which the receptor number is depressed.

It is speculated here that the effect of the active compound specified in this patent may operate through an effect on G-protein and that the effects on receptor numbers are secondary to an effect on G-protein. When a membrane bound G-protein linked receptor is stimulated two basic sets of events are initiated: the effector response; and the internalisation of the receptor. The subsequent processing of the receptor to the state where it is again in a form on the cell surface or other membrane surface where it can interact with another receptor ligand appears to be subject to a number of factors. A number of these factors or mechanisms appear to be G-protein linked. There is evidence that activation of m3 receptors may have an effect on G-protein expression or levels. It is speculated that the actions of the compounds described in this patent may be due to an interaction in the processes of receptor regeneration, G-protein linkage or G-protein homeostasis.

An alternative hypothesis is that the compounds are increasing the synthesis or release or a decreased rate of degradation of neurotropic factors such as brain derived growth factor and/or nerve growth factor. These effects on growth factors might be due to an effect of the compound on a cytosolic or nuclear receptor or the binding of a compound to a promoter region with a consequent effect directly on the rate of production of mRNA for the growth factor or as a consequence of increasing the production of another material factor such as G-protein or finally the effects may be secondary to an effect on receptor or G-protein procession.

The increased expression and/or abnormal processing of the amyloid precursor protein (APP) is associated with the formation of amyloid plaques and cerebrovascular amyloid deposits which are the major morphological hallmarks of Alzheimer's disease. Of particular interest are the processes regulating the proteolytic cleavage of APP into amyloidogenic and nonamyloidogenic fragments. The cleavage of APP by the enzyme α-secretase within the β-amyloid sequence of the protein results in the formation of a non amyloidogenic C-Terminal fragment, and the soluble APPα fragment; this latter fragment has been shown to have neurotropic and neuroprotective activity as well as to enhance memory in mice when injected intra-cerebro-ventrically (ICV). In contrast, processing of APP by β-secretase exposes...
the N-terminus of β-amyloid which is released by γ-secretase cleavage at the variable C-terminus. The resulting β-amyloid peptides, which contain 39-43 amino acids, have been shown to be neurotoxic and to accumulate in plaques which interfere with inter-neurone connections.

[0073] A number of studies have shown that stimulation of the protein-kinase (PKC) linked muscarinic M₁ and M₃ receptors results in an increase in α-secretase activity. As a consequence processing of APP to APPα with its neuro-protective effects is increased. In parallel, processing of APP by β- and γ-secretase is decreased and there is a consequent reduction of β-amyloid. Other transmitters such as nerve growth factor (NGF) and brain derived neurotropic factor (BDNF) as well as bradykinin and vasopressin may have similar effects in increasing the proportion of APP processed to APPα. There may be a number of factors involved in the effects of NGF which may include binding of the factor to the tyrosine kinase receptor (TrkA) and the stimulation of phospholipase Cy with subsequent phosphorylation and activation of protein kinase C (PKC) and increase in relative activity of α-secretase.

[0074] Any treatment which increases activity of protein-kinase C selectively in brain might therefore be expected to be of use in the management of Alzheimer’s disease. Until recently agonists selective at the M₁ receptor have not been available. Nonselective agonists would be expected to stimulate pre-synaptic M₂ receptors which cause negative feedback and hence would further severely impair muscarinic transmission. Selective agonists at the M₁ receptor are now becoming available (talsaclidine) and such agents are under investigation for the treatment of AD. There is however, a substantial risk that, as with the chronic administration of any receptor agonist, the clinical benefits seen will be severely limited in terms of the size of benefit by reducing receptor numbers or reducing sensitivity and in terms of side effects due to lack of receptor specificity. Thus compounds as described in this invention, which selectively regulate muscarinic receptor number or function, would be expected to be devoid of the problems seen with a muscarinic agonist and hence have particular utility. Indeed the benefits may be seen in three parts as follows.

1. A selective increase in M₁ receptor numbers leading to increased synaptic transmission. Chronic administration of a selective agonist will, at best, have no adverse effect on transmission;

2. Secondary to the increased receptor numbers, an increase stimulation of PKC with a consequential increase in α-secretase activity, leading to:

 2.1 A reduced production of β-amyloid and a consequent reduction of plaque formation and neuronal loss;

 2.2 An increase in APPα and a consequent improvement in cerebral function as witnessed by an improvement in short and long term memory.

[0075] In order to illustrate the invention further by way of non-limiting example, reference will now be made to the accompanying drawings and to the Example which follows; in the drawings:

FIGURES 1, 2, 3 illustrate the results obtained in Example 1 below;
FIGURE 4 illustrates a hypothetical mode of action for sapogenin derivatives;

[0076] Referring to Fig.4, a diagrammatic representation of the function of sapogenin derivatives for use in the invention is shown. It is believed that sapogenin derivatives act primarily on cell nuclei; the invention is not, however, limited to any particular mode of action. The observed increase in muscarinic receptor number consequential upon administration of sapogenin derivatives is interpreted as leading to increased expression of muscarinic receptor protein. The possible link between the secretases and β-amyloid protein formation (discussed above) is indicated in the drawing.

[0077] The following examples are provided to illustrate the invention in a non-limiting manner.

Example 1

[0078] In a CHO cell line expressing recombinant human muscarinic receptors in vitro, the number of muscarinic receptors tends to decline with time. Sapogenin derivatives of the invention (1-10μM) incubated for 72 hours increase muscarinic receptor density.

Methods:

[0079] Effect of sapogenin derivatives of the invention on muscarinic receptor density in CHO cells expressing recombinant human muscarinic receptors.

[0080] Chinese hamster ovary (CHO) cells expressing high levels of receptor (~2.2 pmoles receptor/mg protein) were cultured in flasks (150 ml) for 24 hours before the start of the experiment. Vehicle (DMSO) and sapogenin derivatives
(at 1 and 10 μM) were added to the medium for 48 h. The culture medium was discarded, the cells scraped off and resuspended in Hanks solution, centrifuged and m-receptor levels determined by incubating with [3H]-QNB for 30 min followed by liquid scintillation counting. Protein levels were determined by a micro Lowry method.

Results:

These are illustrated in Figures 1-3. Over the culturing period treatment with sapogenin derivatives of the invention prevents the decrease in muscarinic receptor number in a concentration-dependent manner.

Example 2

3-O-Ethoxycarbonyl-5β, 20α, 22α, 25R-spirostan-3β-ol

Ethyl chloroformate (1.40 g, 12.9 mmol) was added dropwise to a stirred solution of smilagenin (2.08 g, 5.0 mmol) in anhydrous dichloromethane (15ml) and anhydrous pyridine (1.02g, 12.9 mmol). The mixture was stirred at room temperature for 18h and then partitioned between water (30 ml) and dichloromethane. The aqueous layer was extracted twice with dichloromethane, the combined organic layers washed with water and then dried over MgSO₄ (anhyd). The solvent was evaporated in vacuo to give an oil (2.1 g) that rapidly crystallised. This material was chromatographed on silica (ca. 70g). Elution with ethyl acetate-hexane (1:9) and recrystallisation from methanol afforded white crystals of 3-O-ethoxycarbonyl-5β, 20α, 22α, 25R-spirostan-3β-ol (1.08 g): mp 154-156°C; m/z 488 (M⁺ for C₃₀H₄₈O₅); ¹H nmr (270 MHz, CDCl₃) δ 0.76 (3H, s, 18-CH₃), 0.78 (3H, s, 27-CH₃), 0.95 (3H, s, 21-CH₃), 0.98 (3H, s, 19-CH₃), 1.0-2.05 (27H, complex m, aliphatics), 1.31 (3H, t, J = 7 Hz, CO₂-C-CH₃), 3.33-3.46 (2H, m, 26-OCH₂), 4.18 (2H, q, J = 7 Hz, CO₂CH₂), 4.40 (1H, m, 16-OCH), 4.95 (1H, m, H-3) ppm; ¹³C nmr (270 MHz, CDCl₃) 14.3 (C-C-O₂), 14.5, 16.5, 17.1, 20.9, 23.7, 25.0, 26.4, 28.8, 30.3, 30.6, 31.4, 31.8, 35.0, 35.3, 37.0, 40.0, 40.3, 40.7, 41.6, 56.4 (C-14), 62.3 (C-17), 63.6 (C-O₂-C), 66.9 (C-26), 74.8 (C-3), 80.9 (C-16), 109.2 (C-22), 154.8 (carbonyl) ppm; Rf 0.65 (silica, ethyl acetate-hexane, 1:9)

Example 3

Epismilagenin succinate

A solution of epismilagenin (200 mg, 0.48 mmol) and succinic anhydride (60 mg, 0.59 mmol) in anhydrous pyridine was stirred at room temperature under nitrogen overnight. A further portion of succinic anhydride (120 mg, 1.18 mmol) was added and the reaction stirred for a further 24 h. After addition of a further portion of succinic anhydride (120
mg, 1.18 mmol) the reaction was heated at 50°C with stirring for a further 24 h. After the reaction was cooled, water (10 ml) was added and the aqueous solution extracted with diethyl ether (4 x 20 ml). The combined organic extracts were washed with water (3 x 20 ml), dried (MgSO₄ anhyd) and filtered. The solvent was evaporated in vacuo to give an orange oil (1.8 g) that was chromatographed on silica gel using ethyl acetate/petroleum ether (1:4) as eluent. Recrystallisation of the product from acetone afforded white crystals of epismilagenin succinate (87 mg); mp 180-182°C; ¹H nmr spectrum (CDCl₃, 270 MHz): partial data δ 4.75 (1H, m), 4.6 (1H, m), 3.50 (1H, dd), 3.40 (1H, t), 2.6 (4H, br dd), 0.98 (3H, d) 0.95 (3H, s), 0.80 (3H, d), 0.75 (3H, s) ppm; ¹³C nmr spectrum (CDCl₃, 68 MHz): δ 171.81, 109.27, 80.91, 74.90, 66.85, 62.25, 56.29, 41.84, 41.62, 40.65, 40.51, 40.18, 35.44, 35.01, 34.72, 32.17, 31.77, 31.38, 30.25, 29.33, 28.79, 26.93, 26.55, 23.58, 20.58, 17.11, 16.43, 14.48 ppm; Rf 0.11 (silica, ethyl acetate-petroleum ether, 3:7)

Claims

1. The use of compounds of general formula I or II:

and their pharmaceutically acceptable salts, wherein:

in the general formula (I):

- R₁, R₂, R₄, R₅, R₆, R₇, R₁₀ are, independently of each other, either H, OH, =O or OR where R = optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxy carbonyl;
- R₃ is either H, =O or OR where R = optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxy carbonyl;
- R₈, R₁₂, R₁₃, R₁₄ can be either H, OH or OR where R = optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxy carbonyl;
- \(-R_{14}\) = optionally substituted alkyl group;
- \(\ldots\) represents an optional double bond;

and wherein in the general formula (II):

- \(-R_1, R_2, R_4, R_6, R_7, R_8, R_{10}\) are, independently of each other, either \(\text{H}, \text{OH}, =\text{O}\) or \(\text{OR}\) where \(R=\) optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- \(-R_3\) is either \(\text{H}, =\text{O}\), or \(\text{OR}\) where \(R=\) optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- \(-R_9, R_{11}, R_{12}, R_{13}\) can be either \(\text{H}, \text{OH}\) or \(\text{OR}\) where \(R=\) optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;

in the manufacture of a medicament for enhancing cognitive function or for treating cognitive dysfunction.

2. The use according to claim 1, wherein in the general formula (I):

- \(-R_4, R_9, R_{12}, R_{13}\) = \(\text{H};\)
- \(-R_1, R_2, R_5, R_6, R_7, R_8, R_{10}\) are independently of each other either \(\text{H}, \text{OH}, =\text{O}\) or \(\text{OR}\) where \(R=\) optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;
- \(-R_3\) is either \(\text{H}, =\text{O}\) or \(\text{OR}\) where \(R=\) optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;

3. The use according to claim 1 or 2 wherein in the general formula (I):

- \(-R_1=R_2=R_4=R_5=R_6=R_7=R_8=R_{10}=R_{11}=R_9=R_{12}=R_{13}=\text{H};\)
- \(-R_3=\text{H}, -\text{OMe}, -\text{OCOCH}_3, =\text{O}, -\text{OCONH}_2\text{Et}, -\text{OCONH}_2\text{CH}_2\text{CH}_2\text{CO}_2\text{H};\)
- \(-R_{14}=\text{CH}_3;\)

4. The use according to claim 1, wherein in the general formula (II):

- \(-R_4, R_9, R_{12}, R_{13}=\text{H};\)
- \(-R_1, R_2, R_5, R_6, R_7, R_8, R_{10}\) are, independently of each other, either \(\text{H}, \text{OH}, =\text{O}\) or \(\text{OR}\) where \(R=\) optionally substituted alkyl, optionally substituted acyl, optionally substituted carbamoyl, alkoxycarbonyl;

5. The use according to claim 1, \textbf{characterised in that} the compound is chosen from the following:
6. The use according to claim 5, characterised in that the compound is chosen from the following:

7. The use according to any one of the preceding claims, wherein said medicament is for enhancing cognitive function in a human patient suffering from age-related cognitive dysfunction.

8. The use according to any one of the preceding claims, wherein said medicament is for treating a disease chosen from: Alzheimer's disease, senile dementia of the Alzheimer's type, Parkinson's disease, Lewi body dementia, postural hypotension, autism, chronic fatigue syndrome, Myasthenia Gravis, Lambert Eaton disease, diseases and problems associated with Gulf War Syndrome, occupational exposure to organophosphorus compounds and problems associated with aging.

9. The use according to claim 8, wherein said medicament is for treating a disease chosen from Alzheimer's disease or senile dementia of the Alzheimer's type.

Patentansprüche

1. Verwendung von Verbindungen der allgemeinen Formel I oder II:
und von deren pharmazeutisch annehmbaren Saizen, wobei in der allgemeinen Formel (I):

\[-R_1, R_2, R_4, R_6, R_7, R_8, R_{10}\] unabhängig voneinander entweder H, OH, =O oder OR bedeuten, wobei R = gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, gegebenenfalls substituiertes Carbamoyl, Alkoxycarbonyl;

\[-R_3\] entweder H, =O oder OR ist, wobei R = gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, gegebenenfalls substituiertes Carbamoyl, Alkoxycarbonyl;

\[-R_9, R_{12}, R_{11}, R_{13}\] entweder H, OH oder OR sein können, wobei R = gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, gegebenenfalls substituiertes Carbamoyl, Alkoxycarbonyl;

\[-R_{14}\] = eine gegebenenfalls substituierte Alkylgruppe;

\[-R_{15}\] = H, gegebenenfalls substituiertes Acyl oder Glucosyl;

\(\ldots\); eine fakultative Doppelbindung bedeutet;

und worin in Formel (II):

\[-R_1, R_2, R_4, R_6, R_7, R_8, R_{10}\] unabhängig voneinander entweder H, OH, =O oder OR bedeuten, wobei R = gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, gegebenenfalls substituiertes Carbamoyl, Alkoxycarbonyl;

\[-R_3\] entweder H, =O oder OR ist, wobei R = gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, gegebenenfalls substituiertes Carbamoyl, Alkoxycarbonyl;

\[-R_9, R_{12}, R_{11}, R_{13}\] entweder H, =O oder OR sind, wobei R = gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Carbamoyl, Alkoxycarbonyl;

\[-R_{14}\] = eine gegebenenfalls substituierte Alkylgruppe;

\[-R_{15}\] = H, gegebenenfalls substituiertes Acyl oder Glucosyl;

\(\ldots\); eine fakultative Doppelbindung bedeutet;

zur Herstellung eines Arzneimittels, um die kognitive Funktion zu verbessern oder um eine kognitive Funktionsstörung zu behandeln.

2. Verwendung nach Anspruch 1, wobei in der allgemeinen Formel (I):
1. \(-R_4, R_9, R_{12}, R_{13} = H;\)
2. \(-R_1, R_2, R_5, R_7, R_8, R_{10} \) unabhängig voneinander jeweils \(H, OH, =O\) oder OR sind, wobei \(R =\) gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, gegebenenfalls substituiertes Carbamoyl, Alkoxy carbonyl;
3. \(-R_3\) entweder \(H, =O\) oder OR ist, wobei \(R =\) gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, gegebenenfalls substituiertes Carbamoyl, Alkoxy carbonyl;
4. \(-R_{11} = H, OH, OR, wobei R = gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, gegebenenfalls substituiertes Carbamoyl, Alkoxy carbonyl;\)
5. \(-R_{14} = eine gegebenenfalls substituierte Alkylgruppe;\)
6. \(-R_{15} = H, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl oder Glucosyl;\)
7. und \(\ldots\) eine fakultative Doppelbindung bedeutet.

3. Verwendung nach Anspruch 1 oder Anspruch 2, wobei in der allgemeinen Formel (I):

\[-R_1=R_2=R_4=R_5=R_6=R_7=R_8=R_{10}=R_{11}=R_9=R_{12}=R_{13}=H,\]
\[-R_3=H, -OMe, -OCOCH_3, =O, -O-CO_2Et, -O-CO-(CH_2)_2-CO_2H;\]
\[-R_{14}=CH_3.\]

4. Verwendung nach Anspruch 1, wobei in der allgemeinen Formel (II):

\[-R_4, R_9, R_{12}, R_{13} = H;\]
\[-R_1, R_2, R_5, R_7, R_8, R_{10} \) unabhängig voneinander jeweils \(H, OH, =O\) oder OR sind, wobei \(R =\) gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, Carbamoyl, Alkoxy carbonyl;
\[-R_3\) entweder \(H, =O\) oder OR ist, wobei \(R =\) gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, gegebenenfalls substituiertes Carbamoyl, Alkoxy carbonyl;
\[-R_{11} = H, OH, OR, wobei R = gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl, Carbamoyl, Alkoxy carbonyl;\]
\[-R_{14} = eine gegebenenfalls substituierte Alkylgruppe;\]
\[-R_{15} = H, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Acyl oder Glucosyl;\]
\(und \ldots\) eine fakultative Doppelbindung bedeutet.

5. Verwendung nach Anspruch 1, \textbf{dadurch gekennzeichnet, dass} die Verbindung aus den Folgenden ausgewählt ist:
6. Verwendung nach Anspruch 5, **dadurch gekennzeichnet, dass** die Verbindung aus den Folgenden ausgewählt ist:
7. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Arzneimittel zur Verbesserung der kognitiven Funktion bei einem menschlichen Patienten dient, der unter einer altersbezogenen kognitiven Funktionsstörung leidet.

Revendications

1. L'utilisation de composés de formule développée I ou II :

et de leurs sels acceptables pharmaceutiquement, dans laquelle :

dans la formule développée (I) :

-R₁, R₂, R₄, R₅, R₆, R₇, R₈, R₁₀ sont, indépendamment les uns des autres, soit H, OH, =O ou OR, R étant
alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
-R3 est soit H, =O, soit OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
-R3, R12, R13 peuvent être soit H, OH soit OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
-R14 est un groupe alcoyle éventuellement substitué ;
_ _ représente une double liaison éventuelle ;

et dans lequel, dans la formule développée (II) :

-R1, R2, R4, R5, R6, R7, R8, R13 sont, indépendamment les uns des autres, soit H, OH, =O, soit OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
-R3 est soit H, =O, soit OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
-R9, R12, R13 peuvent être soit H, OH, =O soit OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
-R14 est un groupe alcoyle éventuellement substitué ;
-R15 est H, alcoyle éventuellement substitué, acyle éventuellement substitué ou glucosyle ;
_ _ représente une double liaison éventuelle ;

dans la fabrication d’un médicament pour augmenter une fonction cognitive ou pour traiter un dysfonctionnement cognitif.

2. L’utilisation suivant la revendication 1, dans laquelle, dans la formule développée (I) :

- R4, R9, R12, R13 = H ;
- R1, R2, R5, R6, R7 et R10 sont, indépendamment les uns des autres, soit H, OH, =O ou OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
- R3 est soit H, =O, soit OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
- R11 = H, OH, OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
- R14 = groupe alcoyle éventuellement substitué et _ _ représente une double liaison éventuelle.

3. L’utilisation suivant la revendication 1 ou 2, dans laquelle, dans la formule développée (I) :

-R1=R2=R4=R9=R12=R13=R=H,
-R3=H, -OMe, -OCOCH3, =O, -O-CO2Et, -O-CO-(CH2)2-CO2H ;
-R14=CH3.

4. L’utilisation suivant la revendication 1, dans laquelle, dans la formule développée (II) :

- R4, R9, R12, R13 =H ;
- R1, R2, R5, R6, R7, R8, R10 sont, indépendamment les uns des autres, soit H, OH, =O, soit OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
- R3 est soit H, =O, soit OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle éventuellement substitué, alcoxycarbonyle ;
- R11 = H, OH, OR, R étant alcoyle éventuellement substitué, acyle éventuellement substitué, carbamoyle, alcoxycarbonyle ;
- R14 = groupe alcoyle éventuellement substitué ;
- R15 = H, alcoyle éventuellement substitué, acyle éventuellement substitué ou glucosyle ;
et _ _ représente une double liaison éventuelle.
5. L'utilisation suivant la revendication 1, caractérisée en ce que le composé est choisi parmi ce qui suit
Acétate de sarsapogénine

Acétate de smilagénine

Acétate d'épismilagénine

Smilagénone
6. L'utilisation suivant la revendication 5, caractérisée en ce que le composé est choisi parmi ce qui suit

7. L'utilisation suivant l'une quelconque des revendications précédentes, dans laquelle le médicament est destiné à améliorer la fonction cognitive chez un patient humain souffrant d'un dysfonctionnement cognitif lié au vieillissement.

8. L'utilisation suivant l'une quelconque des revendications précédentes, dans laquelle le médicament est destiné au traitement d'une maladie choisie parmi : la maladie d'Alzheimer, la démence sénile du type Alzheimer, la maladie de Parkinson, la démence du corps de Lewi, l'hypotension orthostatique, l'autisme, le syndrome de fatigue chronique, la Myasthénie Grave, la maladie de Lambert Eaton, les maladies et les troubles associés au syndrome de la Guerre du Golfe, l'exposition professionnelle à des composés organophosphorés et les problèmes associés au vieillissement.

9. L'utilisation suivant la revendication 8, dans laquelle le médicament est destiné à traiter une maladie choisie parmi la maladie d'Alzheimer ou la démence sénile du type d'Alzheimer.
FIG. 1

Changes in m2 muscarinic receptor numbers following treatment at 10μM for 5 days

- Smilagenin
- Epismilagenin
- Sarsasapogenin acetate
- Epismilagenin acetate
- Smilagenone
- Tigogenin

% change (compared to control)
FIG. 2

Changes in m2 muscarinic receptor numbers following treatment at 10µM for 5 days

6b-Acetoxytigogenin
7-Keto-diosgenin
6-Methyl-diosgenin
Diosgenin benzoate
Diosgenin acetate
23-Bromo-11-keto-rockogenin
11-keto-rockogenin
Hecogenin
11-Ketotigogenin
Rockogenin
11a-hydroxytigogenin
Gitogenin

% change (compared to control)
Changes in m2 muscarinic receptor numbers following treatment at 10µM for 3 days

FIG. 3
FIG. 4