THERAPEUTIC USE OF ANTIMICROBIAL COMPOSITIONS COMPRISING A BENZOIC ACID ANALOG AND A METAL SALT

THERAPEUTISCHE VERWENDUNG VON ANTIMIKROBIELLEN ZUSAMMENSETZUNGEN, DIE EIN BENZOESÄUREANALOG UND EIN METALLSALZ ENTHALTEN

UTILISATION THERAPEUTIQUE DE COMPOSITIONS ANTIMICROBIENNES COMPRENANT UN ANALOGUE DE L’ACIDE BENZOIQUE ET UN SEL METALLIQUE

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Priority: 19.10.1999 US 421084

Date of publication of application: 17.07.2002 Bulletin 2002/29

Proprietor: THE PROCTER & GAMBLE COMPANY
Cincinnati, Ohio 45202 (US)

Inventors:
• BEERSE, Peter, William
 Morrow, OH 45152 (US)
• BIEDERMANN, Kimberly, Ann
 Cincinnati, OH 45241 (US)
• PAGE, Steven, Hardy
 Lawrenceburg, IN 47025 (US)
• MOBLEY, Michael, Joseph
 Arizona (US)
• MORGAN, Jeffrey, Michael
 Springboro, OH 45066 (US)

Representative: Wilding, Richard Alan et al
Procter & Gamble Technical Centres Limited
Patent Department
Rusham Park
Whitehall Lane
Egham, Surrey TW20 9NW (GB)

References cited:
EP-A- 0 037 318
WO-A-99/45771
DE-A- 2 715 711
US-A- 4 975 217

• RANFORD J D ET AL: "CYTOTOICITY AND ANTIVIRAL ACTIVITY OF TRANSITION-METAL SALICYLATO COMPLEXES AND CRYSTAL STRUCTURE OF BIS(DIISOPROPYL SALICYLATO)(1,10-PHENANTHROLINE) COPPER(II)"

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Remarks:
The file contains technical information submitted after the application was filed and not included in this specification.
DESCRIPTION

TECHNICAL FIELD

[0001] The present invention relates to the use of antimicrobial compositions, which provide enhanced immediate as well as residual anti-viral efficacy, in the manufacture of medicaments for the prevention and/or treatment of the common cold and associated respiratory diseases caused by a rhinovirus.

BACKGROUND OF THE INVENTION

[0002] Human health is impacted by a variety of microbial organisms. Inoculation of humans or other mammals by these microorganisms often results in various sicknesses and ailments. Public awareness of such contaminations has been heightened due to the increased number of food poisonings, streptococcal infections, etc. which have been occurring in the recent past. Consequently, there has been a thrust by the medical community to persuade the general public to wash any areas which generally come in contact with infected surfaces like body parts (e.g. hand washing), foods (e.g., uncooked meat, vegetables, fruits, etc.), cooking utensils, cooking surfaces (e.g., counter tops, sinks, etc.). It has been found that such methods are important in attempts to remove pathogenic microorganisms from human skin as well as other surfaces.

[0003] The types of microorganisms which can be found on mammalian skin include viruses, bacteria, and fungi. In general, virologists agree that rhinoviruses, influenza viruses, and adenoviruses are most likely the most relevant viruses which cause respiratory diseases. It is believed that rhinoviruses, in particular, are responsible for acting as the primary cause for the common cold. Rhinoviruses are members of the picornavirus family. As such they are referred to as "naked viruses" since they lack an outer envelope. Such picornaviruses are known to be difficult to inactivate by commonly used means like quaternary ammonium compounds.

[0004] Rhinovirus infections are spread from person to person by means of virus-contaminated respiratory secretions. Evidence suggests that the primary mode of transmission is via direct contact, as opposed to inhalation of airborne viral particles. It has been demonstrated that ill persons have a propensity to contaminate their hands and environmental objects. Rhinovirus has been recovered from 40 to 90% of hands of persons experiencing colds and from 6 to 15% of diverse objects. Rhinovirus exhibits good survival on many environmental surfaces for hours after contamination, and infection is readily transmitted by finger-to-finger contact and by finger to contaminated environmental surface if the newly contaminated finger is then used to rub an eye or touch the nasal mucosa.

[0005] Since a substantial proportion of rhinovirus colds are transmitted by direct contact from virus-contaminated hands or objects, it is possible to lower the risk of acquiring infection by inactivating virus on hands or surfaces. A common household phenol/alcohol disinfectant has been shown to be effective in disinfecting contaminated environmental surfaces but lacks residual virucidal effects. Hand washing is highly effective at disinfecting contaminated fingers but again suffers from a lack of residual activity. These shortcomings provide strong opportunities for improved virucidal technologies with residual activity against rhinoviruses.

[0006] It has been found that iodine is an effective anti-viral agent and provides residual anti-rhinoviral activity on skin. In experimentally induced and natural cold transmission studies, subjects who used iodine products had significantly fewer colds than placebo users. This indicates that iodine is effective for prolonged periods at blocking the transmission of rhinoviral infections. Thus, the development of hand products, lotions, or washes (without the associated color or odor negatives of iodine) that deliver both immediate and residual anti-viral activity would be effective in reducing the incidences of colds. Likewise, a topical product which exhibits anti-viral activity would be effective in preventing and/or treating virus-induced diseases caused by other viruses like adenoviruses, rotaviruses, herpes viruses, respiratory syncytial viruses, coronaviruses, parainfluenza viruses, enteroviruses, influenza viruses, etc..

[0007] A need, however, still remains for compositions and products which provide not only improved immediate anti-viral efficacy but improved residual efficacy as well. There is also a need to provide improved immediate anti-viral (e.g., anti-rhinoviral) activity, in water based systems (i.e., non-alcohol).

[0008] DE 2715711 teaches the therapeutic, antiviral use of metal salts, primarily in the context of treatment of herpes virus. It provides no teaching of use against rhinoviruses or for the treatment of colds.

[0009] US 4,975,217 relates to virucidal compositions which contain organic acids, such as benzoic or salicylic acid, in combination with a surfactant. The compositions can be incorporated into, inter alia, nasal sprays. The surfactant can be an anionic surfactant associated with a di- or trivalent metal cation.

[0010] US 5,508,282 relates to compositions, e.g. nasal sprays, and methods for relieving the symptoms, and shortening the duration, of acute or chronic rhinosinusitis. Its compositions comprise vitamin C and caffeine and, optionally, benzoic acid and a mineral, which can be zinc. Its compositions are preferably adjusted to a pH of from 5.5 to 6.5. This document makes no suggestion that its compositions have any antimicrobial or antiviral activity.

[0011] WO 99/45771 discloses anhydrous lotions, with antiviral and antimicrobial effect, for treating facial tissue...
wipes. The lotions include an antimicrobial agent which can be an antiviral agent, an antibacterial agent or a combination. Salicylic acid is disclosed as an example of an antiviral agent and metal ions are disclosed as an example of an antibacterial agent. The document does not disclose aqueous solutions for intranasal application.

SUMMARY OF THE INVENTION

[0012] Applicants have found that the aqueous compositions of the present invention which comprise a benzoic acid analog, a metal salt and a carrier, wherein the composition has a pH of from 1.5 to 5 are useful for the manufacture of medicaments for the prevention and/or treatment of the common cold or an associated respiratory disease caused by a rhinovirus.

DETAILED DESCRIPTION OF THE INVENTION

[0014] As used here, "residual anti-viral efficacy" means leaving a residue or imparting a condition on a keratinous tissue (e.g., skin) or other surfaces that remains effective and provides significant anti-viral (specifically against rhinovirus) activity for some time after application.

[0015] The essential components and properties of these compositions are described below. A nonexclusive description of various optional and preferred components useful in embodiments of the present invention is also included below.

[0016] The present invention can comprise, consist of, or consist essentially of any of the required or optional ingredients and or limitations described herein.

[0017] All percentages and ratios used herein, unless otherwise indicated, are calculated on a weight basis. All percentages are calculated based upon the total composition unless otherwise indicated.

[0018] All molar weights are weight average molecular weights and are given in units of grams per mole.

[0019] All ingredient levels are in reference to the active level of that ingredient, and are exclusive of solvents, by-products, or other impurities that may be present in commercially available sources, unless otherwise indicated.

[0020] All measurements made are at ambient room temperature, which is approximately 23°C (73°F) unless otherwise indicated.

[0021] All documents referred to herein, including patents, patent applications, and printed publications, are hereby incorporated by reference in their entirety in this disclosure.

[0022] As used herein, "safe and effective amount" means an amount of a compound, component, or composition (as applicable) sufficient to significantly induce a positive effect but low enough to avoid serious side effects (e.g., undue toxicity or allergic reaction, i.e., to provide a reasonable benefit to risk ratio, within the scope of sound medical judgment.

[0023] In the description of the invention various embodiments and/or individual features are disclosed. As will be apparent for the skilled practitioner all combinations of such embodiments and features are possible and can result in preferred executions of the invention.

Benzoic Acid Analog

[0024] The antimicrobial compositions useful for the present invention comprise a safe and effective amount of a benzoic acid analog selected from benzoic acid, salicylic acid, 2-nitrobenzoic acid, thiosalicylic acid, 2,6-dihydroxybenzoic acid, 3-hydroxybenzoic acid, 5-nitosalicylic acid, 5-bromosalicylic acid, 5-iodosalicylic acid, 5-fluorosalicylic acid, 3-chlorosalicylic acid, 4-chlorosalicylic acid, 5-chlorosalicylic acid, and combinations thereof. Without intending to be limited by theory, it is believed that these preferred compounds exhibit improved antibacterial and antiviral immediate and residual efficacy.

[0025] The benzoic acid analogs may be included as a substantially pure material, or as an extract obtained by suitable physical and/or chemical isolation from natural sources (e.g., plants, microorganism by-products).

[0026] Most preferably, the benzoic acid analog is selected from salicylic acid, benzoic acid, and combinations thereof.

[0027] The compositions herein preferably comprise from 0.01% to 20%, by weight of the composition, of the benzoic acid analog, more preferably, from 0.1% to 10%, even more preferably from 0.25% to 5%, and most preferably from 1% to 5%.

[0028] Furthermore, the compositions of the present invention are substantially free of para-aminosalicylic acid. As used herein, "substantially free" means that the detectable levels of para-aminosalicylic acid are less than 0.01% by
weight of the composition. More preferably, the present compositions are essentially free of para-aminosalicylic acid. As used herein, "essentially free" means that any para-aminosalicylic acid is present in amounts which are not detectable by means typically used to measure such levels. Most preferably, the compositions of the present invention are free of para-aminosalicylic acid.

Furthermore, it is envisioned that the above-described acid component may be added directly to the compositions or that the acid may be formed in situ upon topical application of the present compositions. That is, a precursor to the claimed acid may be added to the compositions which ultimately transforms into the above-described acid component, e.g. an ester of the acid.

Metal Salt

The antimicrobial compositions herein comprise a safe and effective amount of a metal salt selected from Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, Bi, K, Cd, Yb, Dy, Nd, Ce, Ti, Pr, and combinations thereof. Even more preferably, the metal salts include salts of metals selected from the group consisting of Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, and combinations thereof. Most preferably, the metal salts include salts of metals selected from the group consisting of Cu, Fe, Sn, and combinations thereof.

The antimicrobial compositions herein comprise a safe and effective amount of a metal salt selected from Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, Bi, K, Cd, Yb, Dy, Nd, Ce, Ti, Pr, and combinations thereof. Even more preferably, the metal salts include salts of metals selected from the group consisting of Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, and combinations thereof. Most preferably, the metal salts include salts of metals selected from the group consisting of Cu, Fe, Sn, and combinations thereof.

The antimicrobial compositions herein comprise a safe and effective amount of a metal salt selected from Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, Bi, K, Cd, Yb, Dy, Nd, Ce, Ti, Pr, and combinations thereof. Even more preferably, the metal salts include salts of metals selected from the group consisting of Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, and combinations thereof. Most preferably, the metal salts include salts of metals selected from the group consisting of Cu, Fe, Sn, and combinations thereof.

The antimicrobial compositions herein comprise a safe and effective amount of a metal salt selected from Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, Bi, K, Cd, Yb, Dy, Nd, Ce, Ti, Pr, and combinations thereof. Even more preferably, the metal salts include salts of metals selected from the group consisting of Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, and combinations thereof. Most preferably, the metal salts include salts of metals selected from the group consisting of Cu, Fe, Sn, and combinations thereof.

The compositions herein comprise a dermatologically acceptable carrier for the benzoic acid analog and the metal salt. The phrase "dermatologically acceptable carrier", as used herein, means that the carrier is suitable to come in contact with or for topical application to mammalian keratinous tissue (e.g., human hands), has good aesthetic properties, is compatible with the actives of the present invention and any other components, and will not cause any
untoward safety or toxicity concerns. A safe and effective amount of carrier is from 50% to 99.99%, preferably from 80% to 99.9%, more preferably from 90% to 98%, and most preferably from 90% to 95% of the composition.

[0040] Furthermore, the compositions herein may be utilized in various product forms for intranasal use including, but not limited to, intranasal sprays.

[0041] The carrier of the present invention is an aqueous solution. Such an aqueous solution may comprise up to 98.8%, by weight of the composition, of water.

[0042] Preferably thickeners can be added to the solutions of the present invention to form a gel. Examples of suitable thickeners include, but are not limited to, naturally-occurring polymeric materials such as sodium alginate, xanthan gum, quince seed extract, tragacanth gum, starch and the like, semi-synthetic polymeric materials such as cellulose ethers (e.g. hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, hydroxy propylmethyl cellulose), polyvinylpyrrolidone, polyvinylalcohol, guar gum, hydroxypropyl guar gum, soluble starch, cationic celluloses, cationic guar and the like and synthetic polymeric materials such as carboxyvinyl polymers, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid polymers, polymethacrylic acid polymers, polyvinyl acetate polymers, polyvinyl chloride polymers, polyvinylidene chloride polymers and the like. Inorganic thickeners may also be used such as aluminium silicates, such as, for example, bentonites, or a mixture of polyethylene glycol and polyethylene glycol stearate or distearate.

[0043] Also useful herein are hydrophobic gelling agents such as the acrylic acid/ethyl acrylate copolymers and the carboxyvinyl polymers sold by the B.F. Goodrich Company under the trademark of Carbopol TM resins. These resins consist essentially of a colloidal water-soluble polyalkenyl polyether crosslinked polymer of acrylic acid crosslinked with from 0.75% to 2.00% of a crosslinking agent such as polyallyl sucrose or polyallyl pentaerythritol. Examples include Carbopol 934, Carbopol 940, Carbopol 950, Carbopol 980, Carbopol 951 and Carbopol 981. Carbopol 934 is a water-soluble polymer of acrylic acid crosslinked with about 1% of a polyallyl ether of sucrose having an average of about 5.8 allyl groups for each sucrose molecule. Also suitable for use herein are carboxomers sold under the Trade Names CARBOPOL ULTREZ 10, CARBOPOL ET D2020, CARBOPOL 1382, CARBOPOL 1342, SALCARE SC96 (Polyquatemium-37 and Propylene Glycol Dicaprylate/Dicaprate and PPG-1 Trideceth-6), STABILEZE QM (Polyvinylmethacrylate/Methacrylic acid Decadiene crosspolymer), STABYLEN 30 (acrylate/vinyl isodecanoate crosspolymer) and PEMULEN TR-1 (CTFA Designation: Acrylates/10-30 Alkyl Acrylate Crosspolymer). Combination of the above polymers are also useful herein. Other gelling agents suitable for use herein include oleogels such as trihydroxystearin and aluminium magnesium hydroxy stearate. Another useful thickener for the present invention is the non-ionic polymer under the CTFA designation: polyacrylamide and isoparrain and laurath-7, available as SEPIGEL from Seppic Corporation.

[0044] Hydrophobically modified celluloses are also suitable for use in the water or alcohol solutions and gels. These celluloses are described in detail in U.S. Patents 4,228,277 and 5,104,646.

[0045] The thickener is preferably present at a concentration of from 0.01% to 10%, preferably from 0.1% to 5%, and most preferably from 0.1% to 3%. Mixtures of the above thickeners may also be used.

[0046] Lipophilic skin moisturizing agents/emollients may also be incorporated. Examples of suitable lipophili skin moisturizers include, but are not limited to, petrolatnum, mineral oil, micro-crystalline waxes, polyalkenenes, paraffin, cerasin, ozokerite, polyethylene, perhydrosoquale, dimethicone, cyclomethicones, alkyl siloxanes, polyethylenesiloxanes, methylpolyethyoxylates, hydroxylated milk glyceride, castor oil, soy bean oil, maleated soy bean oil, safflower oil, cotton seed oil, corn oil, walnut oil, olive oil, cod liver oil, almond oil, avocado oil, palm oil, sesame oil, liquid sucrose octaesters, blends of liquid sucrose octaesters and solid polyol polyesters, lanolin oil, lanolin wax, lanolin alcohol, lanolin fatty acid, isopropyl lanolate, acetylated lanolin, acetylated lanolin alcohols, lanolin alcohol linolate, lanolin alcohol ricinoleate, beeswax, beeswax derivatives, spermaceti, myristyl myristate, stearyl stearate, carnauba and candelilla waxes, cholesterol, cholesterol fatty acid esters and homologs thereof, lecithin and derivatives, Spinogelids, ceramides, glycosphingo lipids and homologs thereof, and mixtures thereof. A more detailed discussion of useful lipophilic skin moisturizers can be found in U.S. Patent 5,716,920 to Glenn, Jr. et al., issued February 10 1998.

[0047] When incorporated into the solutions herein the lipophilic skin moisturizer is present at concentrations of from 0.1% to 20%, preferably from 1% to 15%, more preferably from 2% to 10% by weight.

[0048] Also preferred for use in the solutions herein are emulsifying surfactants having an HLB value below 12 or about 12, such as steareth-2, PEG-5 soya sterol oil, PEG-10 soya sterol oil, diethanolamine cetyl phosphate, sorbitan monostearate (SPAN 60), diethyleneglycol monostearate, glyceryl monostearate, and mixtures thereof; emulsifying surfactants having an HLB value of 12 or above such as Steareth-21, poloxymethylene sorbitan tristearate (TWEEN 65), polyethylene glycol 20 sorbitan monostearate, polyethylene glycol 60 sorbitan monostearate, polyethylene glycol 80 sorbitan monostearate, Steareth-20, Ceteth-20, PEG-100 stearate, sodium stearyl sarcosinate, hydrogenated lecithin, sodium cocoylglyceryl sulfate, sodium stearyl sulfate, sodium stearyl lactylate, PEG-20 methyl glucoside sesquisterate, PEG-20 glycerol monostearate, sucrose monostearate, sucrose polystearates (having a high proportion of sucrose monostearate), polyglyceryl 10 stearate, polyglyceryl 10 myristate, Steareth-10, DEA oleth 3 phosphate, DEA oleth 10 phosphate, PPG-5 Ceteth 10 phosphate sodium salt, PPG-5 Ceteth 10 phosphate potassium salt, and mixtures thereof; and mixtures thereof. Preferably, the compositions of the present invention comprise at least one

[0049] The emulsifying surfactant comprises from about 0% to 20%, preferably from 0.1% to 10%, more preferably, from 0.25% to 5%, most preferably, from 0.25% to 2.5%.

[0050] Suitable carriers may also comprise a water containing (i.e. non-alcohol based) emulsion such as oil-in-water emulsions, water-in-oil emulsions, and water-in-silicone emulsions. As will be understood by the skilled artisan, a given component will distribute primarily into either the water or oil/silicone phase, depending on the water solubility/dispersibility of the component in the composition.

[0051] Emulsions according to the present invention generally contain a solution as described above and a lipid or oil. Lipids and oils may be derived from animals, plants, or petroleum and may be natural or synthetic (i.e., man-made). Preferred emulsions also contain a humectant, such as glycerin. Emulsions will preferably further contain from 1% to 10%, more preferably from 2% to 5%, of an emulsifier, based on the weight of the carrier. Emulsifiers may be nonionic, anionic or cationic. Suitable emulsifiers are disclosed in, for example, U.S. Patent 3,755,560, issued August 28, 1973, Dickert et al.; U.S. Patent 4,421,769, issued December 20, 1983, Dixon et al.; and McCutcheon's Detergents and Emulsifiers, North American Edition, pages 317-324 (1986).

[0052] The emulsion may also contain an anti-foaming agent to minimize foaming upon application to the surface to be treated. Anti-foaming agents include high molecular weight silicones and other materials well known in the art for such use.

[0053] Suitable emulsions may have a wide range of viscosities, depending on the desired product form. Exemplary low viscosity emulsions, which are preferred, have a viscosity of 50 mm²s⁻¹ (centistokes) or less, more preferably 10 mm²s⁻¹ (centistokes) or less, most preferably 5 mm²s⁻¹ (centistokes) or less.

[0054] The antimicrobial compositions useful for the present invention exhibit a pH of from 1.5 to 5. In the most preferred embodiment, the pH of the compositions is from 2 to 4.

[0055] Without being limited by theory, it is believed that such an acidic environment protonates the viral capsid shell, which initiates a conformational change that irreversibly inactivates the virus, rendering the virus incapable of initiating infection. This effect synergizes with the metal salt and acid structure to produce the desired immediate and residual anti-viral and antibacterial efficacy which is key to the present compositions.

Optional Components

[0056] The compositions herein may contain a variety of other ingredients such as are conventionally used in a given product type provided that they do not unacceptably alter the benefits of the invention.

[0057] Another class of antimicrobial actives (specifically antibacterial agents) which are useful in the present invention, are the so-called "natural" antibacterial actives, referred to as natural essential oils. These actives derive their names from their natural occurrence in plants. Typical natural essential oil antibacterial actives include oils of anise, lemon, orange, rosemary, wintergreen, thyme, lavender, cloves, hops, tea tree, citronella, wheat, barley, lemongrass, cedar leaf, cedarwood, cinnamon, fiaeggrass, geranium, sandalwood, violet, cranberry, eucalyptus, vervain, peppermint, gum benzoin, basil fennel, fir, balsam, menthol, ocmea origanum, Hydastis carradensis, Berberidaceae daceae, Ratanhae and Curcuma longa. Also included in this class of natural essential oils are the key chemical components of the plant oils which have been found to provide the antimicrobial benefit. These chemicals include, but are not limited to anethol, catechole, camphene, thymol, eugenol, eucalyptol, feralic acid, farnesol, hinokitiol, tropoline, limonene, menthol, methyl salicylate, carvacol, terpineol, verbenone, berberine, ratanhiae extract, caryophellene oxide, citronelic acid, curcumic, nerolidoil and geraniol.

Anti-Oxidants/Radical Scavengers

[0058] The compositions herein may include a safe and effective amount of an anti-oxidant/radical scavenger. The anti-oxidant/radical scavenger is especially useful for providing protection against UV radiation which can cause increased scaling or texture changes in the stratum comeum and against other environmental agents which can cause skin damage.

[0059] A safe and effective amount of an anti-oxidant/radical scavenger may be added to the compositions of the subject invention, preferably from 0.1% to 10%, more preferably from 1% to 5%, of the composition.

[0060] Anti-oxidants/radical scavengers such as ascorbic acid (vitamin C) and its salts, ascorbyl esters of fatty acids,
ascorbic acid derivatives (e.g., magnesium ascorbyl phosphate), tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, other esters of tocopherol, butylated hydroxy benzoic acids and their salts, 6-hydroxy-2,5,7,8-tetramethylchro-
man-2-carboxylic acid (commercially available under the tradename Trolox(R)), gallic acid and its alkyl esters, especially propyl gallate, uric acid and its salts and alkyl esters, sorbic acid and its salts, lipoic acid, amines (e.g., N,N-diethylhy-
droxyamine, aminoguanidine), sulfhydryl compounds (e.g., glutathione), dihydroxy fumaric acid and its salts, lycine pidolate, arginine pilolate, nordihydroguaiaretic acid, bioflavonoids, lycine, methionine, proline, superoxide dismutase, silymarin, tea extracts, grape skin/seed extracts, melanin, and rosemary extracts may be used. Preferred anti-oxidants/
radical scavengers are selected from tocopherol sorbate and other esters of tocopherol, more preferably tocopherol sorbate. For example, the use of tocopherol sorbate in topical compositions and applicable to the present invention is
described in U.S. Patent No. 4,847,071, issued on July 11, 1989 to Donald L. Bissett, Rodney D. Bush and Ranjit Chatterjee.

Chelators

The compositions herein may also comprise a safe and effective amount of a chelator or chelating agent such that it does not interfere with the benzoic acid analog and metal salt activity. As used herein, "chelator" or "chelating agent" means an active agent capable of removing a metal ion from a system by forming a complex so that the metal ion cannot readily participate in or catalyze chemical reactions. The inclusion of a chelating agent is especially useful for providing protection against UV radiation which can contribute to excessive scaling or skin texture changes and against other environmental agents which can cause skin damage.

A safe and effective amount of a chelating agent may be added to the compositions of the subject invention, preferably from 0.1% to 10%, more preferably from 1% to 5%, of the composition. Exemplary chelators that are useful herein are disclosed in U.S. Patent No. 5,487,884, issued 1/30/96 to Bissett et al.; International Publication No. 91/16035, Bush et al., published 10/31/95; and International Publication No. 91/16034, Bush et al., published 10/31/95. Preferred chelators useful in compositions of the subject invention are furildioxime and derivatives thereof.

Skin Sensates

The antimicrobial compositions herein may also contain sensates. When used in the present invention, sensates can be present at a level of from 0.01% to 10%, typically from 0.1% to 5%, and preferably from 0.2% to 1%. The level is selected to provide the desired level of consumer perceived sensation and can be modified as desired. Suitable sensate technologies include menthol, eucalyptus, 3-1-menthoxy propane-1,2-diol, N-substituted-p-menthane-3-carboxamides and acyclic carboxamides.

Methods of Use For The Antimicrobial Compositions

The antimicrobial compositions herein are suitable for preventing and/or treating a common cold or associated respiratory disease in a mammal where said disease is caused by a rhinovirus. The prevention and/or treatment comprises the step of topicaly applying the compositions to the nasal passages.

EXAMPLES

The following examples further describe and demonstrate embodiments within the scope of the present invention.

Examples 1 and 2

An intranasal formulation is prepared by combining the following components utilizing conventional mixing techniques similar to that described below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Preferred % w/w</th>
<th>Preferred % w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>Glycerine</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Sodium Edetate</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Salicylic acid</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
In an appropriately sized vessel, add the above listed ingredients one at a time to water with mixing, allowing each to dissolve before adding the next. After all the ingredients have been added, use purified water to bring the batch to the appropriate weight. Charge the solution into a flexible laminate reservoir and fit the reservoir into an electrostatic spray device. Hold the nosepiece of the device against the nostril and direct the device such that the spray ligament will enter the nostril. The dispensed fluid provides immediate and residual anti-rhinoviral efficacy in the nose, and attenuates the symptoms of the common cold.

Other compositions are prepared in the above-described manner using NiSO₄, SnCl₂ or silver nitrate in place of the copper salt and are applied to intranasally as described above.

Claims

1. The use of a benzoic acid analog selected from benzoic acid, salicylic acid, 2-nitrobenzoic acid, 2,6-dihydroxybenzoic acid, 2-hydroxybenzoic acid, 5-nitrosalicylic acid, 5-bromosalicylic acid, 5-iodosalicylic acid, 5-fluorosalicylic acid, 3-chlorosalicylic acid, 4-chlorosalicylic acid, 5-chlorosalicylic acid, phthalic acid and combinations thereof, for the preparation of an intranasal medicament for preventing and/or treating a common cold or associated respiratory disease caused by rhinovirus in a mammal; wherein
 a) the medicament comprises from 0.01% to 5% of said benzoic acid analog;
 b) the medicament is in the form of an aqueous solution having a pH of from 1.5 to 5’
 c) the medicament further comprises
 i) a safe and effective amount of a metal salt wherein said metal salt comprises a metal selected from Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, Bi, K, Cd, Yb, Dy, Nd, Ce, Tl, Pr and combinations thereof;
 ii) a dermatologically acceptable carrier for the benzoic acid analog and metal salt;
 d) the composition is substantially free of p-aminosalicylic acid.

2. The use of claim 1 wherein the benzoic acid analog and metal salt are in the form of a benzoic acid analog - metal complex.

3. The use of claim 1 wherein the metal salt comprises zinc.

4. The use of claim 1 wherein the medicament comprises from 0.001% to 20%, preferably from 0.05% to 5%, by weight of the composition, of metal ion.

5. The use of claim 1 wherein the benzoic acid analog is selected from benzoic acid, salicylic acid and combinations thereof.

6. The use of claim 1 wherein the composition further comprises an emulsifying surfactant having an HLB of 12 or above.

Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Preferred % w/w</th>
<th>Preferred % w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper chloride</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>NaOH</td>
<td>to pH 4.0</td>
<td>to pH 3.5</td>
</tr>
<tr>
<td>Benzalkonium Chloride</td>
<td>0.075</td>
<td>0.075</td>
</tr>
<tr>
<td>Fragrance</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Tyloxapol</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Water</td>
<td>to 100%</td>
<td>to 100%</td>
</tr>
</tbody>
</table>
Patentansprüche

1. Verwendung eines Benzoesäure-Analogons, ausgewählt aus Benzoesäure, Salicylsäure, 2-Nitrobenzoesäure, 2,6-Dihydroxybenzoesäure, 2-Hydroxybenzoesäure, 5-Nitrosalicylsäure, 5-Bromsalicylsäure, 5-Iodosalicylsäure, 5-Fluorosalicylsäure, 3-Chlorsalicylsäure, 4-Chlorsalicylsäure, 5-Chlorsalicylsäure, Phthalsäure und Kombinationen davon, zur Herstellung eines intranasalen Medikaments zur Verhinderung und/oder Behandlung einer Erkältung oder einer damit verbundenen Atemwegserkrankung, die vom Rhinovirus bei einem Säugetier verursacht wird; wobei

a) das Medikament 0,01 % bis 5 % des Benzoesäure-Analogons umfasst;

b) das Medikament in Form einer wässrigen Lösung mit einem pH-Wert von 1,5 bis 5 vorliegt;

c) das Medikament ferner umfasst

i) eine sichere und wirksame Menge eines Metallsalzes, wobei das Metallsalz ein Metall ausgewählt aus Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, Bi, K, Cd, Yb, Dy, Nd, Ce, Ti, Pr und Kombinationen davon umfasst;

ii) einen dermatologisch unbedenklichen Träger für das Benzoesäure-Analogon und das Metallsalz;

d) die Zusammensetzung im Wesentlichen frei von p-Aminosalicylsäure ist.

2. Verwendung nach Anspruch 1, wobei das Benzoesäure-Analogon und das Metallsalz in Form eines Benzoesäure-Analogon-Metall-Komplexes vorliegen.

3. Verwendung nach Anspruch 1, wobei das Metallsalz Zink umfasst.

4. Verwendung nach Anspruch 1, wobei das Medikament 0,001 Gew.-% bis 20 Gew.-%, vorzugsweise 0,05 Gew.-% bis 5 Gew.-%, bezogen auf die Zusammensetzung, des Metallions umfasst.

5. Verwendung nach Anspruch 1, wobei das Benzoesäure-Analogon ausgewählt ist aus Benzoesäure, Salicylsäure und Kombinationen davon.

6. Verwendung nach Anspruch 1, wobei die Zusammensetzung ferner ein emulgierendes Tensid mit einem HLB-Wert von 12 oder mehr umfasst.

Revendications

1. Utilisation d’un analogue d’acide benzoïque choisi parmi l’acide benzoïque, l’acide salicylique, l’acide 2-nitrobenzoiq, l’acide 2,6-dihydroxybenzoïque, l’acide 2-hydroxybenzoïque, l’acide 5-nitrosalicylique, l’acide 5-bromosalicylique, l’acide 5-iodosalicylique, l’acide 5-fluorosalicylique, l’acide 3-chlorosalicylique, l’acide 4-chlorsalicylique, l’acide phtalique et leurs combinaisons, pour la préparation d’un médicament intranasal pour la prévention et/ou le traitement d’un rhume ordinaire ou d’une maladie respiratoire associée provoquée par un rhinovirus chez un mammifère; dans laquelle

a) le médicament comprend de 0,01 % à 5 % dudit analogue d’acide benzoïque;

b) le médicament est sous la forme d’une solution aqueuse ayant un pH allant de 1,5 à 5’

c) le médicament comprend en outre

i) une quantité sûre et efficace d’un sel métallique dans lequel le sel métallique comprend un métal choisi parmi Mn, Ag, Zn, Sn, Fe, Cu, Al, Ni, Co, Ti, Zr, Cr, La, Bi, K, Cd, Yb, Dy, Nd, Ce, Ti, Pr, et leurs combinaisons;
ii) un véhicule acceptable du point de vue dermatologique pour l'analogue d'acide benzoïque et le sel métallique;

d) la composition est sensiblement dépourvue d'acide p-aminosalicylique.

2. Utilisation de la revendication 1 dans laquelle l'analogue d'acide benzoïque et le sel métallique sont sous la forme d'un complexe analogue d'acide benzoïque-métal.

3. Utilisation de la revendication 1 dans laquelle le sel métallique comprend du zinc.

4. Utilisation de la revendication 1 dans laquelle le médicament comprend de 0,001 % à 20 %, de préférence de 0,05 % à 5 %, en poids de la composition, d'ion métallique.

5. Utilisation de la revendication 1 dans laquelle l'analogue d'acide benzoïque est choisi parmi l'acide benzoïque, l'acide salicylique et leurs combinaisons.

6. Utilisation de la revendication 1 dans laquelle la composition comprend en outre un agent tensioactif émulsifiant ayant un rapport HLB de 12 ou plus.