EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
12.01.2005 Bulletin 2005/02

(21) Application number: 00977406.8

(22) Date of filing: 18.09.2000

(51) Int Cl.7: A61K 7/00, A61K 7/32, A61K 7/34, A61K 7/38

(86) International application number:
PCT/EP2000/009144

(87) International publication number:

(54) ANTIPERSPIRANT COMPOSITIONS COMPRISING MICROEMULSIONS
ANTITRANSPIRANT ZUSAMMENSETZUNG ENTHALTEND MIKROEMULSIONEN
COMPOSITIONS ANTISUDORIFIQUES COMPRENANT DES MICROEMULSIONS

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LU NL PT SE

(30) Priority: 01.10.1999 US 157382 P

(43) Date of publication of application:
26.06.2002 Bulletin 2002/26

(73) Proprietors:
• UNILEVER PLC
 London EC4P 4BQ (GB)
 Designated Contracting States:
 CY GB IE

• UNILEVER N.V.
 3013 AL Rotterdam (NL)
 Designated Contracting States:
 AT BE CH DE DK ES FI FR GR IT LU MC SE PT

(72) Inventors:
• Ma, Zhuning
 Unilever Home & Personal Care USA
 Chicago, IL 60008 (US)

• Brucks, Richard M.
 Unilever Home & Pers. Care USA
 Chicago, IL 60008 (US)

(74) Representative: Pearce, Timothy et al
Unilever PLC
Unilever Intellectual Property Group
Colworth House
Sharnbrook Bedford, MK44 1LQ (GB)

(56) References cited:

• SWAFFORD ET AL.: "Characterization of swollen micelles containing linoleic acid in a microemulsion system" J. SOC. COSMET.
 CHEM., vol. 42, no. 4, 1991, pages 235-247,
 XP000984183

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

[0001] This invention is related to microemulsions that contain cosmetically active ingredients. In a preferred embodiment, this invention is related to antiperspirant salt-containing microemulsions that are stable, clear liquids and are easy and inexpensive to produce.

Background of the Invention

[0002] The microemulsions of the present invention contain water. Microemulsions of the present invention are transparent or translucent, optically isotropic and thermodynamically stable mixtures of oil and water stabilized by surfactants and perhaps co-surfactants. The particle size of the dispersed phase of a microemulsion is about 100 to about 2000 angstroms, more preferably are about 100 to about 1000 angstroms. They can form spontaneously or with a little energy. Therefore they are simple to prepare and are not process dependent i.e. the order of addition of starting materials or speed / type of mixing is not critical to the preparation of the microemulsions. It would be desirable to formulate antiperspirant compositions using microemulsions because microemulsions are easy and inexpensive to process and can be inherently clear without requiring refractive index matching of the aqueous and non-aqueous phases.

[0003] Microemulsions have attracted considerable technological and scientific interest. Water-in-oil (w/o) microemulsions containing water, an ionic surfactant, a cosurfactant and oil are the most investigated. The ionic surfactant-containing microemulsions usually exhibit stability over a large range of temperature. When inorganic salts are added, the minimum surfactant level to form water-in-oil microemulsions will increase. As the hydrocarbon oil chain length increases, the solubilization of aqueous phase into the oil phase decreases, while the liquid crystal area increases. Nonionic surfactant-containing water-in-oil microemulsions require a large amount of surfactant as well. Unfortunately, nonionic surfactant-containing microemulsions commonly exhibit a small temperature range of stability.

[0004] Microemulsions exist in the following forms: as water-in-oil, oil-in-water or as a bicontinuous phase, which is also called the surfactant phase. As used herein, the term "microemulsion means water-in-oil, oil-in-water or a bicontinuous phase, or mixtures thereof. Bicontinuous phase microemulsions are found to solubilize a high amount of water and oil with lower levels of surfactant. The region around a bicontinuous phase microemulsion may transition into a swollen lamellar phase, otherwise known as a liquid crystal phase, and in certain cases these phases (microemulsion and liquid crystal) may co-exist. These phases exhibit birefringence, shear induced (streaming) birefringence, and are thixotropic, viscoelastic and transparent. Because some of these systems exhibit increased viscosity the technical literature may refer to them as microemulsion gels.

[0005] It is an object of the present invention to provide antiperspirant compositions, which contain high levels of antiperspirant salts, cosmetic oils and surfactants suitable for application to the axilla. It is also an object of the present invention to provide antiperspirant compositions that do not require refractive index matching of the aqueous and nonaqueous phases in order to be clear. It is also an object of the present invention to provide microemulsion antiperspirant compositions that require little energy to manufacture. These and other objects of the present invention will become more readily apparent in the present application.

[0006] Patents and patent documents, which are cited in connection with the disclosed invention, are as follows:

DE 196 42 090 A1 discloses cosmetic or dermatologic compositions based on microemulsions.

U.S. Patent 5,162,378 discloses water in oil microemulsions comprising cetyl dimethicone copolyol, water, silicone, alcohol, and 5-40% by weight of one or more salts.

U.S. Patent 5,705,562 discloses a method of spontaneously forming a highly stable clear microemulsion by combining water, a volatile cyclic methyl siloxane or a volatile linear methyl siloxane and a silicone polyether surfactant. U.S Patent 5,707,613 is in the same patent family as the just mentioned patent.

WO 94/22420 is concerned with silicone-based skin care products, which are applied to the skin as aerosols and form a clear gel on the skin.

WO 94/19000 discloses pharmaceutical compositions in the form of a microemulsion which comprise oil, a mixture of high and low HLB surfactants in which the high HLB surfactant comprises an aliphatic, aryl or aliphatic-aryl sulfate or sulfosuccinate or salt thereof, an aqueous phase and a biologically active agent.

WO 94/08610 discloses pharmaceutical compositions in the form of microemulsions which comprise an oil, a
mixture of high and low HLB surfactants in which the high HLB surfactant comprises a medium-chain fatty acid salt, an aqueous phase and a biologically active agent.

U.S. 5,575,990 discloses roll-on antiperspirant compositions which are clear and, when applied to the human skin, do not leave a visible white residue after drying. The clear antiperspirant roll-on compositions are stable under varying temperature conditions and provide a suitable cosmetically acceptable feel or sensation when applied to the human skin.

U.S. 5,487,887 discloses roll-on antiperspirant compositions and more particularly concerns antiperspirant compositions which are clear and stable under varying temperature conditions and, when applied to the human skin, do not leave a visible white residue after drying. The compositions in the form of an oil-in-water microemulsion, comprise an antiperspirant active 5-30, PEG-7-glyceryl cocoate 5-25, emollients 0.5-3, cyclomethicone 3-7, and water 53-60%.

EP-A-0 278 660 discloses a clear, homogenous microemulsion for topical application to the hair and skin which has excellent stability and comprises a hydrophobic oily phase of at least 20% by weight, 0.01-20% by weight of a hydrophilic phase, 0.01-20% by weight of a cationic quaternary ammonium surfactant and sufficient co-surfactant to generate and secure homogeneity and clarity of the microemulsion.

Summary of the Invention

[0007] The invention relates to a composition in the form of a microemulsion comprising an antiperspirant salt, a cosmetic oil, and a combination of at least one cationic quaternary surfactant and at least one nonionic surfactant, in accordance with claim 1.

Detailed Description of the Invention

[0008] The present invention is directed to antiperspirant salt-containing microemulsions that are stable and clear liquids, or clear antiperspirant gels.

[0009] Stable clear microemulsions containing cosmetic oils, antiperspirant salt, water, quaternary surfactants and nonionic surfactants have been discovered. The microemulsions are primarily composed of bicontinuous phase but the compositions include water-in-oil, oil-in-water, and microemulsion gels (liquid crystals). The microemulsions are novel antiperspirant compositions that can be used in different types of applicators such as roll-on, sponge, mousse, pad, wipe, brush, gel and aerosol or non-aerosol spray applicators.

[0010] The microemulsions discovered in this invention contain inorganic salts such as antiperspirant salts and cosmetic oils and the solubilization of high levels of both oil and aqueous solution of salts is achieved by incorporating combinations of a quaternary ammonium surfactant and a nonionic surfactant.

[0011] More specifically, the invention relates to a composition in the form of a microemulsion comprising an antiperspirant salt, cosmetic oils, and a combination of at least one cationic quaternary surfactant and at least one nonionic surfactant.

[0012] The invention also relates to a method for controlling or preventing underarm perspiration and malodor, which comprises applying to the underarm area a composition according to the invention.

[0013] The characteristics of the microemulsions of this invention include one or more of:

- The microemulsions exhibit stability over a relatively large range of temperature.
- The viscosity ranges from a thick gel to a low viscosity sprayable liquid.
- The types of the microemulsions formed are dependent on the ratio of aqueous phase to the nonionic surfactant (s) and oil. When the percentage of the salt solution containing quaternary surfactant increases, the microemulsion phase changes from water-in-oil to oil-in-water type, and a bicontinuous microemulsion phase, or possibly a liquid crystal phase, will form in-between.
- The microemulsions can contain a high level of inorganic salts.
- The microemulsions contain a quaternary surfactant and a nonionic surfactant.
- The microemulsions contain cosmetically acceptable oils.
- A method for controlling or preventing underarm perspiration and malodor, which can be applied to the underarm area.
- The application of the microemulsions can be accomplished by using various product dispensers.

[0014] As used herein % means weight percent unless otherwise specified.
The starting materials set forth herein are either known or can be prepared according to known methods. The compositions of the invention can be made by known methods or by methods that are analogous to known methods. Antiperspirant actives for use herein are often selected from astringent active salts, including in particular aluminum, zirconium, and mixed aluminum/zirconium salts, including both inorganic salts, salts with organic anions and complexes. Preferred astringent salts include aluminum, zirconium, and aluminum/zirconium halides and halohydrate complexes. Antiperspirant complexes based on the above-mentioned astringent aluminum and/or zirconium salts can be employed. The complex often employs a compound with a carboxylate group, and advantageously this is an amino acid. Examples of suitable amino acids include dl-tryptophan, dl-β-phenylalanine, dl-valine, dl-methionine and β-alanine, and preferably glycine, which has the formula CH₂(NH₂)COOH.
The proportion of solid antiperspirant salt in a composition normally includes the weight of any water of hydration and any complexing agent that may also be present in the solid active. However, when the salt is in solution, its weight excludes any water present.

The antiperspirant active will often provide from 1 to 60% by weight of the aqueous phase. The final content of the salts in the formulations can range from 0.1% to 40% but 5-35% is preferred.

Other Aqueous Phase Ingredients

In addition to aluminum salts, the microemulsions, discovered in this invention, could solubilize aqueous solutions of monovalent, divalent and trivalent salts. The salts include sodium chloride, sodium sulfate, calcium chloride, calcium sulfate, magnesium chloride, aluminum sodium lactate, and mixtures thereof.

Other ingredients which can be dissolved in the aqueous phase include buffers, glycols, sugars, cyclodextrins, preservatives, antimicrobials, fragrances, chelating agents, amino acids, antimicrobials, anticholinergics, water-soluble polymers etc.

Water Content

The antiperspirant salts or other aqueous phase ingredients can be dissolved into water first and then combined with the non-aqueous phase. Water content in the final formulations can range from 1% to 60%, 5% to 30% is preferred and 10% to 25% is the most preferred.

Oil Phase

The oil phase of the compositions of the invention can contain cosmetic oils such as esters, ethers, long chain alcohols or ethoxylated alcohols, hydrocarbons, fatty acids, monoglycerides, diglycerides or triglycerides, fragrances, volatile or non-volatile silicone fluids. Cholesterol and some other lipids can be incorporated with the oil phase to act as emollients. The oil phase concentration can range from 0% to 95%, but 20% to 60% is preferred.

Silicone fluids that may be included in compositions of the invention include volatile and non-volatile silicone fluids such as cyclomethicones and dimethicones.

Non-volatile silicones such as phenyl tris(trimethylsiloxy)silane can be included in compositions of the invention.

Silicone elastomers such as DC 9040, or DC 9010 by Dow Corning or GE SFE 839 by General Electric, can be included in the compositions of the invention.

Esters selected from the group consisting of cetyl octanoate, C12 -15 alcohol benzoate, isostearyl benzoate, diisopropyl adipate, isopropyl palmitate, isopropyl myristate and mixtures thereof may be included in the compositions of the invention.

Hydrocarbon oils such as aliphatic hydrocarbons (Permethyl 102A™, Permethyl 101™); hydrogenated polybutenes; hydrogenated polydecenes (Silkflo™); dioctylcyclohexane; mineral oil, cyclohexane and mixtures thereof may be included in the compositions of the invention.

Surfactants

Quaternary Ammonium Surfactants

Combinations of a cationic, quaternary ammonium surfactant(s) and a nonionic surfactant are employed in the compositions of the invention.

The quaternary surfactant in this invention is essential, without which the formulation will be either extremely sensitive to temperature or a microemulsion will not form. The preferred cationic surfactants employed in compositions of the invention are alkylamidopropyl alkyldimonium quaternaries.

The preferred cationic quaternary surfactants have the following structure:-
wherein

\[\begin{align*}
\text{R} & \equiv (\text{CH}_2)_n \text{CH}_3 \\
\text{R-C-NH} & \equiv (\text{CH}_2)_n \text{N-CH}_3 \\
\text{R-C-NH} & \equiv (\text{CH}_2)_n \text{N-CH}_3 \\
\text{R-C-NH} & \equiv (\text{CH}_2)_n \text{N-CH}_3
\end{align*} \]

\[n \text{ is one to six.} \]
\[x \text{ is zero to three} \]
\[y \text{ is zero to three} \]
\[z \text{ is zero to three} \]

with the proviso that \(x+y+z \leq 6 \)

A\(^-\) is any physiologically acceptable counter ion which does not adversely affect the composition, and more specifically A\(^-\) can be selected from the group consisting of chloride, bromide, ethosulfate, methyl sulfate, lactate, acetate, nitrate or sulfate.

where \(R \) is a ricinoleic derivative:

\[\text{CH}_3 \left(\text{CH}_2 \right)_5 \text{CH(OH)} \text{CH}_2 \text{CH=CH} \left(\text{CH}_2 \right)_7^-; \]

or mixtures thereof.

[0044] Obviously, variations on this structure, known to the art, can also be incorporated into embodiments of this invention. The variations on surfactant structure should exhibit solubility in the aqueous antiperspirant salt solution. If the above mentioned solubility is maintained then variations in the quaternary ammonium salts can include but are not limited to, increasing or decreasing the alkyl chain length, changing the position or removal of the hydroxyl group, changing the position or removing completely the double bond or combinations thereof.

[0045] The most preferred quaternary surfactant is ricinoleamidopropyl ethyldimmonium ethosulfate a compound according to the formula above wherein \(n=3, x=1, y=0, z=0, A^- = \text{ethosulfate} \) and

\[R = \text{CH}_3 \left(\text{CH}_2 \right)_5 \text{CH(OH)} \text{CH}_2 \text{CH=CH} \left(\text{CH}_2 \right)_7^-; \]

[0046] The surfactant described just above is also known, under the following trade names, as Surfactol Q4 from CasChem Inc., Lipoquat R from Lipo Chemicals or Mackernium DC-159 from McIntyre Chemical. Preferably the quaternary surfactant is supplied in a concentrated form (>90% active) with a low free amine content. This form is readily miscible with the aqueous antiperspirant-salt solution.

[0047] The quaternary surfactant(s) in the compositions of the invention range from 0.1% to 30%, where 2% to 15% is preferred.

Nonionic Surfactants

[0048] The nonionic surfactant or co-surfactants employed in the compositions of the invention can be polyethoxylated alcohol ethers or esters, polyglycerol mono or di-esters, glyceryl esters or branched guerbet ethoxylates or al-
cohols, or long chain carboxylic acids or combinations thereof. These compounds have a hydrophilic-lipophilic balance of between about 2 to about 15 and preferably less than about 12. Non-limiting examples are polyglycerol-3 diisostearate; glycerol oleate; poly glycerol-2 monoisostearate; polyglycerol -2 diisostearate, glyceryl isostearate. The most preferred ones are polyglyceryl-3 diisostearate, glyceryl isostearate and glycerol oleate or combinations thereof.

[0049] The ratio of cationic surfactant to aqueous phase containing antiperspirant salt ranges from 30/70 to 4/96, the ratio from 10/90 to 5/95 is preferred. The ratio of aqueous phase including salts, water and cationic surfactant to nonionic surfactant is 90/10 to 70/30, and the ratio from 90/10 to 80/20 is preferred.

Formulation Examples

[0050] The following samples are stable for one month at room temperature. The particle size or domain length of these compositions are between about 150 to about 600 angstroms. All samples are clear. Some samples exhibit streaming birefringence. Some samples exhibit birefringence. The viscosity of these samples range from a thin liquid to a gel. These microemulsions are primarily composed of bicontinuous phase but the compositions include water-in-oil, and microemulsion gels (liquid crystals).

[0051] The following formulation examples are illustrative of the invention.

[0052] The following is a general formula for an antiperspirant microemulsion of the present invention.

<table>
<thead>
<tr>
<th>Components</th>
<th>Specific Examples of components</th>
<th>Range</th>
<th>Preferred range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Phase*</td>
<td>Aliphatic Hydrocarbon 90-10% Volatile Silicone 10-90%</td>
<td>0-95%</td>
<td>20-60%</td>
</tr>
<tr>
<td>Aqueous Phase*</td>
<td>Water Deionized Water</td>
<td>1-60%</td>
<td>5-30%</td>
</tr>
<tr>
<td>Antiperspirant-Salt</td>
<td>ACH or AZG or other salts</td>
<td>0.1-40%</td>
<td>5-35%</td>
</tr>
<tr>
<td>Non-ionic surfactant</td>
<td>Polyglycerol-3 diisostearate</td>
<td>0.2 to 30%</td>
<td>4-15% 5-10% most preferred</td>
</tr>
<tr>
<td>Cationic Quaternary Ammonium Surfactant</td>
<td>Ricinoleamidopropyl ethyl dimonium ethosulfate</td>
<td>0.1-30%</td>
<td>2-15%</td>
</tr>
</tbody>
</table>

*Cosmetic additives or other optional ingredients can be added to either phase as required.

[0053] Generalized manufacturing procedure:

1. Weigh all the oil phase components into a suitable vessel and mix until homogenous. Heat may be used to expedite dispersion of components solid at room temperature.
2. The aqueous phase is prepared by mixing the quaternary ammonium surfactant with the antiperspirant salt solution.
3. Add the oil and water phases together and mix until a clear, homogenous dispersion is formed.
4. The microemulsion formulation is transferred into a suitable dispenser or applicator.

[0054] The following examples more fully illustrate embodiments of this invention, all percentages being by weight unless otherwise noted. The following specific examples, which are compositions of the invention, were made.

[0055] Compositions were prepared according to the following procedure:

1. Mix the cationic surfactant with the antiperspirant salt solution
2. Mix the nonionic surfactant with the oil mixture, then add the two mixtures together and mix well.
3. Heat may be applied to better dissolve solid nonionic surfactants, which are solid such as glyceryl oleate, in the oil phase prior to mixing the aqueous and non-aqueous phases
4.
<table>
<thead>
<tr>
<th></th>
<th>Prisorine 3700 %</th>
<th>Cationic ** %</th>
<th>Alumin um Zircon ium tetra %</th>
<th>Water %</th>
<th>DC245 %</th>
<th>HC* %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.03</td>
<td>5.98</td>
<td>13.55</td>
<td>20.31</td>
<td>15.04</td>
<td>35.09</td>
</tr>
<tr>
<td>2</td>
<td>8.99</td>
<td>4.66</td>
<td>10.57</td>
<td>15.85</td>
<td>17.98</td>
<td>41.95</td>
</tr>
<tr>
<td>3</td>
<td>7.02</td>
<td>3.45</td>
<td>7.82</td>
<td>11.74</td>
<td>20.99</td>
<td>48.98</td>
</tr>
<tr>
<td>4</td>
<td>3.97</td>
<td>1.73</td>
<td>3.93</td>
<td>5.91</td>
<td>25.34</td>
<td>59.12</td>
</tr>
<tr>
<td></td>
<td>Prisorine 3700 %</td>
<td>Cationic ** %</td>
<td>ACH %</td>
<td>Water %</td>
<td>DC245 %</td>
<td>HC %</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9.97</td>
<td>6.78</td>
<td>19.2</td>
<td>19.2</td>
<td>13.45</td>
<td>31.40</td>
</tr>
<tr>
<td>7</td>
<td>2.99</td>
<td>1.02</td>
<td>2.89</td>
<td>2.90</td>
<td>27.06</td>
<td>63.14</td>
</tr>
<tr>
<td></td>
<td>Glyceryl oleate %</td>
<td>Cationic ** %</td>
<td>Alumin um Zircon ium tetra %</td>
<td>Water %</td>
<td>DC 245 %</td>
<td>HC %</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14.24</td>
<td>11.71</td>
<td>22.09</td>
<td>33.13</td>
<td>5.65</td>
<td>13.18</td>
</tr>
<tr>
<td>10</td>
<td>11.05</td>
<td>8.55</td>
<td>16.13</td>
<td>24.20</td>
<td>12.02</td>
<td>28.05</td>
</tr>
<tr>
<td>11</td>
<td>10.02</td>
<td>7.89</td>
<td>14.88</td>
<td>22.33</td>
<td>13.46</td>
<td>31.42</td>
</tr>
<tr>
<td>12</td>
<td>9.99</td>
<td>6.98</td>
<td>13.17</td>
<td>19.75</td>
<td>15.03</td>
<td>35.08</td>
</tr>
<tr>
<td>13</td>
<td>Glyceryl oleate %</td>
<td>Cationic ** %</td>
<td>ACH %</td>
<td>Water %</td>
<td>DC 245 %</td>
<td>HC %</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.99</td>
<td>12.91</td>
<td>36.57</td>
<td>36.57</td>
<td>2.99</td>
<td>6.97</td>
</tr>
<tr>
<td>16</td>
<td>2.99</td>
<td>1.83</td>
<td>5.17</td>
<td>5.18</td>
<td>25.45</td>
<td>59.38</td>
</tr>
<tr>
<td>17</td>
<td>Glyceryl oleate %</td>
<td>Cationic ** %</td>
<td>ACH %</td>
<td>Water %</td>
<td>DC 245 %</td>
<td>HC %</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8.50</td>
<td>7.70</td>
<td>21.82</td>
<td>21.82</td>
<td>12.05</td>
<td>28.11</td>
</tr>
<tr>
<td></td>
<td>Prisorine 3700 %</td>
<td>Cationic ** %</td>
<td>Alumin um Zircon ium penta %</td>
<td>Water %</td>
<td>DC245 %</td>
<td>HC %</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>16.64</td>
<td>8.67</td>
<td>23.2</td>
<td>34.8</td>
<td>5.01</td>
<td>11.68</td>
</tr>
<tr>
<td>23</td>
<td>7.46</td>
<td>4.87</td>
<td>16.30</td>
<td>16.29</td>
<td>16.52</td>
<td>38.56</td>
</tr>
<tr>
<td></td>
<td>Glyceryl isostearate %</td>
<td>Cationic ** %</td>
<td>Alumimum Zirconium penta %</td>
<td>Water %</td>
<td>DC 245 %</td>
<td>HC %</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>19</td>
<td>11.02</td>
<td>11.09</td>
<td>25.15</td>
<td>37.72</td>
<td>4.51</td>
<td>10.51</td>
</tr>
<tr>
<td>20</td>
<td>10.02</td>
<td>-8.99</td>
<td>20.37</td>
<td>30.55</td>
<td>9.02</td>
<td>21.05</td>
</tr>
<tr>
<td>21</td>
<td>9.03</td>
<td>7.64</td>
<td>17.32</td>
<td>25.99</td>
<td>12.00</td>
<td>28.02</td>
</tr>
<tr>
<td>22</td>
<td>7.97</td>
<td>6.32</td>
<td>14.32</td>
<td>21.47</td>
<td>14.98</td>
<td>34.94</td>
</tr>
<tr>
<td>23</td>
<td>6.02</td>
<td>3.60</td>
<td>8.15</td>
<td>12.22</td>
<td>21.00</td>
<td>49.01</td>
</tr>
<tr>
<td></td>
<td>Glyceryl isostearate %</td>
<td>Cationic ** %</td>
<td>Alumimum Zirconium penta %</td>
<td>Water %</td>
<td>DC 245 %</td>
<td>HC %</td>
</tr>
<tr>
<td>24</td>
<td>6.02</td>
<td>4.34</td>
<td>7.82</td>
<td>11.72</td>
<td>21.00</td>
<td>49.01</td>
</tr>
<tr>
<td>25</td>
<td>8.52</td>
<td>13.64</td>
<td>24.03</td>
<td>36.05</td>
<td>5.33</td>
<td>12.43</td>
</tr>
<tr>
<td>26</td>
<td>9.00</td>
<td>5.71</td>
<td>8.72</td>
<td>16.46</td>
<td>18.03</td>
<td>42.08</td>
</tr>
<tr>
<td>27</td>
<td>4.68</td>
<td>0.14</td>
<td>0.25</td>
<td>0.38</td>
<td>28.36</td>
<td>66.19</td>
</tr>
<tr>
<td>27</td>
<td>9.74</td>
<td>0.46</td>
<td>0.81</td>
<td>1.21</td>
<td>26.33</td>
<td>61.45</td>
</tr>
<tr>
<td></td>
<td>Glyceryl isostearate %</td>
<td>Cationic ** %</td>
<td>Alumimum Zirconium penta %</td>
<td>Water %</td>
<td>DC 245 %</td>
<td>HC %</td>
</tr>
<tr>
<td>28</td>
<td>11.47</td>
<td>11.80</td>
<td>26.76</td>
<td>40.13</td>
<td>2.95</td>
<td>6.89</td>
</tr>
<tr>
<td>29</td>
<td>11.11</td>
<td>11.07</td>
<td>25.10</td>
<td>37.65</td>
<td>4.52</td>
<td>10.55</td>
</tr>
<tr>
<td>30</td>
<td>10.03</td>
<td>6.74</td>
<td>15.29</td>
<td>22.93</td>
<td>13.50</td>
<td>31.51</td>
</tr>
<tr>
<td>31</td>
<td>9.54</td>
<td>6.06</td>
<td>13.73</td>
<td>20.60</td>
<td>15.02</td>
<td>35.05</td>
</tr>
<tr>
<td>32</td>
<td>11.38</td>
<td>11.91</td>
<td>27.00</td>
<td>40.51</td>
<td>2.76</td>
<td>6.44</td>
</tr>
<tr>
<td></td>
<td>Glyceryl isostearate %</td>
<td>Cationic ** %</td>
<td>Alumimum Zirconium penta %</td>
<td>Water %</td>
<td>DC 245 %</td>
<td>365-NF</td>
</tr>
<tr>
<td>33</td>
<td>7.45</td>
<td>16.94</td>
<td>30.34</td>
<td>44.66</td>
<td>0.43</td>
<td>0.18</td>
</tr>
<tr>
<td>34</td>
<td>12.36</td>
<td>11.88</td>
<td>22.40</td>
<td>33.59</td>
<td>13.85</td>
<td>5.92</td>
</tr>
<tr>
<td>35</td>
<td>12.06</td>
<td>11.92</td>
<td>22.47</td>
<td>33.71</td>
<td>13.89</td>
<td>5.95</td>
</tr>
<tr>
<td>36</td>
<td>12.05</td>
<td>9.26</td>
<td>17.46</td>
<td>24.19</td>
<td>24.53</td>
<td>10.51</td>
</tr>
<tr>
<td>37</td>
<td>10.93</td>
<td>7.78</td>
<td>14.67</td>
<td>22.01</td>
<td>31.23</td>
<td>13.38</td>
</tr>
</tbody>
</table>
Further examples include:

<table>
<thead>
<tr>
<th>Ingredient (INCI)</th>
<th>Trade Names</th>
<th>Source</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricinoleamidopropyl Dimonium Ethosulfate</td>
<td>Surfactol Q4</td>
<td>CasChem, Inc</td>
<td>7.50%</td>
</tr>
<tr>
<td>Polyglycerol-3 Disostearate</td>
<td>Prisorine PG3 DI 3700</td>
<td>Uniqema</td>
<td>10%</td>
</tr>
<tr>
<td>Aliphatic Hydrocarbon</td>
<td>Permethy 102A</td>
<td>Presperse</td>
<td>28%</td>
</tr>
</tbody>
</table>

* HC means hydrocarbon: Permethy 102A, listed in the above table

** Cationic means the cationic surfactant: Ricinoleamidopropyl ethyldimonomium ethosulphate
Example 53

<table>
<thead>
<tr>
<th>Ingredient (INCI)</th>
<th>Trade Names</th>
<th>Source</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclopentasiloxane</td>
<td>DC245</td>
<td>Dow Corning</td>
<td>12%</td>
</tr>
<tr>
<td>Aluminum Chlorohydrate 50%</td>
<td>Westclor 200</td>
<td>Westwood</td>
<td>42.50%</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Ingredient (INCI) | **Trade Names** | **Source** | **Percent** |
Ricinoleamidopropyl Dimonium Ethosulfate | Surfactol Q4 | CasChem, Inc | 7.50% |
Glyceryl Isostearate | Peceol Isostearique | Gattefosse | 10% |
Hydrogenated Polydecene | Silkflo 366 | Lipo Chemicals | 12% |
Cyclopentasiloxane | DC245 | Dow Corning | 28% |
Aluminum Zirconium Pentachlorohydrate 40% | Low Zirconium Penta Solution R280-130 | Reheis | 42.50% |

Total: | | | **100%**|

Example 54

Ingredient (INCI) | **Trade Names** | **Source** | **Percent** |
Ricinoleamidopropyl Dimonium Ethosulfate | Surfactol Q4 | CasChem, Inc | 2.77% |
Aluminum Zirconium Pentachlorohydrate 40% | Low Zirconium Penta Solution R280-130 | Reheis | 47.63% |
Glyceryl Isostearate | Peceol Isostearique | Gattefosse | 3.06% |
Hydrogenated Polydecene | Silkflo 366 | Lipo Chemicals | 11.70% |
Cyclopentasiloxane | DC245 | Dow Corning | 27.04% |
Ethoxylated Guerbet Alcohol C14 / 4 EO HLB ~ 9 | Novel II Isosfol 14T+4EO | Condea Vista | 7.80% |

Total: | | | **100%**|

Examples 55 and 56

Ingredient (INCI) | **Trade Names** | **Supplier** | **55** | **56** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td>Percent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ricinoleamidopropyl ethyl dimonium ethosulfate | Surfactol Q4 | Caschem | 2.32 | 2.83 |
Aluminum zirconium pentachlorohydrate | Rezal 67 | Reheis | 15.94 | 18.13 |
Raw materials used in preparation of the example compositions of the invention are as follows:

<table>
<thead>
<tr>
<th>Ingredient (INCI)</th>
<th>Trade Names</th>
<th>Supplier</th>
<th>55 Percent</th>
<th>56 Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Deionized Water</td>
<td>Stock</td>
<td>23.91</td>
<td>27.19</td>
</tr>
<tr>
<td>Urea</td>
<td>Urea</td>
<td>Janssen Chimica</td>
<td>-</td>
<td>3.34</td>
</tr>
<tr>
<td>Cyclopentasiloxane</td>
<td>DC 245</td>
<td>Dow Corning</td>
<td>29.08</td>
<td>22.08</td>
</tr>
<tr>
<td>Polydecene hydrogenated</td>
<td>Silkflo366NF</td>
<td>Lipo Chemicals</td>
<td>11.62</td>
<td>9.46</td>
</tr>
<tr>
<td>Glyceryl isostearate</td>
<td>Peceol isostearique</td>
<td>Gattefosse</td>
<td>5.26</td>
<td>-</td>
</tr>
<tr>
<td>Polyglyceryl-3 diisostearate</td>
<td>Prisorine 3700</td>
<td>Unichema</td>
<td>0.87</td>
<td>3.49</td>
</tr>
<tr>
<td>Ethoxylated Guerbet alcohol C\textsubscript{16}EO\textsubscript{10}</td>
<td>Novel II I18T-10 ethoxylate</td>
<td>Condea Vista</td>
<td>3.36</td>
<td>6.19</td>
</tr>
<tr>
<td>2-hexyldecanol (Guerbet C16 Alcohol)</td>
<td>Isoflo 16</td>
<td>Condea Vista</td>
<td>7.64</td>
<td>7.29</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Trade Name	**Chemical Name**	**Vender**
DC 245 | Cyclohextrione D5 | Dow Corning |
DC 344 | Cyclohextrione D4 | Dow Corning |
Silkflo 364 or 366 | Hydrogenated Polydecene | Lipo Chemical |
Permethyl 102 A | Aliphatic hydrocarbon | Permethyl Specialties |
Permethyl 101 | Aliphatic hydrocarbon | Permethyl Specialties |
Trivent OC-16 | Cetyl octanoate | Trivent Chemical Company |
Cetiol S | Diocyl cyclohexane | Henkel Corporation |
Peceol isostearique | Glyceryl isostearate | Gattefosse |
Monomuls 90-018 | Glycerol olate | Henkel Corporation |
Fancol Polyiso 275 | Hydrogenated polyisobutene | The Fanning Corp. |
Finsolve TN | C12-C15 alcohol benzoate | Finetex |
Finsolve SB | Isostearyl benzoate | Finetex |
Prisorine 3700 | Polyglycerol -3 Disostearate | Unichema North America |
Prisorine 3792 | Polyglycerol-2 disostearate | Unichema North America |
Prisorine 3791 | Polyglycerol-2 monoisostearate | Unichema North America |
Glucate DO | Methyl glucoside dioleate | Amercol |
Glucate SS | Methyl glucoside sesquistearate | Amercol |
Estol 3609 | Glycerol tri-2-ethylhexanolate | Unichema North America |
Dow Corning 556 | Phenyl tris(trimethylsiloxy)silane | Dow Corning |

Trade Name	**Chemical Name**	**Vender**
Ceraphyl 230 | Diisopropyl Adipate | ISP Van Dyk Inc |
Mineral oil | Hydrocarbon | Witco |
The foregoing description and examples illustrate selected embodiments of the present invention. In light thereof, various modifications would be suggested to one skilled in the art, all of which are within the spirit and scope of this invention.

Claims

1. A composition which is selected from the group consisting of a microemulsion, a liquid crystal, or a mixture of a microemulsion and a liquid crystal which comprises a cosmetic oil, an aqueous phase and a combination of at least one cationic quaternary surfactant and at least one nonionic surfactant characterised in that the aqueous phase contains an antiperspirant salt at a concentration of from 10 to 60% by weight.

2. A composition in accordance with claim 1 characterised in that said antiperspirant salt is selected from the group consisting of aluminum, zirconium and mixed aluminum/zirconium salts.

3. A composition in accordance with claim 1 or 2 characterised in that said antiperspirant salt is a zirconium salt complexed with aluminum salts having coordinated or bound water.

4. A composition in accordance with any preceding claim characterised in that said aqueous phase further comprises a buffer, a glycol, a sugar, a cyclodextrin, a preservative, an antimicrobial, a chelating agent, a water-soluble polymer, an anticholinergic, a monovalent salt, a divalent salt, a trivalent salt, fragrances or mixtures thereof.

5. A composition in accordance with any preceding claim characterised in that said aqueous phase is present at about 1% to about 60%, more preferably at 5% to 30%, and most preferably at 10 to 25%.

6. A composition in accordance with any preceding claim characterised in that said cosmetic oil comprises esters, ethers, long chain alcohols or ethoxylated alcohols, hydrocarbons, fatty acids, monoglycerides, diglycerides triglycerides, fragrances and volatile or non-volatile silicone fluids, and cholesterol.

7. A composition in accordance with claim 6 characterised in that said cosmetic oil comprises silicone fluids which in turn comprise a volatile or non-volatile silicone such as cyclomethicone or dimethicone.

8. A composition in accordance with claim 6 or 7 characterised in that said non-volatile silicone is phenyl tris(trimethylsiloxy)silane.

9. A composition in accordance with claim 6 characterised in that said esters are selected from the group consisting
of cetyl octanoate, C12-15 alcohol benzoate, isostearyl benzoate, diisopropyl adipate and mixtures thereof.

10. A composition in accordance with claim 6 wherein said hydrocarbon fluids are selected from the group such as aliphatic hydrocarbons; hydrogenated polydecenes; hydrogenated polybutenes; dioctyl cyclohexane; mineral oil, cyclohexane and mixtures thereof.

11. A composition in accordance with any preceding claim characterised in that the cationic quaternary ammonium surfactant has the following structure:

\[
\begin{align*}
&\text{R} - \text{CO-NH - (CH}_2\text{)}_n\text{N}^+ - \text{(CH}_2\text{)}_z\text{-CH}_3 \\
&\text{A}^- \text{ (CH}_2\text{)}_y\text{-CH}_3
\end{align*}
\]

wherein

- \(n\) is one to six.
- \(x\) is zero to three
- \(y\) is zero to three
- \(z\) is zero to three

with the proviso that \(x+y+z \leq 6\)

\(A^-\) is any physiologically acceptable counter ion which does not adversely affect the composition, and more specifically \(A^-\) can be selected from the group consisting of chloride, bromide, ethosulfate, methyl sulfate, lactate, acetate, nitrate or sulfate.

where \(R\) is a ricinoleic derivative:

\[
\begin{align*}
&\text{CH}_3\text{(CH}_2\text{)}_5\text{CH(OH)CH}_2\text{-CH=CH-(CH}_2\text{)}_7^-
\end{align*}
\]

Or mixtures thereof.

12. A composition in accordance with claim 11 wherein \(n=3, x=1, y=0, z=0, A^- = \text{ethosulfate and } R = \text{CH}_3\text{(CH}_2\text{)}_5\text{CH(OH)CH}_2\text{-CH=CH-(CH}_2\text{)}_7^-\).

13. A composition in accordance with any preceding claim characterised in that said cationic quaternary ammonium surfactant is present at 0.1% to 30%, more preferably at 1% to 30%, most preferably at 2% to 15%.

14. A non-therapeutic method for controlling or preventing underarm perspiration and malodor which comprises applying, to an underarm, an effective amount of a composition of claim 1.

Patentansprüche

1. Zusammensetzung, die aus der Gruppe ausgewählt ist, bestehend aus einer Mikroemulsion, einem Flüssigkristall oder einem Gemisch aus einer Mikroemulsion und einem Flüssigkristall, die ein kosmetisches Öl, eine wässerige Phase und eine Kombination aus mindestens einem kationischen quartären oberflächenaktiven Stoff und zumindest einem nicht-ionischen oberflächenaktiven Stoff umfaßt, dadurch gekennzeichnet, daß die wässerige Phase ein Antitranspirantsalz bei einer Konzentration von 10 bis 60 Gew.-% enthält.

2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das Antitranspirantsalz aus der Gruppe, bestehend aus Aluminium, Zirkonium und gemischten Aluminium/Zirkoniumsalzen ausgewählt ist.

3. Zusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Antitranspirantsalz ein mit Aluminiumsalzen komplexiertes Zirkoniumsalz mit koordiniertem oder gebundenem Wasser ist.

5. Zusammensetzung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, daß die wässerige Phase mit etwa 1 bis etwa 60 %, stärker bevorzugt mit 5 bis 30 % und am stärksten bevorzugt mit 10 bis 25 % vorhanden ist.

7. Zusammensetzung nach Anspruch 6, **dadurch gekennzeichnet**, daß die wässerige Phase mit etwa 1 bis etwa 60 %, stärker bevorzugt mit 5 bis 30 % und am stärksten bevorzugt mit 10 bis 25 % vorhanden ist.

8. Zusammensetzung nach Anspruch 6 oder 7, **dadurch gekennzeichnet**, daß das kosmetische Öl Silikonflüssigkeiten umfaßt, die wiederum ein flüchtiges oder nicht flüchtiges Silikon wie Cyclomethicon oder Dimethicon umfassen.

10. Zusammensetzung nach Anspruch 6, wobei die Kohlenwasserstoffflüssigkeiten aus der Gruppe, bestehend aus aliphatischen Kohlenwasserstoffen, hydrierten Polydecenen, hydrierten Polybutenen, Dioctylcyclohexan, Mineralöl, Cyclohexan und Gemischen hiervon, ausgewählt sind.

11. Zusammensetzung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, daß der kationische oberflächenaktive Stoff auf Basis von quartärem Ammonium die folgende Struktur aufweist:

\[
R - CO-NH - \left(CH_2 \right)_n - N^+ - \left(CH_2 \right)_z - CH_3 \quad A^- \\
\left(CH_2 \right)_z - CH_3
\]

worin

- \(n \) eins bis sechs ist;
- \(x \) null bis drei ist;
- \(y \) null bis drei ist;
- \(z \) null bis drei ist;

mit der Maßgabe, daß \(x + y + z \leq 6 \);

\(A^\prime \) irgendein physiologisch verträgliches Gegenion ist, das die Zusammensetzung nicht nachteilig beeinträchtigt, und speziell

\(A^\prime \) aus der Gruppe, bestehend aus Chlorid, Bromid, Ethosulfat, Methylsulfat, Lactat, Acetat, Nitrat oder Sulfat ausgewählt werden kann,

worin \(R \) ein Ricinoleiderivat ist:

\[
CH_3(CH_2)_5CH(OH)CH_2CH=CH(CH_2)_7^-
\]

oder Gemische hiervon ist.

12. Zusammensetzung nach Anspruch 11, wobei \(n = 3 \), \(x = 1 \), \(y = 0 \), \(z = 0 \), \(A^- = \) Ethosulfat und \(R = CH_3(CH_2)_5CH(OH)CH_2CH=CH(CH_2)_7^- \).
13. Zusammensetzung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, daß der kationische oberflächenaktive Stoff auf der Basis von quartärem Ammonium bei 0,1 bis 30 %, stärker bevorzugt 1 bis 30 % und am stärksten bevorzugt bei 2 bis 15 % vorliegt.

Revendications

1. Composition qui est choisie dans le groupe constitué par une micro-émulsion, un cristal liquide, ou un mélange d’une micro-émulsion et d’un cristal liquide, qui comprend une huile cosmétique, une phase aqueuse et une combinaison d’au moins un tensioactif quaternaire cationique et d’au moins un tensioactif anionique, **caractérisée en ce que** la phase aqueuse contient un sel anti-transpirant à une concentration de 10 à 60 % en poids.

2. Composition selon la revendication 1, **caractérisée en ce que** ledit sel anti-transpirant est choisi dans le groupe constitué par les sels d’aluminium, de zirconium et d’aluminium/zirconium mixtes.

3. Composition selon la revendication 1 ou 2, **caractérisée en ce que** ledit sel anti-transpirant est un sel de zirconium complexé avec des sels d’aluminium ayant de l’eau coordonnée ou liée.

4. Composition selon l’une quelconque des revendications précédentes, **caractérisée en ce que** ladite phase aqueuse comprend en outre un tampon, un glycol, un sucre, une cyclodextrine, un conservateur, un antimicrobien, un agent chélatant, un polymère soluble dans l’eau, un anticholinergique, un sel monovalent, un sel divalent, un sel trivalent, des parfums ou leurs mélanges.

5. Composition selon l’une quelconque des revendications précédentes, **caractérisée en ce que** ladite phase aqueuse est présente à raison d’environ 1 à environ 60 %, mieux encore de 5 à 30 %, et tout spécialement de 10 à 25 %.

6. Composition selon l’une quelconque des revendications précédentes, **caractérisée en ce que** ladite huile cosmétique comprend des esters, des éthers, des alcools à longue chaîne ou des alcools éthoxyliés, des hydrocarbures, des acides gras, des monoglycérides, des diglycérides, des triglycérides, des parfums et des fluides de silicium volatils ou non volatils, et du cholestérol.

7. Composition selon la revendication 7, **caractérisée en ce que** ladite huile cosmétique comprend des fluides de silicium qui à leur tour comprennent une silicone volatile ou non volatile telle que la cyclométhicone ou la diméthicone.

8. Composition selon la revendication 6 ou 7, **caractérisée en ce que** ladite silicone non volatile est le phényltris(triméthylsiloxy)silane.

9. Composition selon la revendication 6, **caractérisée en ce que** lesdits esters sont choisis dans le groupe constitué par l’octanoate de cétyle, le benzoate d’alcool en C_{12-15}, le benzoate d’isostéaryle, l’adipate de diisopropyle et leurs mélanges.

10. Composition selon la revendication 6, dans laquelle lesdits fluides hydrocarbonés sont choisis dans le groupe comprenant les hydrocarbures aliphatiques ; les polydécènes hydrogénés ; les polybutènes hydrogénés ; le dioctylcyclohexane ; l’huile minérale, le cyclohexane et leurs mélanges.

11. Composition selon l’une quelconque des revendications précédentes, **caractérisée en ce que** le tensioactif ammonium quaternaire cationique a la structure suivante :
dans laquelle

n vaut de 1 à 6,
x vaut de 0 à 3,
y vaut de 0 à 3,
z vaut de 0 à 3,

avec comme condition que x+y+z ≤ 6,

A⁻ est un contre-ion physiologiquement acceptable quelconque qui n'a pas d'effet adverse sur la composition,
et plus spécifiquement A⁻ peut être choisi dans le groupe constitué par le chlorure, le bromure, l'éthosulfate, le
méthylsulfate, le lactate, l'acétate, le nitrate ou le sulfate,
où R est un dérivé ricinoléique :

\[
CH_3(CH_2)_5CH(OH)CH_2·CH=CH-(CH_2)_7\; ;
\]

ou leurs mélanges.

12. Composition selon la revendication 11, dans laquelle n = 3, x = 1, y = 0, z = 0, A⁻ = éthosulfate et R = CH₃(CH₂)₅CH
(OH)CH₂·CH=CH-(CH₂)₇⁻.

13. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que ledit tensioactif
ammonium quaternaire cationique est présent à raison de 0,1 à 30 %, mieux encore de 1 à 30 %, tout spécialement
de 2 à 15 %.

14. Procédé non thérapeutique pour contrôler ou empêcher la transpiration et les mauvaises odeurs des aisselles,
qui consiste à appliquer à la zone des aisselles une quantité efficace d'une composition selon la revendication 1.