EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 07.06.2006 Bulletin 2006/23

Application number: 01310057.3

Date of filing: 30.11.2001

Sheet inverter system

Blattwendesystem

Système pour retourner des feuilles

Designated Contracting States:
- DE
- FR
- GB

Priority:
- 05.12.2000 US 730363
- 05.12.2000 US 730364

Date of publication of application:
- 12.06.2002 Bulletin 2002/24

Proprietor: Xerox Corporation
- Rochester,
- New York 14644 (US)

Inventors:
- Stoll, James S.
 - Wolcott NY 14590 (US)
- Conrow, Brian R.
 - Rochester,
 - New York 14609 (US)

Representative: Skone James, Robert Edmund
- Gill Jennings & Every LLP
- Broadgate House
- 7 Eldon Street
- London EC2M 7LH (GB)

References cited:
- US-A- 4 579 446

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Copiers or printers are known having two sheet inverters in a printer/finisher system where one inverter is in the duplex loop path and the other inverter is in the finisher input or the output path of the copier or printer. Noted, for example, is Fig. 3 of US-A-5,697,040 which shows a xerographic printer with both a duplex path sheet inverter and an output path sheet inverter. US-A-5,568,246 combines in series two different printing systems into a so-called dual engine printing system. In doing so, the single inverters of each of these print engines provide two inverters, but they are in two separate print engines. Other examples are disclosed in US-A-4,986,529 and US-A-5,131,649.

Further by way of technical background, because of the location of the interfaces between the inverter/duplex loop and the rest of the paper path in many printers, the sheet inverter speed, the duplex loop speed, and the exit speed of the printer, often need to be much higher than the process speed. This also imposes difficulties and constraints on the sheet drives, the registration subsystems, etc.

As will be understood by those skilled in the art, the term “process speed” in some contexts can refer to the sheet velocity related to the printing rate of the system. For example, in xerographic systems the process speed may be the velocity at which the image substrate sheet is fed to, and image-transferred at, the transfer station engagement with the photoreceptor belt or drum, which is running at the process speed. In general, it is desirable to be able to run most of the rest of the paper paths of the reproduction apparatus at substantially the same process speed. Otherwise, sheet acceleration or deceleration is required at the sheet velocity transition zones of the paper paths, and spacing problems between sequential sheets may arise. Sheet acceleration in particular can cause slippage, or other problems, with the frictional drive wheel or belt systems typically used for sheet feeding in reproduction apparatus (printers or copiers). As is also well known in the art, there is a “handoff” problem in going between a sheet transport or feeder operating at one velocity and the next, or downstream, sheet transport. Other sheet control or registration issues besides slippage can occur, such as rapid nip release of the upstream feed system, or other loss of accurate sheet position control transitioning problems. However, the term “process speed” as used herein, unless specified otherwise, may more broadly encompass the velocity of the sheets moving in the particular paper path to which the dual inverters are operatively connected. Especially since, for example, it is known to run printer output paths and/or duplex paths at a higher sheet transport velocity than the sheet velocity at image transfer.

In many high volume printer architectures being used at the present day, the sheet inversion system requires that all sheets being inverted be rapidly accelerated from the process speed to a much higher inverter speed as they enter the inverter. That is, to be accelerated in a very short distance from a process or other speed to approximately twice the process speed for movement into the inverter. That is typically followed by rapid deceleration of the sheet in the inverter from that higher speed, and then re-acceleration to that higher speed for exiting from the inverter. In addition to the above-described difficulties, this also imposes more critical sheet timing and registration problems.

US-A-4579446 discloses a sheet inverting system in which sheets are fed from a recording unit into a reversing unit having upper and lower reversing guides into which alternate sheets are alternately fed.

In accordance with the present invention, a sheet inverter system comprises a dual inverter system operatively connecting with a sheet path along which closely sequentially spaced apart printed sheets are fed in use, said dual inverter system comprising two independent but cooperative alternate sheet inverters and a sheet gating control system, said sheet gating control system being programmable and operable to alternately direct alternate said closely sequentially spaced apart printed sheets in said sheet path into said alternate independent sheet inverters, and is characterized in that said two independent but cooperative alternate sheet inverters are located upstream and downstream from one another along said sheet path, and operable in series with said sheet path so that alternate sheets leapfrog one another by feeding a first sheet in said feed path into said upstream inverter and feeding the immediately following second sheet in said feed path past said first sheet in said upstream inverter and into said downstream inverter, and then feeding said first sheet out of said upstream inverter past said second sheet in said downstream inverter, and then feeding said second sheet in said downstream inverter into said feed path.

Disclosed in the embodiment herein is an improvement in high speed printing utilizing a combination of two cooperative sheet inverters to improve the overall productivity of the printing system. As is well known, sheet inversion properly coordinated and/or collated with the printing sequence is important for duplexing (both sides sheet printing), sheet output collation, finishing, and the like. The system disclosed herein avoids the typical conventional approach of using a much higher paper path (sheet feeding) velocity in a single inverter (which can be as much as twice the normal paper path or process speed of the printer) yet can maintain collation, maintain a proper inter-sheet gap in the sheet path and insure that successively printed sheets do not impact or interfere with one another, even with high speed printing with rapidly successive sheets moving in the paper paths.

An advantage of the invention is that it provides the possibility of a simplex or non-inverting sheet path.

With the disclosed embodiment, sequential sheets in the paper path may be alternatingly inverted by the two inverters. Directly sequential sheets need not be inverted in the same inverter. Thus, a much lower
speed inverter operation can be employed, providing numerous advantages. For example, with lower speed inverters, less power may be required, acoustic noise may be lower, and system reliability, including reduced sheet jam rates, may be improved. Also, a subsequent sheet need not be delayed for the inversion of a preceding sheet in order to avoid sheet impact or collision, or sheets becoming out of sequential page order in pre-collated printing. Thus, the disclosed dual inverter system embodiments provide opportunities for improved high speed pre-collated printing productivity without increasing the operating speeds and sheet reversal rates of sheets in the inverter and without requiring an increase in the intersheet or inter-pitch gaps between sheets.

There is an additional potential advantage in providing two inverters capable of alternatively providing the same function in the same basic sheet path location, with each inverter capable of running independently. If one inverter system fails, or becomes temporarily unusable, the overall reproduction system can still operate at a reduced processing speed, without a total shutdown. For example, if there is a paper jam in one inverter, the machine controller can sense this and automatically slow down the printing rate to approximately half speed, and exclusively utilize the other available inverter until the jam is cleared from the jammed inverter.

The disclosed dual alternate inverter embodiments have additional potential advantages. For example, they may utilize, and even duplicate, otherwise conventional or existing inverters or inverter components. That is, this system may use two of any of various well-known or other types of sheet inverters. It may be incorporated into various types of high-speed reproduction apparatus, or finishers therefor, with little modification.

The entrance and exit paths and locations of the dual inverters will, of course, vary depending on the desired application of the system and the reproduction apparatus, as will be explained further herein. For example, the location and configuration of the dual inverters and their input and output paths may be different for application in a sheet output or finisher system, as opposed to utilizing the dual inverter system in a duplex loop return path for second side printing. In either case the dual inverters may optionally be in a separate connecting modular unit from the reproduction apparatus.

The functions of both of those two sheet handling and inversion applications are well known per se to those skilled in the art, and need not be discussed in detail herein. The above-cited U.S. 5,131,649 and 4,986,529, for example, also show that a single inverter may be usable for both the functions of duplex path inversion and/or the sheet output inversion. (However, having more than one sheet in an inverter at a time has other issues, and skipping copying pitches to avoid that reduces printing rate productivity.)

As is also well known in the art, sheet inverters may be used even in simplex (only one side printed) printing in some situations. For example, for inverting simplex sheets printed face up in 1 to N (forward serial) order, so that they can be stacked face down as properly collated sets. Or, alternatively, sheets being printed face down (image sides down) in N to 1 (reverse serial) order being inverted for face up stacking. In some systems, having an odd number of natural sheet path inversions, sheet inversion could even be required in a sheet path for second color overprinting of the same side of the sheet. That is, the term “inverter” in the art can broadly encompass various systems for avoiding a sheet being turned over, as well as being turned over, and/or reversing the leading edge to trailing edge orientation of the sheet, in the overall sheet path.

A specific feature of the specific embodiment disclosed herein is to provide a high speed reproduction apparatus with a sheet path in which closely sequentially spaced apart printed sheets are fed downstream in said sheet path in an original sheet sequence, said sheet path having an operative connection to a sheet inverter system according to the invention into which said closely sequentially spaced apart printed sheets in said sheet path are fed to be inverted.

Further specific features disclosed in the embodiment herein, individually or in combination, include those wherein said closely sequentially spaced apart printed sheets in said sheet path are fed at a process velocity, and wherein both of said two independent but cooperative alternate sheet inverters have internal sheet feeding systems operating at substantially said same process velocity.

The two independent but cooperative alternate sheet inverters may be spaced on opposite sides of said sheet path.

The alternate sheet inverters may each have independently operable sheet input gates which are spaced apart from one another along said sheet path and which are differently actuated by a sheet gating control system to be alternatingly fed alternate sheets from said sheet path.

The term "reproduction apparatus" or "printer" as used herein broadly encompasses various printers, copiers or multifunction machines or systems, xerographic or otherwise, unless otherwise defined in a claim. The term "sheet" herein refers to a usually flimsy physical sheet of paper, plastic, or other suitable physical substrate for images, whether precut or web fed. A "copy sheet" may be abbreviated as a "copy" or called a "hard-copy." A "print job" is normally a set of related sheets, usually one or more collated copy sets copied from a set of original document sheets or electronic document page images, from a particular user, or otherwise related. A "simplex" document or copy sheet is one having its image and any page number on only one side or face of the sheet, whereas a "duplex" document or copy sheet has "pages," and normally images, on both sides, i.e., each duplex sheet is considered to have two opposing sides or "pages" even though no physical page number may be present.
Some examples of high speed reproduction apparatus incorporating sheet inverter systems according to the present invention will now be described with reference to the accompanying drawings, in which:

Fig. 1 is a schematic frontal view of an embodiment of a cooperative dual inverter system in accordance with the present invention, showing a dual inverter system in a cooperative series configuration along a paper path of a reproduction apparatus;

Figs. 2, 3, and 4 show the dual inverter system of Fig. 1 in three sequential operating positions for the inverting of two sequential sheets in the paper path;

Fig. 5 schematically shows a comparative example of a dual inverter system, in a parallel configuration, with inverters on opposite sides of the paper path;

Fig. 6 is a schematic frontal view of another example of a cooperative dual inverter system in a parallel configuration for sheet duplexing;

Fig. 7 is a top view of the example of Fig. 6, illustrating the paper path of which it is a part and the inverter decision gates for selecting which sheets will enter which inverter; and,

Fig. 8 is a schematic frontal view illustrating the dual inverter system of Figs. 6 and 7 integrated with one example of a printer, forming the inverter section of a duplex loop path for inverting sheets for their second side printing in that reproduction system.

Referring to the Figures, it may be seen that although an embodiment and several examples are illustrated, they have in common many of the basic concepts and advantages described in the above introduction. They all provide dual inverters cooperatively alternatively operating to invert alternate sheets from a sequential stream of sheets being fed in a sheet path. Since various reasons for doing so, and advantages thereof, have been explained in the above introduction they need not be repeated further here.

In high speed reproduction apparatus in which closely spaced printed sheets are sequentially fed downstream in a sheet path at a process velocity, a dual inverter system of two independent but cooperative sheet inverters is sheet control gated to receive alternate sheets from the sheet path for inversion in the alternate independent sheet inverters. These dual alternate sheet inverters may advantageously operate at substantially the same sheet velocity as the connecting sheet path, instead of the much higher speed and acceleration/deceleration typical of conventional single inverter systems. Yet the original collated sequential sheet order is maintained. The two independent but cooperative alternate sheet inverters are operatively connected in series spaced along the sheet path to be alternatingly fed alternate sheets from the sheet path by separate gates and to return sheets to the same sheet path at different locations.

Referring now to the embodiment of Figs. 1-4, it may be seen that the same dual inverter structure is shown from the same viewpoint in all four of these Figures. Some details of this dual inverter system 30 of Figs. 1-4 may be conventional, and/or similar to the dual inverter system 10 of Figs. 6-8 described below, and thus need not be described in detail here. The two inverters 33A, 33B of this dual inverter system 30 may desirably be of known, conventional type. In this example, these are so-called "tri-roll inverters" with two roll nips, one for receiving incoming sheets and one returning (feeding out) the inverted sheets. These exemplary inverters 33A, 33B have respective conventional tri-rolls 36A, 36B, and inverter chute reversing rolls 37A, 37B in curved inverting chutes 38A, 38B. It may be seen that each individual inverter 33A or 33B of this dual inverter system 30 gates (35A, 35B) in sheets from the paper 34 and returns the inverted sheets back to the same paper path (sheet path) 34 after their inversion in a known and conventional manner, but with different timing and control, as will be described. Both inverters 33A, 33B here are positioned on the same side of the paper path 34, which may be desirable for vertical operating space reasons.

Figs. 2, 3, and 4 illustrate an example of the sequential operation of this dual inverter system 30 for two sequential sheets being fed downstream in the sheet path 34, a first sheet 31 and a second sheet 32. Fig. 2 shows the first sheet 31 having been gated into the first inverter 33A while the second sheet 32 is being fed on past it. In Fig. 3 the second sheet 32 is being gated into the second inverter 33B while the first sheet has been inverted and is about to be fed out of the first inverter 33A. Fig. 4 shows that sheet one (31) has now been fed out into the paper path 34 and fed past the second inverter 33B, and that sheet two (32) is about to be fed out of the second inverter 33B into the paper path 34 right behind sheet one. The entrance gates 35A, 35B of these inverters 33A and 33B may otherwise be operated similarly to the below-described decision gates 14A, 14B of the example of Figs. 6-8.

In the above-described method of operation illustrated for this dual inverter system 30, two consecutive sheets effectively "leap frog" one another as they travel through and in and out of the two inverters 33A, 33B. In other words, when a first sheet 31 is being inverted in the first inverter 33A, the next following or second sheet 32 continues along a bypass path between the two inverters (which is provided here by a short connecting portion of the paper path 34), and thereby temporarily moves ahead of the first sheet 31. Then, the second sheet 32 enters the second inverter 33B and while it is being inverted, the first sheet 31 bypasses the second inverter 33B to move ahead of the second sheet 32 as to thereby move back into the correct collated sheet order. Every such two sheet combination (adjacent pair of sheets) can follow this same sequence. By doing so the final sheet order and inter-sheet gap can be the same as the initial inter-sheet gap and sheet order in the paper path 34.
It will be appreciated, of course, that if there is an intermix job, with simplex sheets following a duplex sheet, then the operation would be the same as for a conventional single inverter system. That is, it may require a skipped pitch before the simplex sheet, which will be fed directly through the paper path 34 without any inversions.

Referring now to Fig. 5, this is a comparative example of a dual inverter system 40 in which the two inverters 44A, 44B are in parallel with one another and the paper path, and positioned on opposite sides of the paper path. There is a common sheet entrance path 41 and a common sheet exit path 42, in line with one another. In this dual inverter system 40, the sheets all enter on the common entrance path 41 and exit on the common exit path 42. From the common entrance path 41, the sheets may be deflected by a single inverter decision gate 43 into either the upper inverter 44A or a lower inverter 44B, respectively having inverter chutes 45A, 45B. Note that these are similar conventional tri-roller type inverters with reversing rolls in the inverter chutes. However, in this case, each inverter 44A, 44B has a parallel output path 46A, 46B leading from the inverter chute and its tri-roll output to a merger position in the common exit path 42. A single inverter routing gate 43 alternately routes every other sheet to the alternate inverters 44A or 44B to provide alternative sheet inverting passage between the entrance path 41 and the exit path 42. For simplex (non-inversion) alternate decision gates and a bypass path may be provided as shown in phantom at 47A, 47B. Alternatively, the inverter routing gate 43 may be, as shown, a three-way gate, and have a central position allowing the feeding of simplex sheets through that gate 43 straight through from the common entrance path 41 to the common exit path 42, thereby eliminating any need for bypass gates and paths 47A, 47B. This alternative simplex path is shown in Fig. 5 by the phantom lines paper path directly connecting the common entrance path 41 to the common exit path 42 through gate 43, all in a common plane.

Figs. 6-8 show a further specific comparative example and descriptions as to gate control functions, sensors, etc., below or above, may also apply to the embodiment and need not be repeated.

Referring now to said comparative example of Figs. 6, 7 and 8, and especially the enlarged view of Fig. 6, there is shown a dual inverter system 10 consisting of two adjacent inverters 12A and 12B in parallel. Both of these inverters 12A and 12B have their sheet inputs connecting to the same paper path 13 at adjacent but spaced apart positions. The connection of the inverters to the paper path 13 in this case (their sheet inputs) is respectively provided by their two respective inverter decision gates 14A and 14B. When activated, these decision gates 14A or 14B extend into the paper path 13 to engage the leading edge of a selected sheet in the paper path 13 and deflect that sheet into the respective inverter entrance path 15A or 15B of the inverter 12A or 12B. This, and other operations, may be under the programmed control of a conventional controller 100 in the associated printer 20 or in a separate modular controller of the dual inverter system 10 itself, which may be a modular unit for the printer, and/or part of a finisher module.

When the particular print job calls for, or requires, sheet inversion, the decision gates 14A and 14B may be alternatingly actuated by the controller 100 between each alternating sheet in the sheet path 13, so as to put alternate sequential sheets that are moving in the paper path 13 into alternate inverters 12A or 12B. As noted above, the construction and operation of the two inverters 12A and 12B themselves may be identical, and may be conventional. In this particular comparative example a sheet is fed through the inverter entrance path 15A or 15B by conventional feed rollers at that point and it may pass a paper jam sensor 101A, 101B for jam detection. That sensor 101A, 101B may optionally also be a dual mode sensor sending a control signal to the bi-directional inverter motor for the reversible feed rolls 17A, 17B in the inverter chutes 16A, 16B. After the sheet has continued to be fed fully out of the sheet path 13 it continues to be fed on into the inverter chutes 16A or 16B. In this case, sufficiently far for the trail edge of the sheet (depending on its sheet length) to pass a one-way bypass gate 18A, 18B which is provided in this particular inverter example. Then the reversible rolls 17A, 17B are reversed, that is, reversely driven, to drive the sheet out through the exit path 19A, 19B.

These one-way bypass gates 18A, 18B may be non-actuated gates such as a conductive light spring steel, or plastic material, that will allow paper to pass through it and they spring back to its normal form, as is well known in other document handlers and other systems in the art. The bi-directional sensor 101A, 101B may be provided in the inverter chute 15A, 15B to provide a two-function paper entrance and exit sensor design. This can provide software algorithm signals to control the drive of the bi-directional inverter motor for the reversible feed rolls 17A, 17B in opposite directions when the respective lead and trail edges of the sheet of paper are detected. These inverters 12A or 12B can automatically accommodate intermittent print jobs, for example, sheets varying from letter size to ledger size. It may be seen that these inverters 12A or 12B of this dual inverter system 10 here also provide large sheet path radii, which reduces potential sheet jam problems.

In some other applications, this exit path 19A, 19B would rejoin the original paper path 13, as shown in other examples herein. However, as shown in Fig. 8, in this example, the exit paths 19A, 19B converge into a common output path which is part of an otherwise conventional duplex loop sheet path 22 which returns the sheets inverted back for their second side printing in the printer 20. The exemplary duplex loop sheet path 22 provides conventional second side printing of the sheets being duplexed before they are fed out to the printer 20 output sheet path 24. Of course, sheets being only sim-
plex printed would not need be inverted and fed through this duplex loop path 22. They may go directly to the sheet output path 24, as is well known to those in the art. In this case, desirably passing linearly through the paper path 13 thereto.

[0033] For either duplex or simplex printing, the sheets are being conventionally imaged in this particular printer 20 example by passage of the sheets past a transfer station 25 for receiving the images transferred from a photoreceptor 26. Of course, a comparable print station could be provided by inkjet or other printing systems suitable for high speed printing as well. The clean sheets for the initial side printing may be conventionally provided from roll fed or cut sheet (as shown) feed sources, as is well known in the art and need not be described herein. The printer 20 here is merely one example of a high speed xerographic digital laser printer, others of which are cited above, which can rapidly print sheets in proper sequential collated order, that is, pre-collated, thereby allowing direct on-line finishing of print jobs of collated document sets and not requiring an output sorter or collator.

[0034] It will be noted that in this particular comparative example of Figs. 6-8 that the paper path 13 described above may be considered a continuation of the output sheet path 24 of the printer 20 into a separate module, which may also provide additional sheet feed sources, and/or an interposer module providing for inserting additional preprinted media into the sheet feed stream of the paper path 13. The paper path 13 may typically extend to one or more various finishing devices, as is also well known in the art. The location(s) of the subject dual inverters may be in various of those units.

[0035] It will be appreciated that the signals for actuating the respective inverter entrance or decision gates 14A, 14B may be keyed to the sheet timing and positional signals which are already conventionally available in the printer 20 controller 100 for the sheet lead edge positions. In an efficient printer with variable pitch for variable sheet sizes, the timing and spacing between the lead edges of sequential sheets will, of course, vary depending on the length of the sheet in the process direction within a particular print job, so as to minimize wasted pitch and intra-document space between the various sheets being printed.

[0036] As described above, all of the sheet transports within the inverters 12A and 12B may be desirably operated at the same or substantially the same steady state sheet feeding velocity as the sheet transports of the paper path 13 with which it is associated. This process speed may also be, but is not necessarily, the same as the imaging process speed of the printer 20. As described above, this sheet handling provides significant advantages, without risking collision between closely adjacent sheets being printed by the printer 20. In particular, not having to move the sheets much more rapidly through the inverters for the sheet inversion process, and thus also reducing sheet acceleration and deceleration problems. Likewise, no undesirable overlapping of sheets in the inverter system is required and positive sheet feeding control may be obtained at all times. Thus, increased throughput for high speed printing may be provided, yet with increased reliability.

Claims

1. A sheet inverter system (30) comprising a dual inverter system operatively connecting with a sheet path (34) along which closely sequentially spaced apart printed sheets are fed in use, said dual inverter system comprising two independent but cooperative alternate sheet inverters (33A,33B) and a sheet gating control system (35A,35B), said sheet gating control system being programmable and operable to alternately direct alternate said closely sequentially spaced apart printed sheets in said sheet path (34) into said alternate independent sheet inverters (33A, 33B), characterized in that said two independent but cooperative alternate sheet inverters (33A,33B) are located upstream and downstream from one another along said sheet path (34), and operable in series with said sheet path so that alternate sheets leapfrog one another by feeding a first sheet in said feed path (34) into said upstream inverter (33A) and feeding the immediately following second sheet in said feed path past said first sheet in said upstream inverter and into said downstream inverter (33B), and then feeding said first sheet out of said upstream inverter (33A) past said second sheet in said downstream inverter (33B), and then feeding said second sheet in said downstream inverter (33B) into said feed path.

2. A system according to claim 1, wherein said two independent but cooperative alternate sheet inverters (33A,33B) have respective sheet exits connecting to said same sheet path (34) at different positions.

3. High speed reproduction apparatus comprising a sheet path (34) in which closely sequentially spaced apart printed sheets are fed downstream in said sheet path, said sheet path having an operative connection to a sheet inverter system (30) according to any of the preceding claims into which said closely sequentially spaced apart printed sheets in said sheet path are fed to be inverted.

4. The high speed reproduction apparatus of claim 3, wherein said closely sequentially spaced apart printed sheets in said sheet path (34) are fed at a process velocity, and wherein both of said two independent but cooperative alternate sheet inverters (33A,33B) have internal sheet feeding systems operating at substantially said process velocity.

5. The high speed reproduction apparatus of claim 3
or claim 4, wherein said high speed reproduction apparatus has a duplex loop path for returning sheets printed on one side to be printed on their other side, and wherein said two independent but cooperative alternate sheet inverters (33A, 33B) are alternately connected to form a part of said duplex loop path.

Patentansprüche

1. Blattwendesystem (30), das ein Doppel-Wendesystem umfasst, das funktionell mit einem Blattweg (34) verbunden ist, auf dem nah aufeinanderfolgend beabstandete bedruckte Blätter in Funktion transportiert werden, wobei das Doppel-Wendesystem zwei unabhängige, jedoch zusammenwirkende abwechselnde Blattwendeeinrichtungen (33A, 33B) und ein Blattaufsicht-Steuerungssystem (35A, 35B) umfasst, das Blattaufsicht-Steuerungssystem so programmiert und betrieben werden kann, dass es die nah aufeinanderfolgend beabstandeten bedruckten Blätter auf dem Blattweg (34) abwechselnd in die abwechselnden unabhängigen Blattwendeeinrichtungen (33A, 33B) leitet, dadurch gekennzeichnet, dass die zwei unabhängigen, jedoch zusammenwirkenden abwechselnden Blattwendeeinrichtungen (33A, 33B) entlang des Blattweges (34) vor- und hintereinander angeordnet sind und in Reihe mit dem Blattweg betrieben werden können, so dass abwechselnde Blätter einander überholen, indem ein erstes Blatt auf dem Blattweg (34) in die vordere Wendeeinrichtung (33A) transportiert wird und das unmittelbar folgende zweite Blatt auf dem Blattweg an dem ersten Blatt in der vorderen Wendeeinrichtung vorbei und in die hintere Wendeeinrichtung (33B) transportiert wird und dann das erste Blatt an dem zweiten Blatt in der hinteren Wendeeinrichtung (33B) vorbei aus der vorderen Wendeeinrichtung (33A) heraus transportiert wird und anschließend das zweite Blatt in der vorderen Wendeeinrichtung (33B) auf den Blattweg transportiert wird.

2. System nach Anspruch 1, wobei die zwei unabhängigen, jedoch zusammenwirkenden abwechselnden Blattwendeeinrichtungen (33A, 33B) entsprechende Blattausritte haben, die an verschiedenen Positionen mit ein und demselben Blattweg (34) verbunden sind.

4. Hochgeschwindigkeits- Vervielfältigungsvorrichtung nach Anspruch 3, wobei die nah aufeinander folgend beabstandeten bedruckten Blätter auf dem Blattweg (34) mit einer Prozessgeschwindigkeit transportiert werden und wobei beide unabhängigen, jedoch zusammenwirkenden abwechselnden Blattwendeeinrichtungen (33A, 33B) interne Blatttransportsysteme haben, die im Wesentlichen mit der gleichen Prozessgeschwindigkeit arbeiten.

5. Hochgeschwindigkeits- Vervielfältigungsvorrichtung nach Anspruch 3 oder Anspruch 4, wobei die Hochgeschwindigkeits- Vervielfältigungsvorrichtung einen Duplexschleifenweg zum Zurückführen von auf einer Seite bedruckten Blättern, um sie auf ihrer anderen Seite zu bedrucken, aufweist, und wobei die zwei unabhängigen, jedoch zusammenwirkenden abwechselnden Blattwendeeinrichtungen (33A, 33B) abwechselnd verbunden sind, um einen Teil des Duplexschleifenweges zu bilden.

Revendications

1. Système inverseur de feuille (30) comprenant un double système inverseur se raccordant de manière fonctionnelle à un trajet de feuille (34) le long duquel les feuilles imprimées espacées séparément de manière très séquentielle sont introduites pour une utilisation, ledit double système inverseur de feuille comprenant deux dispositifs inverseurs de feuille alternatifs, indépendants mais coopératifs (33A, 33B) et un système de commande d’entrée de feuille (35A, 35B), ledit système de commande d’entrée de feuille étant programmable et utilisable pour faire en continu alterner tour à tour lesdites feuilles imprimées espacées séparément de manière très séquentielle dans ledit trajet de feuille (34) dans lesdits dispositifs inverseurs de feuille indépendants alternatifs (33A, 33B), caractérisé en ce que ledits deux dispositifs inverseurs de feuille alternatifs, indépendants mais coopératifs (33A, 33B) sont situés en amont et en aval l’un de l’autre le long dudit trajet de feuille (34) et sont utilisables en série avec ledit trajet de feuille de telle sorte que, tour à tour, des feuilles sautent l’une pardessus l’autre en introduisant une première feuille dans ledit trajet d’alimentation (34) dans ledit dispositif inverseur en amont (33A) et en introduisant la seconde feuille qui suit immédiatement dans ledit trajet d’alimentation après ladite première feuille dans ledit dispositif inverseur en amont et dans ledit dispositif inverseur en aval (33B), et, ensuite, en sortant ladite première feuille dudit dispositif inverseur en amont (33A) après ladite seconde feuille dans ledit dispositif inverseur en aval (33B) et, ensuite, en introduisant ladite seconde feuille dans ledit dispositif inverseur en aval (33B) dans ledit trajet d’alimentation.
2. Système selon la revendication 1, dans lequel lesdits deux dispositifs inverseurs de feuille alternatifs, indépendants mais coopératifs (33A, 33B) ont des sorties de feuille respectives se raccordant au dit même trajet de feuille (34) à différentes positions.

3. Appareil de reproduction à grande vitesse comprenant un trajet de feuille (34) dans lequel les feuilles imprimées espacées séparément de manière très séquentielle sont entrées en aval dans ledit trajet de feuille, ledit trajet de feuille ayant un raccordement fonctionnel à un système inverseur de feuille (30) selon l'une quelconque des revendications précédentes, dans lequel lesdites feuilles imprimées espacées séparément de manière très séquentielle dans ledit trajet de feuille sont introduites pour être inversées.

4. Appareil de reproduction à grande vitesse selon la revendication 3, dans lequel lesdites feuilles imprimées espacées séparément de manière très séquentielle dans ledit trajet de feuille (34) sont introduites à une vitesse de traitement et dans lequel l'un et l'autre desdits deux dispositifs inverseurs de feuille alternatifs, indépendants mais coopératifs (33A, 33B) ont des systèmes d'alimentation de feuille internes fonctionnant à sensiblement ladite même vitesse de traitement.

5. Appareil de reproduction à grande vitesse selon la revendication 3 ou la revendication 4, dans lequel ledit appareil de reproduction à grande vitesse a un double trajet en boucle pour retourner les feuilles imprimées sur une face qui doivent être imprimées sur leur autre face et dans lequel lesdits deux dispositifs inverseurs de feuille alternatifs, indépendants mais coopératifs (33A, 33B) sont tours à tour raccordés pour former une partie dudit double trajet en boucle.