(45) Date of publication and mention of the grant of the patent: 25.05.2005 Bulletin 2005/21

(21) Application number: 99973963.4

(22) Date of filing: 09.07.1999

(51) Int.Cl.: C06B 29/02, C06B 31/28, C06B 43/00

(86) International application number: PCT/ES1999/000224

(87) International publication number: WO 2001/004073 (18.01.2001 Gazette 2001/03)

(54) METHOD AND PLANT FOR IN SITU FABRICATION OF EXPLOSIVES FROM WATER-BASED OXIDANT PRODUCT

VERFAHREN UND ANLAGE ZUR IN-SITU HERSTELLUNG VON EXPLOSIVSTOFFEN AUS OXIDIERENDEN PRODUKTEN AUF WASSERBASIS

PROCEDE ET INSTALLATION PERMETTANT LA FABRICATION IN SITU D’EXPLOSIFS A PARTIR D’UN PRODUIT OXYDANT A BASE AQUEUSE

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

• QUINTANA ANGULO, Jose Ramon E-Getxo (ES)
• BEITIA GOMEZ DE SEGURA, Fernando Maria E-Murguia (ES)

(43) Date of publication of application: 22.05.2002 Bulletin 2002/21

(73) Proprietor: UNION ESPANOLA DE EXPLOSIVOS S.A.
28042 Madrid (ES)

(74) Representative: Del Santo Abril, Natividad Oficina Garcia Cabrerizo, S.L., Vitruvio, 23 28006 Madrid (ES)

(72) Inventors:
• LANZA RIVAS, Rafael E-Las Arenas (ES)

(56) References cited:
ES-A-2 047 418
US-A-3 507 718

GB-A-1 215 378
US-A-4 142 928

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention refers to a procedure and an installation for on-site manufacturing of explosives by means of incorporating fuel and gas into an oxidant water based product with formation of emulsion or dispersion of the fuel and the gas in the liquid mixture.

BACKGROUND OF THE INVENTION

[0002] The initiation mechanism of explosives by means of generation of hot points due to the adiabatic compression of gas bubbles is the basis of modern industrial explosives formulated without components that are intrinsically explosive.

[0003] The introduction of gas bubbles can be done either by entrapment during the mixture or by its formation by means of a chemical reaction. US Patent 3,400,026 describes a formulation that employs protein in dissolution (albumin, collagen, soy protein, etc.) to favor the formation of bubbles and their stabilization. US Patent 3,582,411 describes a formulation of explosive hydrogel that contains a foam promoting agent of the guar gum type modified with hydroxyl groups.

[0004] US Patent 3,678,140 describes a process for the incorporation of air by means of the use of protein solutions, making the composition pass through a series of openings at pressures of 40 to 160 psi and simultaneously introducing air by means of eductors.

[0005] The incorporation of gas bubbles by means of their generation as a result of a chemical reaction is described in US Patents number 3,706,607, 3,711,345, 3,713,919, 3,770,522, 3,790,415 and 3,886,010.

[0006] Regarding the on-site manufacture of explosives, that is, in the truck itself which is used for pumping the explosives into the bores, the first patents are from IRECO, as described in US Patents 3,303,738 and 3,338,033. These patents are characterized by the manufacturing in the truck of an explosive of the hydrogel type by means of the dosing and mixture of a solid solution of oxidizing salts with a solid material that contains oxidizing salts and thickeners.

[0007] In US Patent 3,610,088 (IRECO) they use the same method as the previous patents for the on-site forming of the hydrogel and they incorporate the simultaneous addition of air either by means of mechanical entrapment or their generation by means of a chemical reaction. EP Patent 0 203 230 (IRECO) describes a mixer consisting of moveable and fixed blades which allow an on-site manufacturing of a blasting agent of the water emulsion in oil type. The sensitization of this emulsion is accomplished by adding low density particles (oxidants or hollow microspheres).

[0008] The on-site manufacturing of the explosive has as its main advantage a decrease of risk during its transportation. However, it is necessary to have a very sophisticated mobile installation with complex processes for manufacturing and control, due to the use of oxidizing salts at high temperatures, dosing of solids and mixtures of liquids and solids.

[0009] Another alternative is the transportation of the finished product without sufficient sensitizing, that is, at a density such that it does not have the capacity to propagate a stable detonation. In this context in recent years it has become common to transport the matrix product and produce its sensitization at the mine either by means of mixing it with low density particulated nitrates or mixtures of ammonium nitrate with hydrocarbide (ANFO) or by means of the generation of bubbles from a chemical reaction. US Patent 4,555,278 describes an explosive of this type manufactured by a mixture of emulsion and ANFO. European Patent EP 0 194 775 describes an explosive of the previous type, made from a hydrogel matrix.

[0010] The sensitization of the matrix emulsion by means of gas bubble generation from a chemical reaction is presently the most widespread method. However, to avoid the coalescence of the gas bubbles, as described in US Patent 4,008,108, the pumping and the manipulation of the emulsion must be performed before the gasification reaction occurs. This method thus presents the disadvantage of having to wait a certain amount of time after filling the bores until reaching the final density, not having the capacity to maneuver if the obtained density does not coincide with what is expected, possibly causing sensitization failures or an incorrect dispersion of explosive in the bore column.

[0011] Patent application WO 99/00342, in the name of UNIÓN ESPAÑOLA DE EXPLOSIVOS, S.A., claims a process for the sensitizing of water based explosives before loading the bores, from a non-explosive matrix consisting of oxidants and fuels, by means of the formation of an emulsion or dispersion of gas in said matrix. The density control is performed before loading the bore, regulating the flow of gas that is injected.

[0012] Although the transport of a matrix product and its on-site sensitization supposes a large advance from the safety point of view compared to the transportation of the already sensitized product, there are various experiences of accidents in which a detonation of a non-sensitized matrix product has occurred as a consequence of an inadequate manipulation or by the effect of a prolonged fire. For this reason, in some countries, such as Australia, a new denomination has been created for matrices of mixtures of oxidants and reductants known as explosive precursors. Although these types of products are classified for transportation as oxidants 5.1, they must be manufactured in facilities that
have the safety measures, distances, etc., of an explosive manufacturing plant.

SUMMARY OF THE INVENTION

The present invention eliminates the transportation of explosives or mixtures of oxidants and reductants commonly known as matrices or explosive precursors, by means of the on-site manufacture of the explosive, that is, at the place of use, without the inconveniences that this process presented until now (complex installations, difficult handling of intermediary products, complex processes, etc.). The invention consists of the manufacture within the industrial area of a suspension of oxidizing salts in a water solution saturated with oxidizing salts, stabilized by means of a thickener preferably of inorganic origin that will allow to maintain the oxidant particles dispersed in a homogenized manner. In the event of using organic thickeners, the percentage of it is sufficiently small so that said suspension may be considered as an oxidant suspension.

According to the present invention, the manufacture and sensitization of the explosive is performed on-site, by means of an intimate mixture of said stable oxidant dispersion at room temperature, with a fuel and a gas in a mixer, causing the formation of a suspension or emulsion of gas in liquid. The density of the end explosive product may be varied as a function of the volume of gas and this is controlled before introducing it into the bore.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a schematic of a particular embodiment of an installation for the on-site manufacturing of a water based explosive provided by this invention.

Figure 2 shows a schematic of another particular embodiment of a n installation for the on-site manufacturing of a water based explosive provided by this invention that includes a container for the stabilizer, a dosing pump and a flow-meter.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides a process for "in situ" manufacturing of water based explosives which comprises:

i)transporting a water based oxidizer product, said product consisting of a saturated aqueous solution of oxidizer salts, oxidizer particles in suspension and thickening agents and having an oxygen balance greater than 14%, to a loading place for explosives receiving boreholes,

(ii)mixing said water based oxidizer product with a fuel and a gas selected from the group consisting of air, nitrogen, oxygen and carbon dioxide, to form a sensitized water based explosive, wherein the density of said explosive is adjusted by controlling the gas volume; and then

(iii)loading said sensitized water based explosive in a borehole.

Optionally, the process may include the addition of a stabilizing solution of the gas bubbles

The manufacture and sensitization of the explosive by means of the process of the invention may be performed either sequentially, that is, mixing the water based oxidant product with the fuel and later adding the gas, or preferably mixing the water based oxidant product simultaneously with the fuel and the gas.

In the sense used in this description, "on-site manufacturing" refers to the manufacturing and sensitization of the explosive before loading the bores.

The oxidant product consists of a water based liquid mixture that comprises oxidant salts in a solution and in suspension and thickeners to maintain the oxidant particles in suspension.

Oxidant salts that can be employed may be nitrates, chlorates and perchlorates of ammonium, alkaline and alkaline earth metals and their mixtures. Specifically these salts may be, among others, ammonium, sodium, potassium, lithium, magnesium, calcium nitrates, chlorates and perchlorates, or their mixtures. The total concentration of oxidant salts present in the matrix product may vary between 60 and 95% by weight of the formulation of the oxidant product, preferably between 80 and 90%.

Thickening agents that can be employed may be products of inorganic origin of the sepiolite type, or organic such as derivatives from seeds such as guar gum, galactomannans, biosynthetic products such as xanthan gum, starch, cellulose and its derivatives such as carboxymethylcellulose or synthetic polymers such as polyacrylamide.

The concentration of thickeners in the oxidizing product may vary between 0.1 and 5% by weight of the formulation, preferably between 0.5 and 2%. In the event of using organic thickeners the concentration must be small enough so that the oxygen balance of the oxidant product is greater than 14%.
The invention also refers to an installation for “in situ” (on-site) manufacturing of water based explosives according to the previously described procedure, such as shown in figure 1, comprising:

- a mixer (5),
- a tank (1) for the storage of the water based oxidizer product,
- a pump flow (3) connecting said tank for the storage of the water based oxidizer product (1) to the mixer,
- a tank (11) for the storage of the fuel,
- a pump flow (12) connecting said tank for the storage of the fuel (11) to the mixer,
- a flow-meter (13) for regulating the addition of the fuel to the mixer,
- a gaseous reserve (10) of gas operatively connected to the mixer, and
- a gas flow regulating device (6).

[0033] The mixer (5) can operate continuously and it can be of the dynamic type such as for example a beater or a static mixer. At the mixer’s (5) outlet a pump may be placed containing a chute (9) that is used to load the already sensitized explosive in the bores.

[0034] Figure 2 shows an alternative embodiment of the installation provided by this invention that is adequate for performing the process in which a stabilizer is added to the mixture of oxidants, fuels and the gas in the mixer. This alternative installation consists of, aside from the previously mentioned equipment, a tank (2) for the storage of stabilizing solution of the gas bubbles, a dosing pump (4) and a flow-meter (7).
In a particular and preferred embodiment, the installation is placed on a truck for loading bores or a pumping truck, which has a tank that contains the water based oxidizing product, a tank containing the fuel, two pumps that dose the oxidizing product and the fuel, a pump for loading the bores and a device for dosing the gas.

The invention is illustrated by means of the following example which in no case is limitative of the scope of the invention.

EXAMPLE

This example describes a type installation and the explosive manufactured in it.

This installation is located on top of a truck which allows the transportation of the oxidizing product and the manufacturing and sensitization at the mine. It consist of the following elements (Figure 2):

- a 10,000 l tank (1) where the water based oxidizing product is stored;
- a 1,000 l tank (11) where the fuel is stored;
- a 200 l tank (2) for storing the stabilizer;
- three pumps (3, 4 and 12) for transferring the oxidizing product, the stabilizer and the fuel respectively to a mixer (5) of the beater type;
- a valve (6) connected to an air line, for dosing the air to the mixer (5);
- three flow-meters (7, 8 and 13) intercalated between the pump (4), the valve (6), the pump 12 and the mixer (5) to control the flow of stabilizer, air and fuel respectively; and
- a pump containing a chute (9) located at the exit of the mixer (5) used for loading the already sensitized explosive into the bores.

The tank (1) was filled with the formulation of the water based oxidizing product described in Table 1, in which the ammonium nitrate and sodic nitrate particles are in suspension in the water solution saturated with said salts, said suspension being stabilized with the guar gum.

The oxygen balance of this formulation of oxidizing product is of +19.6% and its density is 1.51 g/cm³.

In the tank (2) a solution of stabilizer was prepared composed of 90 parts water and 10 parts egg albumin.

The tank (11) was filled with fuel oil.

After the calibration of the dosers the operation began connecting the beater and the different pumps in the conditions described in Table 2.

The already sensitized explosive came out of the mixer (5) by overflow falling on the chute (9) from where it was pumped to the bores, injecting into the hose a reticulated solution of chromic acid at 6% in water.

The values of detonation speed correspond to samples tested in iron pipe of 50 mm interior diameter and initiated with a multiplier of 15 g of pentrite (PETN).
Claims

1. A process for "in situ" manufacturing of water based explosives, which comprises:

 (i) transporting a water based oxidizer product, said product consisting of a saturated aqueous solution of oxidizer salts, oxidizer particles in suspension and thickening agents and having an oxygen balance greater than 14%, to a loading place for explosives receiving boreholes,

 (ii) mixing said water based oxidizer product with a fuel and a gas selected from the group consisting of air, nitrogen, oxygen and carbon dioxide, to form a sensitized water based explosive, wherein the density of said explosive is adjusted by controlling the gas volume; and then

 (iii) loading said sensitized water based explosive in a borehole.

2. A process according to claim 1, wherein said water based oxidizer product contains between 60% and 95% by weight of an oxidizer salt.

3. A process according to claim 1, wherein said water based oxidizer product contains an oxidizer salt selected from the group consisting of nitrates, chlorates and perchlorates of ammonium, alkaline metals and alkaline-earth metals and mixtures thereof.

4. A process according to claim 1, wherein said water based oxidizer product contains between 0.1% and 5% by weight of a thickening agent.

5. A process according to claim 1, wherein said water based oxidizer product contains a thickening agent selected from the group consisting of products derived from seeds, biosynthetic products and derivatives thereof, synthetic polymers and thickeners of inorganic origin of the sepiolite type.

6. A process according to claim 1, wherein said fuel is selected from the group consisting of aromatic hydrocarbons, aliphatic hydrocarbons, oils, petroleum derivatives, derivatives of vegetable origin, finely divided metallic fuels and their mixtures.

7. A process according to claim 1, wherein the explosive obtained contains between 3% and 20% by weight of a fuel.

8. A process according to claim 1, wherein the volumetric ratio between said gas and the mixture of water based oxidizer product and fuel is comprised between 0.05 and 5.

9. A process according to claim 1, which further includes the addition of a solution for stabilizing gas bubbles in step (ii).

10. A process according to claim 9, wherein said solution for stabilizing gas bubbles is selected from the group consisting of solutions or dispersions of surfactants, proteins, polymers and derivatives thereof.

11. A process according to claim 9, wherein the explosive manufactured contains between 0.01% and 5% by weight with respect to the explosive, of said solution for stabilizing gas bubbles.

12. An installation for "in situ" manufacturing of water based explosives, according to the process of any one of claims 1 to 11, comprising:

 - a mixer;
 - a tank for the storage of the water based oxidizer product;
 - a pump flow connecting said tank for the storage of the water based oxidizer product to the mixer;
 - a tank for the storage of the fuel;
 - a pump flow connecting said tank for the storage of the fuel to the mixer;
 - a flow-meter for regulating the addition of the fuel to the mixer;
 - a gaseous reserve of gas operatively connected to the mixer; and
 - a gas flow regulating device.

13. An installation according to claim 12, which further contains a tank for the storage of a solution for stabilizing gas
bubbles and a pump flow connecting said tank for the storage of the solution for stabilizing gas bubbles to the mixer.

14. An installation according to any one of claims 12 or 13, wherein said mixer is a dynamic type mixer.

15. An installation according to any one of claims 12 or 13, wherein said mixer is a discontinuous mixer.

16. An installation according to any one of claims 12 to 15, said installation being placed on a borehole loading truck.

Patentansprüche

1. Verfahren für die "in situ"-Herstellung von Sprengstoffen auf Wasserbasis, das folgendes umfasst:

 (i) ein Oxidationsmittel auf Wasserbasis, das aus einer mit Oxidationssalzen, Oxidationspartikeln in Suspension und Verdickungsmitteln gesättigten wässrigen Lösung besteht und das ein Sauerstoffgleichgewicht von über 14% hat, an einen Ladeort von Bohrlöchern, in die Sprengstoffe eingefüllt werden, zu transportieren, (ii) das genannte Oxidationsmittel auf Wasserbasis mit einem Brennstoff und einem aus der aus Luft, Stickstoff, Sauerstoff und Kohlendioxid bestehenden Gruppe gewählten Gas zu mischen, um einen sensibilisierten Sprengstoff auf Wasserbasis zu erhalten, bei dem die Dichte des genannten Sprengstoffs durch Steuerung des Gasvolumens eingestellt wird; und anschließend (iii) den genannten sensibilisierten Sprengstoff auf Wasserbasis in ein Bohrloch einzufüllen.

2. Verfahren nach Anspruch 1, bei dem das genannte Oxidationsmittel auf Wasserbasis zwischen 60% und 95 Gew.-% eines Oxidationssalzes enthält.

4. Verfahren nach Anspruch 1, bei dem das genannte Oxidationsmittel auf Wasserbasis zwischen 0,1% und 5 Gew.-% eines Verdickungsmittels enthält.

5. Verfahren nach Anspruch 1, bei dem das genannte Oxidationsmittel auf Wasserbasis ein aus der Gruppe von aus Samen hergestellten Produkten, biosynthetischen Produkten oder Derivaten derselben, synthetischen Polymeren und Verdickungsmitteln anorganischen Ursprungs vom Typ Sepiolith ausgewähltes Verdickungsmittel enthält.

6. Verfahren nach Anspruch 1, bei dem der Brennstoff aus der Gruppe der aromatischen Kohlenwasserstoffe, der aliphatischen Kohlenwasserstoffe, Öle, Erdölterivate, Derivate fein zerteilter metallischer Brennstoffen pflanzlichen Ursprungs und deren Mischungen ausgewählt wird.

7. Verfahren nach Anspruch 1, bei dem der erhaltene Sprengstoff zwischen 3% und 20 Gew.-% Brennstoff enthält.

8. Verfahren nach Anspruch 1, bei dem das Volumenverhältnis zwischen dem genannten Gas und der Mischung des Oxidationsmittels auf Wasserbasis und dem Brennstoff zwischen 0,05 und 5 liegt.

9. Verfahren nach Anspruch 1, das außerdem die Zugabe einer Lösung für die Stabilisierung der Gasblasen in der Phase (ii) umfasst.

10. Verfahren nach Anspruch 9, bei dem die genannte Lösung für die Stabilisierung der Gasblasen aus der Gruppe von Lösungen oder Dispersionen aus Tensiden, Proteinen, Polymeren und Derivaten derselben ausgewählt wird.

11. Verfahren nach Anspruch 9, bei dem der hergestellte Sprengstoff zwischen 0,01% und 5 Gew.-% dieser Lösung für die Stabilisierung der Gasblasen in Bezug auf den Sprengstoff enthält.

12. Anlage für die "in situ"-Herstellung von Sprengstoffen auf Wasserbasis nach dem Verfahren nach einem der Ansprüche 1 bis 11, die folgendes umfasst:

 - einen Mischer
- einen Tank für die Lagerung des Oxidationsmittels auf Wasserbasis;
- einen Pumpenfluss, der den genannten Tank für die Lagerung des Oxidationsmittels auf Wasserbasis mit dem Mischer verbindet;
- einen Tank für die Lagerung des Brennstoffs;
- einen Pumpenfluss, der den genannten Tank für die Lagerung des Brennstoffs mit dem Mischer verbindet;
- einen Durchflussmesser, um die Zugabe des Brennstoffs zum Mischer zu regeln;
- eine gasförmige Gasreserve, die wirksam mit dem Mischer verbunden ist; und
- eine Vorrichtung zur Regelung des Gasflusses.

13. Anlage nach Anspruch 12, die außerdem einen Tank für die Lagerung einer Lösung für die Stabilisierung der Gasblasen und einen Pumpenfluss, der den genannten Tank für die Lagerung der Lösung für die Stabilisierung der Gasblasen mit dem Mischer verbindet, enthält.

15. Anlage nach einem der Ansprüche 12 oder 13, wobei es sich bei dem genannten Mischer um einen diskontinuierlichen Mischer handelt.

16. Anlage nach einem der Ansprüche 12 bis 15, wobei die genannte Anlage auf einem Lastwagen aufgestellt wird, mit dem ein Bohrloch gefüllt wird.

Revidications

1. Procédé pour fabriquer "in situ" des explosifs à base d'eau, comprenant:
 (i) Le transport d'un produit oxydant à base d'eau, ledit produit consistant en une solution aqueuse saturée de sels oxydants, de particules oxydantes en suspension et d'agents épaississants et ayant un équilibre d'oxygène supérieur à 14%, à un lieu de charge de trous de mine recevant des explosifs,
 (ii) Le mélange dudit produit oxydant à base d'eau avec un combustible et un gaz sélectionné parmi le groupe consistant en de l'air, de l'azote, de l'oxygène et du dioxyde de carbone, pour former un explosif à base d'eau sensibilisé, dans lequel la densité dudit explosif s'ajuste en contrôlant le volume de gaz; et après
 (iii) La charge dudit explosif à base d'eau sensibilisé dans un trou de mine.

2. Procédé selon la revendication 1, dans lequel le dit produit oxydant à base d'eau contient entre 60% et 95% en poids d'un sel oxydant.

3. Procédé selon la revendication 1, dans lequel ledit produit oxydant à base d'eau contient un sel oxydant sélectionné parmi le groupe consistant en des nitrates, chlorates et perchlorates d'ammonium, des métaux alcalins et des métaux alcalino-terreux et des mélanges de ceux-ci.

4. Procédé selon la revendication 1, dans lequel ledit produit oxydant à base d'eau contient entre 0,1% et 5% en poids d'un agent épaississant.

5. Procédé selon la revendication 1, dans lequel ledit produit oxydant à base d'eau contient un agent épaississant sélectionné parmi le groupe consistant en des produits dérivés de graines, produits bio-synthétiques et des dérivés de ceux-ci, des polymères synthétiques et des épaississants d'origine inorganique du type sépiolite.

6. Procédé selon la revendication 1, dans lequel ledit combustible est sélectionné parmi le groupe consistant en des hydrocarbures aromatiques, des hydrocarbures aliphatiques, des huiles, des dérivés du pétrole, des dérivés de combustibles métalliques finement divisés d'origine végétale et leurs mélanges.

7. Procédé selon la revendication 1, dans lequel l'explosif obtenu contient entre 3% et 20% en poids d'un combustible.

8. Procédé selon la revendication 1, dans lequel le rapport volumétrique entre ledit gaz et le mélange de produit oxydant à base d'eau et le combustible est compris entre 0,05 et 5.
9. Procédé selon la revendication 1, qui inclut en outre, l'addition d'une solution pour stabiliser les bulles de gaz à l'étape (ii).

10. Procédé selon la revendication 9, dans lequel ladite solution pour stabiliser les bulles de gaz est sélectionnée parmi le groupe consistant en des solutions ou des dispersions de tensio-actifs, de protéines, de polymères et de dérivés de ceux-ci.

11. Procédé selon la revendication 9, dans lequel l'explosif fabriqué contient entre 0,01% et 5% en poids par rapport à l'explosif, de ladite solution pour stabiliser les bulles de gaz.

12. Installation pour la fabrication "in situ" d'explosifs à base d'eau, selon le procédé de l'une quelconque des revendications 1 à 11, qui comprend:

- un mélangeur
- un réservoir pour le stockage du produit oxydant à base d'eau;
- un flux de pompe qui connecte ledit réservoir pour le stockage du produit oxydant à base d'eau avec le mélangeur;
- un réservoir pour le stockage du combustible;
- un flux de pompe qui connecte ledit réservoir pour le stockage du combustible avec le mélangeur;
- un débitmètre pour régler l'addition du combustible au mélangeur;
- une réserve gazeuse de gaz connectée opérationnellement au mélangeur; et
- un dispositif réglant le flux de gaz.

13. Installation selon la revendication 12, qui contient en outre, un réservoir pour le stockage d'une solution pour stabiliser les bulles de gaz et un flux de pompe qui connecte ledit réservoir pour le stockage de la solution pour stabiliser les bulles de gaz avec le mélangeur.

14. Installation selon l'une quelconque des revendications 12 ou 13, dans laquelle ledit mélangeur est un mélangeur de type dynamique.

15. Installation selon l'une quelconque des revendications 12 ou 13, dans laquelle ledit mélangeur est un mélangeur discontinue.

16. Installation selon l'une quelconque des revendications 12 à 15, ladite installation étant mise en place sur un camion qui charge un trou de mine.