EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 01.03.2006 Bulletin 2006/09

(21) Application number: 00952672.4

(22) Date of filing: 09.08.2000

(11) EP 1 203 037 B1

(21) Application number: 00952672.4

(22) Date of filing: 09.08.2000

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

(43) Date of publication of application: 08.05.2002 Bulletin 2002/19

(73) Proprietor: E.I. DU PONT DE NEMOURS AND COMPANY Wilmington, Delaware 19898 (US)

(51) Int Cl.: C08G 18/08 (2006.01) C08G 18/38 (2006.01) C14C 9/00 (2006.01)

(86) International application number: PCT/US2000/021719

(87) International publication number: WO 2001/010921 (15.02.2001 Gazette 2001/07)

(54) FLUOROCHEMICAL WATER AND OIL REPELLENTS
FLUORCHEMISCHE WASSER- UND ÖLABWEISENDE ZUSAMMENSETZUNG
SUBSTANCES HYDROFUGES ET HYDROPHOBES FLUOR ES

(72) Inventors:
• DEL PESCO, Thomas, Wayne Hockessin, DE 19707 (US)
• KIRCHNER, Jack, Robert Wilmington, DE 19803 (US)
• LIU, Andrew, H. Newark, DE 19711 (US)

(74) Representative: Morf, Jan Stefan Patentanwälte Abitz und Partner Postfach 86 01 09 81628 München (DE)

(56) References cited:
EP-A- 0 717 057

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
FIELD OF THE INVENTION

[0001] This invention relates to fluorochemical compositions which provide oil repellency and water repellency properties to substrates. This invention further relates to a method for imparting oil- and water-repellent properties to various substrates and the resulting treated substrates.

BACKGROUND OF THE INVENTION

[0002] The tanning of leather is a complex process described, for instance, in the Kirk-Othmer Encyclopedia of Chemical Technology. Fourth Edition, Volume 15, pp. 159 - 176. Produced from animal skins, leather is used for many purposes, including shoes, upholstery, clothing, gloves, hats, books, sports equipment, and the like. In most such uses, water repellency is desired and conventionally achieved by the application of fats, or by surface treatment of the leather after drying. The application of fat to the leather does not provide any oil repellency. Oil repellency for leather, and thereby soil repellency, is also a desirable property in most of these uses but is more difficult to produce. Limited oil repellency can be obtained by certain surface coatings after the leather has been dried. Such surface applications to dried leather do not penetrate, or penetrate only to a limited extent, throughout the thickness of the leather and thus do not provide significant oil or water repellency in depth through the thickness of the leather. Consequently, when the leather is cut in the manufacture of articles, or when the surface of finished articles is damaged by abrasion in use, the exposed leather is deficient in oil repellency and soil resistance. Additionally, the post-drying surface finishing of leather is an art in itself, and any coatings must be compatible with the final treatments given to leathers in various uses.

[0003] Incorporation of oil repellent materials onto the dried leather hides by spraying or into the hides during the wet stage processing, e.g., during the tanning, retanning, and dyeing baths, is practical and in use in the leather industry. However the leather, after drying and processing to produce the desired repellency, either requires a high temperature cure at about 100°C or lengthy storage time (about 2 weeks) at room temperature.

[0004] A number of treatment processes have been described for improving the water- and oil-repellency of leather, for instance, Diesenroth, et al, in US 5,693,747 describe sulfur-containing diols capable of being reacted with urethanes to make repellent materials. Certain of Deisenroth’s compositions contain an organic sulfate group, but do not contain sulfonate groups. EP 0 717 057 discloses sulfo-polyurea compositions comprising linear polymers which can be used as low energy coatings which display into receptive properties and release properties towards adhesives.

[0005] It is desirable to provide fluorochemical oil- and water-repellent formulations that are compatible with the wet stages of leather processing, and that would, after drying and fabrication of finished leather products, provide oil and water repellent properties immediately and without a cure step substantially throughout the thickness of the leather. Furthermore, it is desirable that such bath additives be effective with essentially no changes in the leather processing steps, be compatible with leather treatment bath formulations, and be applied without the need for additional equipment. The present invention provides such a bath additive. Further, such compounds provide oil repellency and water repellency to other substrates.

SUMMARY OF THE INVENTION

[0006] The present invention comprises a branched polymer according to claim 1 having at least one urea linkage derived by contacting (1) at least one polyisocyanate containing at least three isocyanate groups, or mixture of polyisocyanates, (2) at least one fluorocarbon alcohol, fluorocarbon thiol or fluorocarbon amine, (3) a mixture of straight and branched chain alcohol, amine or thiol, (4) at least one alcohol containing a sulfonic acid group or its salt, and then (5) optionally at least one linking agent.

[0007] The present invention further comprises a method of imparting oil repellency and water repellency to leather, wood, masonry and textile substrates comprising contacting said substrate with the polymer described above. The present invention further comprises substrates having oil repellency and water repellency treated with a polymer as described above.

DETAILED DESCRIPTION OF THE INVENTION

[0008] Trademarks and tradenames are indicated herein by capitalization. The present invention comprises urethane-based polymers that can be applied during the wet treatment, tanning, or bath stage of leather processing, providing oil- and water-repellent properties and soil resistance substantially throughout the thickness of the leather. The dispersions are compatible with conventional leather treatment processes without process changes and are superior to surface
coating of treated leather. The polymers are also useful to impart oil repellency and water repellency to wood, masonry and textile substrates.

[0009] The urethane-based oil- and water-repellent polymers of the present invention comprise branched polymers having at least one urea linkage per molecule and are derived by contacting (1) at least one polyisocyanate, or mixture of polyisocyanates, which contains at least three isocyanate groups per molecule, (2) at least one fluorocarbon alcohol, fluorocarbon thiol, or fluorocarbon amine, (3) a mixture of branched and straight chain alcohol, amine, or thiol, (4) at least one alcohol containing a sulfonic acid group or the salt of a sulfonic acid group, and (5) optionally sufficient linking agent to react with all remaining isocyanate groups. These are hereinafter identified as Reactants 1 - 5. By the term "polyisocyanates" is meant tri- and higher isocyanates and the term includes oligomers.

[0010] The polyisocyanate reactant (Reactant 1) provides the branched polymer backbone of the polymer. Any polyisocyanate having predominately three or more isocyanate groups, or any isocyanate precursor of a polyisocyanate having predominately three or more isocyanate groups, is suitable for use in this invention. It is recognized that minor amounts of diisocyanates may remain in such products. An example of this is a biuret containing residual small amounts of hexamethylene diisocyanate. Particularly preferred as Reactant 1 are hexamethylene diisocyanate homopolymers having the structure of Formula 1.

Formula 1:

\[
\text{OCN-(H}_2\text{C}_6\text{-HN-CO}_\text{N-CO}_\text{H-(CH}_2\text{)_6-NCO}}
\]

\[
\text{OCN-(H}_2\text{C}_6\text{-HN-CO}_\text{N-CO}_\text{H-(CH}_2\text{)_6-NCO}}
\]

wherein \(k \) averages about 1.8. These are commercially available, for instance as DESMODUR N-100 from Bayer Corporation, Pittsburgh PA. DESMODUR N-100 is a hexamethylene diisocyanate-based polymeric isocyanate containing biuret groups. While individual homopolymers having \(k = 1, 2, \) etc., are suitable for preparing the polyurethane polymers of the present invention, this specific homopolymer is only available in admixture with substantial amounts (50% or more) of homopolymers having \(k \) greater than 1, i.e., substantial amounts of tetra-and higher polyisocyanates.

[0011] Also suitable for use as Reactant 1 are hydrocarbon diisocyanate-derived isocyanurate trimers which can be represented by Formula 2.

Formula 2:

\[
\text{R-NCO}
\]

\[
\text{R-NCO}
\]

\[
\text{O=C} \quad \text{C=O}
\]

\[
\text{OCN-R} \quad \text{C} \quad \text{R-NCO}
\]

\[
\text{OCN-R} \quad \text{C} \quad \text{R-NCO}
\]
wherein R is a divalent hydrocarbon group, preferably aliphatic, alicyclic, aromatic, or arylaliphatic. For example, R is hexamethylene, toluene, or cyclohexylene, and is preferably hexamethylene, which is available as DESMODUR N-3300 (a hexamethylene disocyanate-based isocyanurate). Other triisocyanates useful for the purposes of this invention are those obtained by reacting three moles of toluene disiocyanate with 1,1,1-tris-(hydroxymethyl)ethane or 1,1,1-tris-(hydroxymethyl)propane. The isocyanurate trimer of toluene diisocyanate and that of 3-isocyanatomethyl-3,4,4-trimethyl-cyclohexyl isocyanate are other examples of triisocyanates useful for the purposes of this invention, as is methine-tris-(phenylisocyanate). Precursors of polyisocyanate, such as diisocyanate, are also suitable for use in the present invention as substrates for the polyisocyanates.

[0012] Preferred polyisocyanate reactants are the aliphatic and aromatic polyisocyanates containing biuret structures. Most preferred is the homopolymer of hexamethylene diisocyanate, DESMODUR N-100.

[0013] The fluorocarbon alcohol, fluorocarbon thiol, or fluorocarbon amine (Reactant 2) provides the oil- and soil-repellency and contributes to the water repellency of the polymer. The fluorocarbon alcohol, fluorocarbon thiol, or fluorocarbon amine reactant suitable for use in the present invention has the structure:

\[R_f - X - Y - H \]

wherein \(R_f \) is a \(C_4 \) - \(C_{20} \) linear or branched fluorocarbon chain,

[0014] \(X \) is a divalent linking radical of formula \(-\left(\text{CH}_2\right)_p\) or \(-\text{SO}_2\text{N}(\text{R}_1)\text{-CH}_2\text{CH}_2-\), wherein \(p \) is 1 to 20; and \(R_f \) is an alkyl of 1 to 4 carbon atoms; and

[0015] \(Y \) is \(-\text{O}-\), \(-\text{S}-\), or \(-\text{N}(\text{R}_2)\)- where \(R_2 \) is \(H \) or \(R_1 \).

[0016] More particularly \(R_f \) is \(C_{q}\text{F}(2q+1) \) wherein \(q \) is 4 to 20, or mixtures thereof. Preferred examples of \(R_f\)-X- include the following: 1) mixtures of \(F\left(\text{CF}_2\right)_n\text{(CH}_2\right)_m- \) wherein \(q \) is as previously defined and \(n \) is 1 to 20, and 2) \(F\left(\text{CF}_2\right)_q\text{SO}_2\text{N}(\text{R}_1)\text{-CH}_2\text{CH}_2- \) wherein \(q \) and \(R_1 \) are as previously defined. An example of mixture 1) includes the group of formula \(F\left(\text{CF}_2\right)_9\text{nCH}_2\text{CH}_2\text{OH}, \) wherein \(n \) has values selected from 2, 3, 4, 5, 6, 7, 8, 9, and 10, said fluorochemical compounds being present in the proportions shown as compositions (i) or (ii):

<table>
<thead>
<tr>
<th>Composition by weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (i) (ii)</td>
</tr>
<tr>
<td>2 0-3</td>
</tr>
<tr>
<td>3 27-37 0-3</td>
</tr>
<tr>
<td>4 28-32 45-52</td>
</tr>
<tr>
<td>5 14-20 26-32</td>
</tr>
<tr>
<td>6 8-13 10-14</td>
</tr>
<tr>
<td>7 3-6 2-5</td>
</tr>
<tr>
<td>8 0-2 0-2</td>
</tr>
<tr>
<td>9 0-1 0-1</td>
</tr>
<tr>
<td>10 0-1 0-1</td>
</tr>
</tbody>
</table>

[0017] The straight chain alcohols, amines, or thiols have the structure \(\text{H}\left(\text{CH}_2\right)_x\text{-OH, H(CH}_2\right)_x\text{-NH}_2, \) or \(\text{H(CH}_2\right)_x\text{-SH, \) wherein \(x \) is 12 to 20 and preferably 16 to 18, or mixtures thereof. Particularly preferred is the readily available stearyl alcohol (1-octadecanol) having \(x = 18 \). Optionally, ethoxylates of alcohols may be used.

[0018] The branched chain alcohols, amines, or thiols have the structure \(\text{C}_y\text{H}(2y+1)\text{-CH}_2\text{-OH, C}_y\text{H}(2y+1)\text{-CH}_2\text{-NH}_2, \) or \(\text{C}_y\text{H}(2y+1)\text{-CH}_2\text{-SH \) wherein \(y \) is in the range 15 to 19, or mixtures thereof. An example is ISOFO\(\text{L 18T, \) a mixture of branched chain alcohols comprising 2-hexyl- and 2-octyl-decanol, and 2-hexyl- and 2-octyl-dodecanol, available from CONDEA-\text{Vista Co., Houston TX.} \) Optionally, ethoxylates of alcohols may be used.
EP 1 203 037 B1

[0019] The reactant comprising the alcohol containing a sulfonic acid group or its salt (Reactant 4) contributes anionic sites to the product polymer, such that the polymer has self-dispersing properties and forms stable aqueous dispersions without added surfactants. The alcohol-sulfonate salt has the structure

\[\text{MO}_3\text{S-Z-OH} \]

where \(M\) is an alkali metal; ammonium; alkyl, dialkyl, trialkyl, or tetraalkyl ammonium; or hydrogen; and \(Z\) is a straight or branched chain alkyl group containing from 2 to 10 carbon atoms, or an aryl or alkylaryl group containing one or more aromatic rings and 6 to 11 carbon atoms.

[0020] Preferred is sodium 2-hydroxyethyl sulfonate, commercially available under the trivial name sodium isethionate. Other examples of such hydroxysulfonic acids are ammonium isethionate, 3-hydroxy-1-propanesulfonic acid and its sodium salt, 4-hydroxybenzene sulfonic acid and its sodium salt, sodium 4-hydroxy-1-naphthalene sulfonate, and sodium 6-hydroxy-2-naphthalene sulfonate.

[0021] The alcohol containing a sulfonic acid group or its salt (Reactant 4) is not necessarily fully incorporated into the polyurethane. Thus the amount of the alcohol containing a sulfonic acid group or its salt may be slightly lower than the amount added and the amount of crosslinking by the linking reagent will be higher.

[0022] The sulfonic acid groups or their salts used as Reactant 4 are advantageous over the sulfates used in the prior art. The sulfates are hydrolyzed at the low pH ranges used in leather treatments, while the sulfonates are not hydrolyzed at these pH ranges.

[0023] If reactants 1 to 4 are not present in sufficient quantities to consume all of the isocyanate groups, the remaining isocyanate groups are reacted with a multi-functional linking agent (Reactant 5), thereby linking two or more isocyanate-terminated molecules together and increasing the molecular weight of the product. Typically, a compound containing a hydroxy group is used as the linking agent. While water is the most commonly used linking agent, other multi-functional compounds such as glycols are also suitable for use herein. When a linking agent other than water is selected, a stoichiometric insufficiency is used, as discussed below. A fluorinated diol is also suitable for use herein, such as the structure of Formula 3.

\[
\text{HO-CH}_2 - \text{CH}_2-\text{S-(CH}_2)_2\text{-C}_8\text{F}_{17} \\
\text{HO-CH}_2 - \text{CH}_2-\text{S-(CH}_2)_2\text{-C}_8\text{F}_{17}
\]

Such a fluorinated diol, clearly, acts both a linking agent (Reactant 5) and as a fluorocarbon alcohol (Reactant 2). An example of such a diol is LODYNE 941, available from Ciba Speciality Chemicals, High Point, NC.

[0024] The branched polymers of the present invention are prepared in a suitable dry solvent free of groups that react with isocyanate groups. Organic solvents are employed. Ketones are the preferred solvents, and methyl isobutyl ketone (MIBK) is particularly preferred for convenience and availability. A small proportion of a solubilizing aid such as dimethylformamide, dimethylacetamide, or N-methylpyrrolidone (e.g., 10% of the solvent) increases the solubility of the sodium hydroxysulfonate and is optionally used if incorporation of the hydroxysulfonate is too slow or is incomplete. The reaction of the alcohols with the polyisocyanate is optionally carried out in the presence of a catalyst, such as dibutyltindilaurate or tetraisopropyldiuranate, typically in an amount of about 0.1 - 1.0%. A preferred catalyst is dibutyltindilaurate.

[0025] The ratio of reactants on a molar basis per 100 isocyanate groups is shown in Table 1 below.

<table>
<thead>
<tr>
<th>Reactant</th>
<th>Preferably</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroalcohol or fluorothiol (Reactant 2)</td>
<td>28 to 48</td>
</tr>
<tr>
<td>Alcohol, amine, or thiol (Reactant 3)</td>
<td>28 to 48</td>
</tr>
</tbody>
</table>
Thus the linking agent is 0 to 30, preferably 15 to 25. The ratio of straight and branched alcohols, amines, or thiols is as previously specified above in the description of Reactant 3.

Since the equivalent weights of Reactants 1 - 4 vary according to the specific reactants chosen, the amounts are necessarily calculated in molar ratios. Examples of specific polymer compositions showing weight ratios are shown in Table 2 using the various fluoroalcohol homologue distributions shown in Table 3.

A schematic structures of two specific examples of polymers of the present invention are shown in Formulae 4 and 5. The specific structure of Formula 4 is drawn to show the residues of two hexamethylene diisocyanate homopolymers (having $k = 1$, See Formula 1 above), substituted once with Reactant 2, twice with Reactant 3, once with Reactant 4, and then coupled with water as the linking agent (Reactant 5). Actual Reactant ratios as charged are shown in Tables 1 and 2. Formula 5 shows the corresponding structure produced when the optional linking step with Reactant 5 is omitted. Formulae 4 and 5 diagrams are intended only to depict the type of linkages present. They do not show actual Reactant ratios, all the structures of the various Reactants, complexities such as molecules containing more than two Reactant 1 residues, or the necessarily random distribution of Reactants on the Reactant 1 residue.

<table>
<thead>
<tr>
<th>Reactant</th>
<th>from</th>
<th>to</th>
<th>from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxysulfonic acid or salt thereof (Reactant 4)</td>
<td>1</td>
<td>20</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total reactants less linking agent</td>
<td>70</td>
<td>100</td>
<td>75</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 2. Weight Proportions of Polymer Reactants

<table>
<thead>
<tr>
<th>Component</th>
<th>Case 1 g (mole %)</th>
<th>Case 2 g (mole %)</th>
<th>Case 3 g (mole %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactant 1, 62.7 g DESMODUR N-100 with 21.1% -NCO in each Case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactant 2, Fluoroalcohol as Distribution 1 in Table 3 below, or</td>
<td>61.87 (40)</td>
<td>58.78 (38)</td>
<td>46.40 (30)</td>
</tr>
<tr>
<td>as Distribution 2 in Table 3 below, or</td>
<td>56.17 (40)</td>
<td>53.37 (38)</td>
<td>42.13 (30)</td>
</tr>
<tr>
<td>as Distribution 3 in Table 3 below</td>
<td>67.01 (40)</td>
<td>63.65 (38)</td>
<td>50.25 (30)</td>
</tr>
<tr>
<td>Reactant 3, Hydrocarbon Alcohols</td>
<td>23.88 (28)</td>
<td>32.40 (38)</td>
<td>39.22 (46)</td>
</tr>
<tr>
<td>Reactant 4, Isethionic Acid</td>
<td>0.93 (2)</td>
<td>1.87 (4)</td>
<td>9.34 (20)</td>
</tr>
<tr>
<td>Molar Total, Reactants 2 - 4</td>
<td>(70)</td>
<td>(80)</td>
<td>(96)</td>
</tr>
</tbody>
</table>

Table 3. Weight Distributions and Equivalent Weights of Fluoroalcohols of Formula F-(CF₂-CF₂)ₙ-CH₂-CH₂-OH used in Table 2

<table>
<thead>
<tr>
<th>n</th>
<th>Distribution 1</th>
<th>Distribution 2</th>
<th>Distribution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.43</td>
<td>0.76</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>32.46</td>
<td>47.38</td>
<td>1.92</td>
</tr>
<tr>
<td>4</td>
<td>31.86</td>
<td>30.92</td>
<td>51.93</td>
</tr>
<tr>
<td>5</td>
<td>19.23</td>
<td>14.00</td>
<td>29.34</td>
</tr>
<tr>
<td>6</td>
<td>9.86</td>
<td>4.96</td>
<td>12.08</td>
</tr>
<tr>
<td>7</td>
<td>4.11</td>
<td>1.55</td>
<td>3.45</td>
</tr>
<tr>
<td>8</td>
<td>1.55</td>
<td>0.38</td>
<td>1.04</td>
</tr>
<tr>
<td>9</td>
<td>0.48</td>
<td>0.05</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Effective Fluoroalcohol Equivalent Weight

490.7 445.5 531.4
Under rigorously quantitative control, it is possible to prepare the polymers by mixing all the reactants. However, this is not preferred. The preferred and most practical method to prepare the polymers of this invention when reactant 5 is water is first to react Reactants 1 - 4, and then react the product with an excess of water, thereby avoiding the need for precise measurement of relatively small amounts of water. Similarly, when Reactant 5 is a linking agent other than water, again a stoichiometric deficiency of Reactant 5 is used, such that a small proportion of the isocyanate groups, e.g., 1 - 2 molar %, remain unreacted. This ensures that no unreacted linking agent remains in the final product. After the linking agent has reacted, a small excess of water is added, ensuring no unreacted isocyanates remain in the final product.

Reactants 1 - 4 are charged in the desired proportions under dry conditions (for example under dry nitrogen) and typically heated to a temperature of at least about 90°C for 2 or more hours to complete the reaction. The sum of the reactants can be insufficient to react completely the available isocyanate groups, thus providing a driving force to

Reactant 2 residue	**Reactant 1 residue**	**Reactant 3 residue**
Rf-X-OC—NH-(H₂C)₆-HN-CO-N-CO-NH-(CH₂)₆-NH--CO-CH₂-[CᵥH₁₂v+1] | O | (CH₂)₆ | O

Residue of isocyanate linked by water (Reactant 5)

MO₃S-Z-OC—NH-(H₂C)₆-HN-CO-N-CO-NH-(CH₂)₆-NH--CO-(CH₂)ₓ-H

Reactant 4 residue	**Reactant 1 Residue**	**Reactant 3 residue**

Reactant 3 residues (straight chain and branched alcohols)

Rf-X-OC—NH-(H₂C)₆-HN-CO-N-CO-NH-(CH₂)₆-NH--CO-CH₂-[CᵥH₁₂v+1] | O | (CH₂)₆ | O

M-O₃S-Z-O-C—NH

Reactant 4 Residue

[0029] Under rigorously quantitative control, it is possible to prepare the polymers by mixing all the reactants. However, this is not preferred. The preferred and most practical method to prepare the polymers of this invention when reactant 5 is water is first to react Reactants 1 - 4, and then react the product with an excess of water, thereby avoiding the need for precise measurement of relatively small amounts of water. Similarly, when Reactant 5 is a linking agent other than water, again a stoichiometric deficiency of Reactant 5 is used, such that a small proportion of the isocyanate groups, e.g., 1 - 2 molar %, remain unreacted. This ensures that no unreacted linking agent remains in the final product. After the linking agent has reacted, a small excess of water is added, ensuring no unreacted isocyanates remain in the final product.

[0030] Reactants 1 - 4 are charged in the desired proportions under dry conditions (for example under dry nitrogen) and typically heated to a temperature of at least about 90°C for 2 or more hours to complete the reaction. The sum of the reactants can be insufficient to react completely the available isocyanate groups, thus providing a driving force to
complete reactions with all the alcohol, amine, or thiol reactants. When this initial reaction with Reactants 1 - 4 is completed, the linking agent is added if isocyanate groups still remain. When the linking agent is water, an excess is added to react with all remaining isocyanate groups and simultaneously to increase the molecular weight.

The reaction mass, containing solvent but no remaining isocyanate groups, is emulsified in a homogenizer without the addition of emulsifying agent or surfactant. The solvent is stripped from the emulsion by evaporation to provide a polymer dispersion, and the dispersion concentration typically adjusted with water to about 20 - 40% solids by weight, for convenience in handling. The solids adjustment is made to provide a product dispersion having a fluorine concentration of from about 5 to about 10% by weight. Adjustment of the dispersion concentration is not critical. Lower fluorine concentrations in the dispersion will require the use of larger amounts of the dispersion in treating the substrates to produce the desired fluorine level in the dry substrate described below. Conversely higher fluorine concentrations in the dispersion would require less dispersion in the substrate treatment. Optionally, a dispersant such as WITCONATE AOS is added to the dispersion before it is applied to the leather.

This invention further comprises a method of imparting oil repellency and water repellency to substrates comprising contacting said substrate with the dispersions of the above described polymers. Typically, such contacting is by application of the polymer dispersion to the surface of the substrate.

Suitable substrates for the application of the polymers of this invention are divided into two classes, based on the preferred loading of the polymer onto the substrate. Hereinafter, these are described as "Class A Substrates" or wood, leather, and masonry substrates, and "Class B Substrates" or fibrous substrates. Preferred substrates are Class A Substrates such as leather, wood, pressed or otherwise hardened wood composites, masonry such as stone unglazed porcelain and tile, grout, porous concrete and the like. Suitable substrates for this invention also include blends of Class B Substrates with other fibrous Class B substrates.

"Class B Substrates" are fibers, yarns, fabrics, carpeting, and other articles made from filaments, fibers, or yarns derived from natural, modified natural, or synthetic polymeric materials. Specific representative examples of Class B Substrates are cotton, silk, regenerated cellulose, nylon, fiber-forming linear polyesters, fiber-forming polyacrylonitrile, cellulose nitrate, cellulose acetate, ethyl cellulose, and paper.

The current invention is firstly a leather treatment product that is applied by spray onto dry or semi-wet hides or is applied during the wet processing, or after completion, of the normal tanning, retanning or dyeing process. It is well known in the industry that repellency treatments for leather require a heat cure or lengthy storage time to develop fully the oil and water repellency. The heat cure in particular can seriously affect the hand or softness of the leather product.

The present invention, in contrast to the prior art, does not require such a heat cure or lengthy storage time to develop the repellency properties. This advantage enables fabrication of the leather article immediately after leather drying and processing and eliminates the storage facilities and delay currently needed for development of the functional leather properties. Leather treated with the compositions of the present invention has a "hand" or softness virtually indistinguishable from the untreated leather. Repellency treatments of the prior art are characterized by a deteriorated hand. "Hand" or softness of finished leather is a subjective quality, conventionally measured by a panel, members of which are unaware of the identity of the sample being evaluated. Such evaluation techniques are well known to those skilled in the art.

The manufacture of leather provides special opportunities to combine the application of the polymer dispersion with the manufacturing process. During the final stages of leather manufacture, after the tanning steps, the wet leather is typically washed with water in a drum. In the practice of this invention, the water in the drum is adjusted to pH 3.5 - 4.0 with formic acid or ammonium hydroxide and a temperature of 35 - 40°C. The fluorocarbon dispersion prepared as above is added in an amount sufficient to provide a typical fluorine content of 3 - 6% based on the finished dry weight of the leather. The leather and dispersion are tumbled for about 0.5 - 2.0 hours, then tumbling is continued for 10 - 30 minutes, the wash liquid drained, the leather optionally rinsed, and dried. The higher pH range causes the leather to swell, the lower pH reverses the swelling. The leather may be dried at ambient temperature overnight at typical room temperatures of 65 - 75°F (18 - 24°C) or with mild heat to accelerate the drying process. No heat curing step is required. Subsequent softening treatments such as staking and dry milling are performed conventionally.

It will be readily recognized by those skilled in the art of leather preparation that many variations of the final stages of leather treatment are practiced and the description above is provided as an example and is not intended to limit the application of the fluorocarbon dispersion to leather. For instance, the range of 3 - 6% based on the weight of the leather may need to be reduced for thin leathers and increased for thick leathers. Additionally, leather types vary due to source and treatment. In practice, the drum concentration of the dispersion will be adjusted to the amount sufficient and necessary to provide the levels of oil and water repellency and soil resistance required for the particular type of leather being treated and its end use.

The amount of polymer dispersion applied to the leather is an amount sufficient to provide a dry leather containing at least 0.2, and preferably 0.2 - 20 g fluorine/m², more preferably 0.2 to 2.3 g fluorine/m². Higher loadings increase cost without significant improvements in repellency. The fluorine content of the polymer is known by calculation based on the synthesis, or by analysis of the polymer. Application levels to other Class B Substrates are the same.
The self-dispersing fluorochemical polymeric dispersions of the present invention allow for the treatment of leather in the tanning process. The compositions uniquely combine hydrocarbon, branched hydrocarbon, fluorocarbon and sulfonic acid moieties into a polymer with a branched urethane backbone. These compositions need no external surfactants for dispersion stability, are compatible with the leather treatments, requiring no heat curing or aging for performance, and develop the desired water- and oil-repellency during the conventional ambient temperature drying of the leather. Additionally, the ability to add the dispersion during the wet treatment stage of the leather preparation permits the treatment to be effective substantially throughout the leather thickness, as opposed to surface treatments of the finished leather. Thus water- and oil-repellency is retained when the leather is cut during fabrication, or when the leather surface is damaged or abraded in use.

The polymers of the current invention are, secondly, polymers for treating Class B Substrates wherein the oil and water repellent properties of the coated fibrous substrate develop when the conventional high temperature cure is replaced with a low temperature cure. By the term “high temperature cure” is meant conventional curing at about 165°C. By the term “low temperature cure” is meant a curing at between ambient temperature and 160°C.

The amount of polymer dispersion applied to the Class B Substrate surface is an amount sufficient to provide at least 200 and preferably 200 - 5,000 parts per million by weight (μ/ g) of fluorine based on the weight of the dry fibrous substrate. Higher loadings increase cost without significant improvements in repellency.

When applied to such Class-B Substrates, a low temperature cure of about 120°C is used to set the coating on the fibers and develop the desired repellency properties. While conventional high temperature curing at about 165°C will develop the desired surface repellency, the high temperature cure can be avoided. The greatly reduced cure temperature provides a number of advantages. Dye retention is improved and consequently dye use is reduced, energy is saved in the curing step, productivity and dimensional stability of the fibrous substrate are improved, yellowing caused by heat is reduced, and, when the curing is in gas-fired ovens, exposure to nitrogen oxide (NOx) and the resultant discoloration is reduced.

The oil and water repellency ratings give a measure of the theoretical ability of the surface treatment to prevent water and oil from wetting the substrate surface. Test Methods 1 and 2 are generally used to test treated Class A Substrate samples. The tests are basically very similar to Test Methods 3 and 4 for Class B Substrate sample, with slight variations to accommodate the different sample characteristics. Since the surface properties of substrates very substantially within the Classes, the selection of Test Method is resolved by applying a drop of water to the untreated substrate surface and observing the drop for 30 seconds. If the drop is absorbed (fibrous substrates, porous surfaces such as unglazed ceramics), test the treated substrate by Test Methods 3 and 4. Penetration or wetting of the tested surface indicates failure for that test liquid, otherwise the test is passed for that test liquid. If the water drop in this screening test is not absorbed, as will occur with leather, non-porous stone, etc., test the treated substrate by Test Methods 1 and 2.

Test Method 1. Oil Drop Rating Test for Class A Substrates.

The water or oil repellency rating of the leather is the highest-numbered test liquid that will not wet the substrate within a period of 30 seconds. A darkening of the substrate at the liquid- substrate interface while the drop is present on the surface normally evidences wetting of the substrate. This test is intended to measure the intrinsic repellency of the substrate surface and not to simulate actual wear performance in the field.

Beginning with the lowest-numbered test liquid identified in Table 4 below, 3 small drops are placed (approximately 5 mm in diameter or 0.05 mL volume) on the surface of the substrate in several locations. The drops are observed for 30 seconds from approximately a 45 degree angle. If the oil does not wet the surface around the edge of the drop and the drop maintains the same contact angle, a drop of the next higher-numbered test liquid is placed at an adjacent
site on the surface and again observed for 30 seconds.

[0049] This procedure is continued until one of the test liquids shows obvious wetting of the surface under or around the drop within 30 seconds, or until the drop fails to maintain the same contact angle between the surface and the drop. The oil repellency rating of the substrate is the highest-numbered test liquid that will not wet the surface within a period of 30 seconds.

<table>
<thead>
<tr>
<th>Oil Drop Rating (test oils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test oil #</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

NUJOL is a mineral oil available from Schering-Plough, Memphis TN.
* Composition by volume at 21°C.

Test Method 2. Water Drop Rating Test for Class A Substrates.

[0050] Drops of standard test liquids are placed on the substrate surface and observed for wetting and contact angle. The compositions of the aqueous test liquids are shown in Table 5 below. The water repellency rating, is the highest-numbered test liquid that does not wet the substrate surface using the evaluation methods above.

[0051] Beginning with the lowest-numbered test liquid, 3 small drops are placed on the substrate surface in several locations. The drops are observed for 30 seconds from approximately a 45 degree angle. If the water does not wet the substrate around the edge of the drop and the drop maintains the same contact angle, a drop of the next higher-numbered test liquid is placed at an adjacent site on the substrate and again observed for 30 seconds.

[0052] This procedure is continued until one of the test liquids shows obvious wetting of the substrate under or around the drop within 30 seconds, or until the drop fails to maintain the same contact angle between the substrate surface and the drop. The water repellency rating of the substrate is the highest-numbered test liquid that will not wet the substrate within a period of 30 seconds.

<table>
<thead>
<tr>
<th>Water Drop Rating (test solns.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Soln. #</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Test Method 3. Oil Repellency for Class B Substrates.

[0053] The treated Class B Substrate samples were tested for oil repellency by a modification of AATCC standard Test Method No. 118, conducted as follows. A sample, treated with an aqueous dispersion of polymer as previously described, is conditioned for a minimum of 2 hours at 23°C + 20% relative humidity and 65°C + 10% relative humidity. A series of organic liquids, identified above in Table 4, are then applied dropwise to the samples. Beginning with the
lowest numbered test liquid (Repellency Rating No. 1), one drop (approximately 5 mm in diameter or 0.05 mL volume) is placed on each of three locations at least 5 mm apart. The drops are observed for 30 seconds. If, at the end of this period, two of the three drops are still spherical in shape with no wicking around the drops, three drops of the next highest numbered liquid are placed on adjacent sites and similarly observed for 30 seconds. The procedure is continued until one of the test liquids results in two of the three drops failing to remain spherical to hemispherical, or wetting or wicking occurs.

[0054] The oil repellency rating of the substrate is the highest numbered test liquid for which two of the three drops remained spherical to hemispherical, with no wicking for 30 seconds.

[0055] The water repellency test determines the resistance of a treated substrate to wetting by aqueous liquids. Drops of water-alcohol mixtures of varying surface tensions are placed on the substrate and the extent of surface wetting is determined visually. The test provides a rough index of aqueous stain resistance. The higher the water repellency rating, the better the resistance of a finished substrate to staining by water-based substances. The composition of standard test liquids is shown in Table 5 above.

Materials

[0056] The following materials were used in the examples hereinafter.

[0057] 18-CROWN-6 is 1,4,7,10,13,16-hexaoxacyclooctadecane, available from Aldrich, Milwaukee, WI.

[0058] DESMODUR N-100 and DESMODUR N-3300 contain hexamethylene diisocyanate homopolymers, the latter having a cyclic structure. Both are available from Bayer Corporation, Pittsburgh PA.

[0059] ISOFOL 18T and 18E are mixtures of branched chain alcohols comprising 2-hexyl- and 2-octyl-decanol, and 2-hexyl- and 2-octyl-dodecanol, available from CONDEA-Vista Co., Houston TX.

[0060] LODYNE 941 is a fluorinated diol of the structure (HOC(CH2)2C(CH2SCH2CH2Rf)2)2 where Rf is a perfluoroalkyl group, and LODYNE 921B is a thiol of the structure (CF2CF2)nCH2CH2SH where n is 2 - 5. Both are available from Ciba Specialty Chemicals, High Point, NC.

[0061] NUJOL is a mineral oil available from Schering-Plough, Inc., Memphis TN.

[0062] WITCONATE AOS and WITCONATE AOK are anionic surfactants containing C14-C16-alkanediol- and C14-C16-alkene sulfonic acids as the sodium salts, available from Witco Chemical Corp., Houston TX.

[0063] TOLONATE HDB is a biuret of hexamethylene diisocyanate available from Rhodia Co., Cranberry NJ.

[0064] ZONYL BA is mixed 1,1,2,2-tetrahydroperfluoro-1-alkanols, predominately C8, C10, C12, and C14 with small amounts of C6, C16, and C 18, available from E. I. du Pont de Nemours and Company, Wilmington DE.

[0065] Perfluorooctanesulfamido alcohol is a fluorinated alcohol available as Fluorad FC-10 from Minnesota Mining and Manufacturing, St. Paul MN.

[0066] MIBK is methylethylketone.

EXAMPLES

Examples 1-13 and Comparative Examples A and B

[0067] A flask was charged with 99.98 g of a solution of 62.7% by weight DESMODUR N-100 (a hexamethylene diisocyanate prepolymer available from Bayer Corporation, Pittsburgh PA) in methyl isobutylketone, MIBK, (calculated 320 mmol -NCO), 14.68 g dimethylformamide, 1.94 g isethionic acid (13 mmol), 16.77 g stearyl alcohol (61 mmol), 16.76 g ISOFOL 18T (61 mmol), and 57.68 g ZONYL BA (mixed 1,1,2,2-tetrahydroperfluoro-1-alkanols, predominately C8, C10, C12, and C14 with small amounts of C6, C16, and C18, available from E. I Du Pont de Nemours and Company, Wilmington DE). With stirring, this mass was heated to 48°C and a solution of approximately 0.027 g dibutyltindilaurate in 1 - 2 mL of MIBK was added to the flask. The temperature of the reaction spontaneously rose to 76°C from the heat of reaction. The reaction mass was then further heated to 90°C and maintained at that temperature for 21 - 22 hours. After the addition of 2.33 g of deionized water to consume the remaining isocyanate functional groups and 104.41 g of MIBK, the reaction mass was held at 75°C for 3 hours. This initial product was then emulsified with 408.15 g of deionized water, and the MIBK and some of the water was removed by distillation to give 477 g of a dispersion product that was determined to be 29.9% solids. This basic procedure with variations of the reactants was used to make the dispersions of Examples 2 - 13 and Comparative Examples A and B as shown in Table 6 below.
A flask was charged with 33.35 g of a solution of 62.7% by weight DESMODUR N-100 (a hexamethylene diisocyanate prepolymer available from Bayer Corporation, Pittsburgh PA) in methyl isobutylketone, MIBK, (calculated 105.1 mmol -NCO), 0.65 g isethionic acid (4.4 mmol), 5.48 g stearyl alcohol (20.3 mmol), 5.47 g ISOFOL 18T (20.2 mmol), and 19.59 g ZONYL BA (mixed 1,1,2,2-tetrahydroperfluoro-1-alkanols, predominately C8, C10, C12, and C14 with small amounts of C6, C16, and C18, available from E. I Du Pont de Nemours and Company, Wilmington DE, 40.0 mmol). With stirring, this mass was heated to 48°C and a solution of approximately 0.0084 g dibutyltindilaurate in 1 - 2 mL of MIBK was added to the flask. The temperature of the reaction spontaneously rose and was then further heated until the solvent starts to reflux (~138°C) The reaction mass was heated to maintain reflux for 21 - 22 hours. After the addition of 0.70 g of deionized water to consume the remaining isocyanate functional groups and 34.91 g of MIBK, the reaction mass was held at 75°C for 3 hours. This initial product was then emulsified via sonication with 136.41 g of deionized water, and the MIBK and some of the water was removed by distillation to give 148 g of a dispersion product that was determined to be 33.2% solids. This basic procedure with variations of the reactants was used to make the dispersions of Examples 15 - 20 and Comparative Example D as shown in Table 6 below. In addition, the variations detailed below were employed.

Example 16.

The amount of Witconate AOK used was calculated based on an assumed molecular weight of 300 and hydroxy content of 40%. To dry this material, water was removed by azeotropic distillation with MIBK.

Example 18.

ISOFOE 18E was used in place of ISOFOL 18T.

Example 19.

An ethoxylated version of ISOFOL 18T in which an average of about 10 ethylene oxide units were incorporated (ISOFOE 18T/10EO) was used in place of ISOFOL 18T. In addition, the aqueous dispersion produced by the removal of MIBK was diluted with 300 grams of water.

Example 20.

A homogenizer was used to generate the emulsion prior to removal of MIBK.

Comparative Example D.

No sulfonic acid groups was incorporated into the polymeric material. WITCONATE AOK (approximately 6% of the polymer mass) was added as a surfactant just prior to generation of emulsion.
Table 6. Polymer Compositions

<table>
<thead>
<tr>
<th>Ex #</th>
<th>Reactant 1</th>
<th>Reactant 2</th>
<th>Reactant 3</th>
<th>Reactant 4</th>
<th>Reactant 5</th>
<th>Solubilizing Aid</th>
<th>%F in dispersion</th>
<th>% Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>N-100</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>19</td>
<td>Na Is</td>
<td>4</td>
<td>Water 20</td>
</tr>
<tr>
<td>1b</td>
<td>N-100</td>
<td>ZBA</td>
<td>37.4</td>
<td>O</td>
<td>19.7</td>
<td>Na Is</td>
<td>4.2</td>
<td>Water 19.0</td>
</tr>
<tr>
<td>2a</td>
<td>N-100</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>19</td>
<td>Na Is</td>
<td>4</td>
<td>Water 20</td>
</tr>
<tr>
<td>2b</td>
<td>N-100</td>
<td>ZBA</td>
<td>37.2</td>
<td>O</td>
<td>19.6</td>
<td>Na Is</td>
<td>4.2</td>
<td>Water 19.6</td>
</tr>
<tr>
<td>3</td>
<td>N-100</td>
<td>ZBA</td>
<td>37.3</td>
<td>O</td>
<td>19.7</td>
<td>Na Is</td>
<td>4.1</td>
<td>Water 19.2</td>
</tr>
<tr>
<td>4</td>
<td>N-100</td>
<td>ZBA</td>
<td>37.6</td>
<td>O</td>
<td>19.8</td>
<td>Na Is</td>
<td>4.2</td>
<td>LD 18.6</td>
</tr>
<tr>
<td>5</td>
<td>N-100</td>
<td>921B</td>
<td>38.4</td>
<td>O</td>
<td>19.6</td>
<td>Na Is</td>
<td>4.2</td>
<td>Water 18.1</td>
</tr>
<tr>
<td>6</td>
<td>N-100</td>
<td>ZBA</td>
<td>37.3</td>
<td>NH</td>
<td>19.7</td>
<td>Na Is</td>
<td>4.3</td>
<td>Water 19.0</td>
</tr>
<tr>
<td>7</td>
<td>N-100</td>
<td>ZBA</td>
<td>37.4</td>
<td>O</td>
<td>19.7</td>
<td>Na Is</td>
<td>4.2</td>
<td>Water 19.1</td>
</tr>
<tr>
<td>8</td>
<td>HDB</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>19</td>
<td>Na Is</td>
<td>4</td>
<td>Water 20</td>
</tr>
<tr>
<td>9</td>
<td>N-100</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>19</td>
<td>Na Is</td>
<td>4</td>
<td>Water 11</td>
</tr>
<tr>
<td>10</td>
<td>N-100</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>20</td>
<td>Na Is</td>
<td>8</td>
<td>Water 15</td>
</tr>
<tr>
<td>11</td>
<td>N-100</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>19</td>
<td>Na Is</td>
<td>12</td>
<td>Water 12</td>
</tr>
<tr>
<td>12</td>
<td>N-100</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>38</td>
<td>Na Is</td>
<td>8</td>
<td>Water 16</td>
</tr>
</tbody>
</table>

Dispersed with 3% (Ex. 13a) and 6% (Ex. 13b) added Witconate AOS-40 on weight of polymer:

<table>
<thead>
<tr>
<th>Ex #</th>
<th>Reactant 1</th>
<th>Reactant 2</th>
<th>Reactant 3</th>
<th>Reactant 4</th>
<th>Reactant 5</th>
<th>Solubilizing Aid</th>
<th>%F in dispersion</th>
<th>% Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>13a</td>
<td>N-100</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>19</td>
<td>Na Is</td>
<td>4</td>
<td>Water 20</td>
</tr>
</tbody>
</table>

Not according to the invention.
<table>
<thead>
<tr>
<th></th>
<th>N-100</th>
<th>ZBA</th>
<th>38</th>
<th>O</th>
<th>19</th>
<th>19</th>
<th>Na Is</th>
<th>4</th>
<th>Water</th>
<th>20</th>
<th>DMF</th>
<th>6.6</th>
<th>26.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>N-100</td>
<td>ZBA</td>
<td>38.1</td>
<td>O</td>
<td>19.3</td>
<td>19.2</td>
<td>Nals</td>
<td>4.2</td>
<td>Water</td>
<td>19.2</td>
<td>None</td>
<td>8.9</td>
<td>33.2</td>
</tr>
<tr>
<td>15</td>
<td>N-100</td>
<td>FC-10</td>
<td>39.0</td>
<td>O</td>
<td>19.1</td>
<td>19.3</td>
<td>Nals</td>
<td>4.0</td>
<td>Water</td>
<td>18.6</td>
<td>None</td>
<td>7.9</td>
<td>35.3</td>
</tr>
<tr>
<td>16</td>
<td>N-100</td>
<td>ZBA</td>
<td>38.0</td>
<td>O</td>
<td>19.1</td>
<td>19.0</td>
<td>AOK</td>
<td>4.0</td>
<td>Water</td>
<td>19.9</td>
<td>None</td>
<td>7.6</td>
<td>31.3</td>
</tr>
<tr>
<td>17</td>
<td>N-100</td>
<td>ZBA</td>
<td>38.1</td>
<td>O</td>
<td>12.7</td>
<td>25.4</td>
<td>Nals</td>
<td>4.1</td>
<td>Water</td>
<td>19.7</td>
<td>None</td>
<td>9.0</td>
<td>35.5</td>
</tr>
<tr>
<td>18</td>
<td>N-100</td>
<td>ZBA</td>
<td>38.1</td>
<td>O</td>
<td>19.1</td>
<td>19.2*</td>
<td>Nals</td>
<td>4.1</td>
<td>Water</td>
<td>19.5</td>
<td>None</td>
<td>8.6</td>
<td>32.8</td>
</tr>
<tr>
<td>19</td>
<td>N-100</td>
<td>ZBA</td>
<td>38.0</td>
<td>O</td>
<td>19.1</td>
<td>19.1**</td>
<td>Nals</td>
<td>4.0</td>
<td>Water</td>
<td>19.8</td>
<td>None</td>
<td>2.6</td>
<td>12.4</td>
</tr>
<tr>
<td>20</td>
<td>N-100</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>19</td>
<td>19</td>
<td>Nals</td>
<td>4</td>
<td>Water</td>
<td>20</td>
<td>None</td>
<td>6.7</td>
<td>27.3</td>
</tr>
</tbody>
</table>

Comparative Examples

<table>
<thead>
<tr>
<th></th>
<th>N-100</th>
<th>ZBA</th>
<th>38</th>
<th>O</th>
<th>38</th>
<th>0</th>
<th>Na Is</th>
<th>8</th>
<th>Water</th>
<th>16</th>
<th>DMF</th>
<th>7.6</th>
<th>31.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N-100</td>
<td>ZBA</td>
<td>38</td>
<td>O</td>
<td>38</td>
<td>0</td>
<td>Na Is</td>
<td>8</td>
<td>Water</td>
<td>16</td>
<td>DMF</td>
<td>11.8</td>
<td>31.0</td>
</tr>
<tr>
<td>B</td>
<td>N-100</td>
<td>ZBA</td>
<td>76</td>
<td>O</td>
<td>0</td>
<td>0</td>
<td>Na Is</td>
<td>8</td>
<td>Water</td>
<td>16</td>
<td>DMF</td>
<td>11.8</td>
<td>31.0</td>
</tr>
<tr>
<td>D</td>
<td>N-100</td>
<td>ZBA</td>
<td>40.1</td>
<td>O</td>
<td>20.1</td>
<td>20.0</td>
<td>None</td>
<td>0</td>
<td>Water</td>
<td>19.8</td>
<td>None</td>
<td>8.5</td>
<td>35.4</td>
</tr>
</tbody>
</table>

* ISOFOLE-18E
** ISOFOLE 18T/10EO
Abbreviations in Table 6

18C6: 18-Crown-6 (See Materials)
921B: LODYNE 921B (See Materials)
DMAC: N,N-dimethylacetamide
DMF: N,N-dimethylformamide
HDB: TOLONATE HDB (See Materials)
LD: LODYNE 941 (See Materials)
N-100: DESMODUR N-100
Na Is: Sodium isethionate
ZBA: ZONYL BA (See Materials)
FC-10 Perfluorooctanesulfamido alcohol

Examples 1 - 13 and Comparative Examples A-C. Application of the Fluorochemical Dispersions

A LAUNDER-OMETER machine, an automated dyeing machine available from Atlas Electric Device Co. Chicago IL, was used to apply each polymer dispersion to leather samples. Distilled water was used throughout the application procedure. The leather samples were cut with a stamp, each having a dry weight of about 5 g.

The leather sample was first soaked in water adjusted to pH 4 with 5% formic acid solution until fully wet, usually about 2 hours. The sample was stirred briefly and the pH readjusted to 4 after one hour. A LAUNDER-OMETER tube was charged with 20 cc water. The required amount of the polymer dispersion was weighed, diluted with 20 cc distilled water and the diluted polymer dispersion was added to the LAUNDER-OMETER tube.

The leather sample was removed from the pH 4 soak. Without allowing the leather to dry, a slit rubber stopper was placed on one corner of the leather sample. The slit stoppers were used to weight the leather sample so that it repeatedly sank through the liquid in the tumbling LAUNDER-OMETER tube. The leather sample and stopper were placed into the tube precharged with the diluted polymer dispersion. The tube was closed securely, shaken vigorously for 20 sec., and run in the LAUNDER-OMETER for 1 hour at 40°C. The liquid in the tube was poured off, leaving the leather sample and the attached stopper in the tube, 50 cc distilled water was added and the tube shaken vigorously 10 seconds. The rinse water was drained off. 30 cc distilled water was added to the leather sample in the tube and 5 cc of 5% formic acid solution was added. The tube was returned to the LAUNDER-OMETER and the machine run at 40°C for 30 min. The formic acid solution was drained. The sample was rinsed and drained as before with 50 cc water. The leather sample was removed and hung to dry for at least 16 hours. Longer drying did not affect the results.

The dried leather sample was stretched in both directions. The water and oil repellency ratings were measured as described above in Test Methods 1 and 2. The resulting data are shown in Table 7.

Examples 14 - 20 and Comparative Examples D-E. Application of the Fluorochemical Dispersions

A LAUNDER-OMETER machine, an automated dyeing machine available from Atlas Electric Device Co. Chicago IL, was used to apply each polymer dispersion to leather samples. Distilled water was used throughout the application procedure. The leather samples were cut with a stamp, each having a dry weight of about 5 g.

The leather sample was first soaked in water until fully wet, usually about 2 hours. A LAUNDER-OMETER tube was charged with 20 cc water. The required amount of the polymer dispersion was weighed, diluted with 20 cc distilled water and the diluted polymer dispersion was added to the LAUNDER-OMETER tube.

The leather sample was removed from the water soak. Without allowing the leather to dry, a slit rubber stopper was placed on one corner of the leather sample. The slit stoppers were used to weight the leather sample so that it repeatedly sank through the liquid in the tumbling LAUNDER-OMETER tube. The leather sample and stopper were placed into the tube precharged with the diluted polymer dispersion. The tube was closed securely, shaken vigorously for 20 sec., and run in the LAUNDER-OMETER for 1 hour at 40°C. The liquid in the tube was poured off, leaving the leather sample and the attached stopper in the tube, 50 cc distilled water was added and the tube shaken vigorously 10 seconds. The rinse water was drained off. 30 cc distilled water was added to the leather sample in the tube and 5 cc of 5% formic acid solution was added. The tube was returned to the LAUNDER-OMETER and the machine run at 40°C for 30 min. The formic acid solution was drained. The sample was rinsed and drained as before with 50 cc water. The leather sample was removed and hung to dry for at least 16 hours. Longer drying did not affect the results.

The dried leather sample was stretched in both directions. The water and oil repellency ratings were measured as described above in Test Methods 1 and 2. The resulting data are shown in Table 7.
Table 7. Test Results on Finished Leather after Drying at Ambient Temperature

<table>
<thead>
<tr>
<th>Ex. #</th>
<th>% F</th>
<th>Water Drop Test Method</th>
<th>Oil Drop Score Test Method</th>
<th>Water Drop Test Method</th>
<th>Oil Drop Score Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>#2</td>
<td>#1</td>
<td>#2</td>
<td>#1</td>
</tr>
<tr>
<td>1a</td>
<td>7.3</td>
<td>4.52</td>
<td>6</td>
<td>6</td>
<td>5+</td>
</tr>
<tr>
<td>1b</td>
<td>7.9</td>
<td>4.18</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2a</td>
<td>6.6</td>
<td>5.00</td>
<td>5</td>
<td>5+</td>
<td>5</td>
</tr>
<tr>
<td>2b</td>
<td>8.5</td>
<td>3.88</td>
<td>4</td>
<td>5</td>
<td>5+</td>
</tr>
<tr>
<td>3</td>
<td>7.5</td>
<td>4.40</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>13.8</td>
<td>2.39</td>
<td>5</td>
<td>3+</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>7.14</td>
<td>4.62</td>
<td>5+</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7.92</td>
<td>4.17</td>
<td>5</td>
<td>2</td>
<td>5+</td>
</tr>
<tr>
<td>7</td>
<td>7.61</td>
<td>4.34</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>6.2</td>
<td>5.32</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>5.7</td>
<td>5.79</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>6.9</td>
<td>4.78</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>6.8</td>
<td>4.85</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>6.3</td>
<td>5.24</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>13a</td>
<td>7.1</td>
<td>4.65</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>13b</td>
<td>6.6</td>
<td>5.00</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>8.9</td>
<td>3.71</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>7.9</td>
<td>4.16</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>7.6</td>
<td>4.34</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>9.0</td>
<td>3.65</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>8.6</td>
<td>3.81</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>2.6</td>
<td>12.6</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>7.0</td>
<td>4.71</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>

Comparative Examples

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>7.6</td>
<td>4.34</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>B*</td>
<td>dispersion unstable in treatment bath</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C*</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>D*</td>
<td>8.5</td>
<td>3.89</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>E*</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

* not according to the invention
The data in Table 7 show the oil and water repellency ratings for each example and demonstrate the effect of the composition of the polymer and other additives on the oil and water ratings. The reproducibility of the ratings between different batches of treatment polymer is +/- about 0.5 units. The effect of acidification of the treatment bath is also shown for each example.

Acidification of the treatment bath with formic acid resulted in minor increased changes in performance of the treatment in all cases except Example 12. The choice of solubilizing aid used to solubilize the isethionic acid in the preparation of the polymer had little effect on the performance of the product. Examples 1a, 2a, 3, and 7 using N,N,-dimethylformamide, N,N,-diethylacetamide, N-methylpyrrolidine or 18-crown-6 respectively, all adequately facilitated the incorporation of the alcoholic sulfonic acid salt-group into the urethane polymer, as judged by the performance of the resulting dispersions. With minor process adjustments, the solubilizing aid can be omitted (see Table 8, below).

The source of the isocyanate had no detectable impact on performance, (reference Examples 1a and 8). Addition of a surfactant to the dispersion did not have a dramatic effect on oil and water ratings, (Examples 1a vs 13a and 13b). Increasing the fluorine content of the polymer by using a fluorinated diol as the linking agent afforded no enhancements in performance. In fact the oil ratings were lower than expected, (examples 1a vs 4).

While changes in relative ratios of stearyl alcohol:ISOFOL:isethionic acid, sodium salt:water (within the range specified above) did not greatly alter the water and oil repellency performance of the product, elimination of either of the hydrocarbon alcohols did impact the performance attributes. Thus Example A, prepared without a branched alcohol, shows poor oil repellency performance results, and Example 12, which contained no straight chain alcohol, needed an acidification step in the treatment process to bring about the desired performance attributes.

Replacing the fluoroalcohol with a fluorothiol, (Example 5) or stearyl alcohol, (Example 6), with its amine analogue adversely affected the oil repellency of the product. Increasing the concentration of sodium isethionate beyond the 8% (Mole, Example 10), reduced the oil ratings (Example 11). Example 11 showed that acidification of the treatment bath can partially restore the oil rating.

Example 21 - Application of Polymer Dispersions to Other Substrates.

The polymer dispersions of Example I were applied topically to stone, wood, paper, leather, polyester, cotton and nylon substrates.

A solution was made by mixing 5 g of the fluourourethane dispersion in 95 g of a 10% aqueous solution of isopropanol and applied to the substrate surface. The treated substrate was dried for 1 to 12 hours at ambient temperature and tested for performance for oil and water repellency using Test Methods 1-4 as appropriate. Test results are shown in Table 8.
The data in Table 8 demonstrated application of the polymers of this invention to other substrates at ambient temperatures (no heat cure was used). The Table further showed that dimethylformamide (DMF), used to facilitate incorporation of the isethionic acid, is optional if the isethionic acid is finely-divided and the reaction temperature is moderately increased.

Table 8. Test Results on Class A Substrates

<table>
<thead>
<tr>
<th>Ex. #</th>
<th>Stone oil</th>
<th>Stone water</th>
<th>Wood oil</th>
<th>Wood water</th>
<th>Paper oil</th>
<th>Paper water</th>
<th>Leather oil</th>
<th>Leather water</th>
<th>Polyester oil</th>
<th>Polyester water</th>
<th>Cotton oil</th>
<th>Cotton water</th>
<th>Nylon oil</th>
<th>Nylon water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (no treatment)</td>
<td>0</td>
</tr>
<tr>
<td>Ex. 1a</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Ex. 1c*</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

* Example 1c was prepared as Example 1a (see above) except that no DMF was added, the isethionic acid was finely powdered, and the reaction was carried out under reflux of the reaction mass (at about 125 - 145°C).
1. A branched polymer having at least one urea linkage derived by contacting

(1) at least one polyisocyanate, or mixture of polyisocyanates wherein the polyisocyanate contains at least three isocyanate groups or is a disiocyanate precursor of a polyisocyanate containing at least three isocyanate groups,
(2) at least one fluorocarbon alcohol, fluorocarbon thiol or fluorocarbon amine of the formula
\[R_f X Y H \]

wherein
\(R_f \) is a C_4-C_20 linear or branched fluorocarbon chain,
\(X \) is a divalent linking radical of formula
\[- (CH_2)_p - \text{or} - \text{SO}_2 N (R_1) - \text{CH}_2 \text{CH}_2 -\]

wherein \(p \) is 1 to 20, and \(R_1 \) is an alkyl of 1 to 4 carbon atoms, and

Y is -O-, -S- or N (R_2) - where \(R_2 \) is H or \(R_1 \),
(3) a mixture of straight and branched chain alcohol, amine or thiol of the straight chain structure \(H (CH_2)_x - OH, \)
\(H (CH_2)_x - NH_2, \) or \(H (CH_2)_x - SH, \) wherein \(x \) is 12 to 20, or mixtures thereof, and of the branched chain structure
\(C_y H (2y+1) - CH_2 - OH, C_y H (2y+1) - CH_2 - NH_2, \) or \(C_y H (2y+1) - CH_2 - SH, \) wherein \(y \) is in the range 15 to 19, or mixtures thereof, and
(4) at least one alcohol containing a sulfonic acid group or its salt, and then
(5) optionally at least one linking agent.

2. The polymer of Claim 1 dispersed in water.

3. The polymer of Claim 1 wherein \(R_f X \) is \(F (CF_2)_q(CH_2)_n - \) wherein \(n \) is 1 to 20 and \(q \) is from 4 to 20.

4. The polymer of Claim 1 wherein the alcohol containing a sulfonic acid is of the formula \(MO_3 S - Y - OH \) wherein \(M \) is an alkali metal; ammonium; alkyl, dialkyl, trialkyl or tetraalkyl ammonium; or hydrogen; and \(Y \) is a straight or branched chain alkyl group containing 2 to 10 carbon atoms or an aryl or aralkyl group containing an aromatic ring and 6 to 11 carbon atoms.

5. The polymer of Claim 1 wherein the linking agent is water, glycol, or a fluorinated diol.

6. The polymer of Claim 1 wherein the molar ratio of reactants per 100 isocyanate groups is from 28 to 48 for reactant (2), from 28 to 48 for reactant (3), from 1 to 20 for reactant (4), and from 4 to 30 for reactant (5).

7. A method of imparting oil repellency and water repellency to a wood, masonry or leather substrate or a fibrous substrate comprising contacting said substrate with a dispersion of a branched polymer having at least one urea linkage derived by reacting

(1) at least one polyisocyanate, or mixture of polyisocyanates,
(2) at least one fluorocarbon alcohol, fluorocarbon thiol, or fluorocarbon amine of the formula
\[R_f X Y H \]

wherein
\(R_f \) is a C_4-C_20 linear or branched fluorocarbon chain,
\(X \) is a divalent linking radical of formula
\[- (CH_2)_p - \text{or} - \text{SO}_2 N (R_1) - \text{CH}_2 \text{CH}_2 -\]

wherein \(p \) is 1 to 20, and \(R_1 \) is an alkyl of 1 to 4 carbon atoms, and

Y is -O-, -S- or N (R_2) - where \(R_2 \) is H or \(R_1 \),
(3) a mixture of straight and branched chain alcohol, amine or thiol of the straight chain structure \(H (CH_2)_x - OH, \)
\(H (CH_2)_x - NH_2, \) or \(H (CH_2)_x - SH, \) wherein \(x \) is 12 to 20, or mixtures thereof, and of the branched chain structure
CₚHₙ(CH₂)₂OH, CₚHₙ(CH₂)₂NH₂, or CₚHₙ(CH₂)₂SH, wherein y is in the range 15 to 19, or mixtures thereof, and
(4) at least one alcohol containing a sulfonic acid group or its salt, and then
(5) optionally at least one linking agent.

8. The method of Claim 7 wherein the amount of polymer contacted with the wood, masonry or leather substrate is sufficient to provide from 0.2 g fluorine/m² to 2.3 g fluorine/m², and the amount of polymer contacted with the fibrous substrate is sufficient to provide a fluorine content of at least about 200 μg/g by weight of the dry substrate.

9. The method of Claim 7 wherein the substrate is subjected to a low temperature cure.

10. A wood, masonry or leather substrate treated to provide oil repellency and water repellency according to the method of Claim 7.

11. A fibrous substrate treated to provide oil repellency and water repellency according to the method of Claim 7.

Patentansprüche

1. Verzweigtes Polymer mit mindestens einer Harnstoffbindung, das gewonnen wird, indem die folgenden Komponenten miteinander in Kontakt gebracht werden:

 (1) mindestens ein Polyisocyanat oder Polyisocyanatgemisch, wobei das Polyisocyanat mindestens drei Isocyanatgruppen enthält oder ein Diisocyanatvorläufer eines Polyisocyanats ist, das mindestens drei Isocyanatgruppen enthält,
 (2) mindestens ein Fluorkohlenstoffalkohol, Fluorkohlenstoffthiol oder Fluorkohlenstoffamin mit der Formel

 \[R_f - X - Y - H \]

 wobei
 \(R_f \) eine lineare oder verzweigte \(C_4-C_{20} \)-Fluorkohlenstoffkette ist,
 \(X \) ein zweiwertiges Verkettungsradikal mit der Formel

 \[-(CH_2)_p- \text{ oder } -SO_2N(R_1)-CH_2CH_2^{-} \]

 ist, wobei \(p \) gleich 1 bis 20 und \(R_1 \) ein Alkyl mit 1 bis 4 Kohlenstoffatomen ist, und
 \(Y \) für -O-, -S- oder N(R_2)- steht, wobei \(R_2 \) für H oder \(R_1 \) steht,
 (3) ein Gemisch aus geradkettigem und verzweigkettigem Alkohol, Amin oder Thiol mit der geradkettigen Struktur \(H(CH_2)_x-OH \), \(H(CH_2)_x-NH_2 \) oder \(H(CH_2)_x-SH \), wobei \(x \) gleich 12 bis 20 ist, oder deren Gemischen, und mit der verzweigkettigen Struktur \(C_yH_{(2y+1)}-CH_2-OH \), \(C_yH_{(2y+1)}-CH_2-NH_2 \) oder \(C_yH_{(2y+1)}-CH_2-SH \), wobei \(y \) im Bereich von 15 bis 19 liegt, oder deren Gemischen, und
 (4) mindestens ein Alkohol, der eine Sulfonsäuregruppe oder deren Salz enthält, und dann
 (5) wahlweise mindestens ein Verkettungsmittel.

2. Polymer nach Anspruch 1, das in Wasser dispergiert ist.

3. Polymer nach Anspruch 1, wobei \(R_f-X- \) für \(F(CF_2)_q(CH_2)_n- \) steht, wobei \(n \) gleich 1 bis 20 und \(q \) gleich 4 bis 20 ist.

4. Polymer nach Anspruch 1, wobei der sulfonsäurehaltige Alkohol die Formel \(MO_3S-Y-OH \) aufweist, wobei \(M \) ein Alkalimetall; Ammonium; Alkyl-, Dialkyl-, Trialkyl- oder Tetraalkylammonium oder Wasserstoff ist; und wobei \(Y \) eine geradkettige oder verzweigkettige Alkylgruppe, die 2 bis 20 Kohlenstoffatome enthält, oder eine Aryl- oder Aralkylgruppe ist, die einen aromatischen Ring und 6 bis 11 Kohlenstoffatome enthält.

5. Polymer nach Anspruch 1, wobei das Verkettungsmittel Wasser, Glycol oder fluoriertes Diol ist.

6. Polymer nach Anspruch 1, wobei der molare Anteil der Reaktanten pro 100 Isocyanatgruppen 28 bis 48 für den Reaktanten (2), 28 bis 48 für den Reaktanten (3), 1 bis 20 für den Reaktanten (4) und 4 bis 30 für den Reaktanten (5) beträgt.
7. Verfahren, um ein Holz-, Mauerwerk- oder Ledersubstrat oder ein faserartiges Substrat ölabweisend und wasserabweisend zu machen, wobei das Verfahren aufweist: Inkontaktbringen des Substrats mit einer Dispersion eines verzweigten Polymers mit mindestens einer Harnstoffbindung das gewonnen wird, indem die folgenden Komponenten miteinander zur Reaktion gebracht werden:

(1) mindestens ein Polyisocyanat oder Polyisocyanatgemisch,
(2) mindestens ein Fluorkohlenstoffalkohol, Fluorkohlenstoffthiol oder Fluorkohlenstoffamin mit der Formel

\[R_f \cdot X \cdot Y \cdot H \]

wobei

\(R_f \) eine lineare oder verzweigte C\(_4\)–C\(_{20}\)-Fluorkohlenstoffkette ist,
\(X \) ein zweiwertiges Verkettungsradikal mit der Formel

\[-(\text{CH}_2)_p-\text{SO}_2N(R_1)\cdot\text{CH}_2\text{CH}_2-\]

ist, wobei \(p \) gleich 1 bis 20 und \(R_1 \) ein Alkyl mit 1 bis 4 Kohlenstoffatomen ist, und
\(Y \) für \(-O-\), \(-S-\) oder \(N(R_2)\)- steht, wobei \(R_2 \) für H oder \(R_1 \) steht,

(3) ein Gemisch aus geradkettigem und verzweigtkettigem Alkohol, Amin oder Thiol mit der geradkettigen Struktur H(\(\text{CH}_2\)_x·OH), H(\(\text{CH}_2\)_x·NH_2 oder H(\(\text{CH}_2\)_x·SH, wobei \(x \) gleich 12 bis 20 ist, oder deren Gemischen, und mit der verzweigtkettigen Struktur CyH\(_{2y+1}\)_x·CH\(_2\)·OH, CyH\(_{2y+1}\)_x·CH\(_2\)·NH_2 oder CyH\(_{2y+1}\)_x·CH\(_2\)·SH, wobei \(y \) im Bereich von 15 bis 19 liegt, oder deren Gemischen, und

(4) mindestens ein Alkohol, der eine Sulfonsäuregruppe oder deren Salz enthält, und dann

(5) wahlweise mindestens ein Verkettungsmittel.

8. Verfahren nach Anspruch 7, wobei die Menge des Polymers die mit dem Holz-, Mauerwerk- oder Ledersubstrat in Kontakt gebracht wird, ausreicht, um 0,2 g Fluor/m\(^2\) bis 2,3 g Fluor/m\(^2\) bereitzustellen, und wobei die Menge des Polymers, die mit dem faserartigen Substrat in Kontakt gebracht wird, ausreicht, um einen Fluorgehalt von mindestens etwa 200 \(\mu\)g/g des getrockneten Substrats bereitzustellen.

9. Verfahren nach Anspruch 7, wobei das Substrat bei niedriger Temperatur ausgehärtet wird.

11. Faserartiges Substrat, das nach dem Verfahren von Anspruch 7 behandelt wird, um es ölabweisend und wasserabweisend zu machen.

Revidications

1. Polymères ramifié possédant au moins une liaison urée dérivé par une mise en contact:

(1) d’au moins un polyisocyanate ou d’un mélange de polyisocyanates dans lequel le polyisocyanate contient au moins trois groupes isocyanates ou est un précurseur disiocyanate d’un polyisocyanate contenant au moins trois groupes isocyanates,
(2) d’au moins un alcool fluorocarburé, un thiol fluorocarburé ou une amine fluorcarburée de la formule:

\[R_f \cdot X \cdot Y \cdot H \]

dans laquelle:

\(R_f \) est une chaîne de fluorocarburé linéaire ou ramifiée C\(_4\)–C\(_{20}\),
\(X \) est un radical liant divalent de la formule:

\[-(\text{CH}_2)_p-\text{SO}_2N(R_1)\cdot\text{CH}_2\text{CH}_2-\]

21
où p est de 1 à 20, et R₁ est un groupe alkyle de 1 à 4 atomes de carbone, et Y est -O-, -S- ou N(R₂)- où R₂ est H ou R₁,
(3) d’un mélange d’un alcool, d’une amine ou d’un thiol à chaîne droite et ramifiée de la structure à chaîne droite H(CH₂)ₓ-OH, H(CH₂)ₓ-NH₂ ou H(CH₂)ₓ-SH, où x est de 12 à 20, ou de mélange de ceux-ci, et de la structure à chaîne ramifiée CₘHₙ₊₁(CH₂)ₓ-OH, CₘHₙ₊₁(CH₂)ₓ-NH₂ ou CₘHₙ₊₁(CH₂)ₓ-SH, où y est dans l’intervalle de 15 à 19, ou de mélanges de ceux-ci, et
(4) d’au moins un alcool contenant un groupe d’acide sulfonique ou son sel, et ensuite
(5) éventuellement d’au moins un agent liant.

2. Polymère suivant la revendication 1, dispersé dans l’eau.
3. Polymère suivant la revendication 1, dans lequel R₁-X est F(CF₂)ₒ(CH₂)ₙ où n est de 1 à 20 et q est de 4 à 20.
4. Polymère suivant la revendication 1, dans lequel l’alcool contenant un acide sulfonique est de la formule MO₃S-Y-OH où M est un métal alcalin, un ammonium, un alkyl-, dialkyl-, trialkyl- ou tétraalkylammonium ou un hydrogène, et Y est un groupe alkyle à chaîne droite ou ramifiée contenant de 2 à 10 atomes de carbone ou un groupe aryle ou aralkyle contenant un cycle aromatique et de 6 à 11 atomes de carbone.
5. Polymère suivant la revendication 1, dans lequel l’agent liant est l’eau, le glycol ou un diol fluoré.
6. Polymère suivant la revendication 1, dans lequel le rapport molaire de réactifs pour 100 groupes isocyanates est de 28 à 48 pour le réactif (2), de 28 à 48 pour le réactif (3), de 1 à 20 pour le réactif (4) et de 4 à 30 pour le réactif (5).
7. Procédé pour donner un caractère oléofuge et un caractère hydrofuge à un substrat de bois, de maçonnerie ou de cuir ou un substrat fibreux comprenant la mise en contact dudit substrat avec une dispersion d’un polymère ramifié possédant au moins une liaison urée dérivé en faisant réagir:
 (1) au moins un polyisocyanate ou un mélange de polyisocyanates,
 (2) au moins un alcool fluorocarbure, un thiol fluorocarbure ou une amine fluorocarbure de la formule: Rᵣ-X-Y-H
 dans laquelle:
 Rᵣ est une chaîne de fluorocarbure linéaire ou ramifiée C₄₋C₂₀,
 X est un radical liant divalent de la formule: -(CH₂)ₚ - SO₂N(R₁)CH₂CH₂
 où p est de 1 à 20, et R₁ est un groupe alkyle de 1 à 4 atomes de carbone, et Y est -O-, -S- ou N(R₂)- où R₂ est H ou R₁,
(3) un mélange d’un alcool, d’une amine ou d’un thiol à chaîne droite et ramifiée de la structure à chaîne droite H(CH₂)ₓ-OH, H(CH₂)ₓ-NH₂ ou H(CH₂)ₓ-SH, où x est de 12 à 20, ou de mélange de ceux-ci, et de la structure à chaîne ramifiée CₘHₙ₊₁(CH₂)ₓ-OH, CₘHₙ₊₁(CH₂)ₓ-NH₂ ou CₘHₙ₊₁(CH₂)ₓ-SH, où y est dans l’intervalle de 15 à 19, ou de mélanges de ceux-ci, et
(4) au moins un alcool contenant un groupe d’acide sulfonique ou son sel, et ensuite
(5) éventuellement au moins un agent liant.

8. Procédé suivant la revendication 7, dans lequel la quantité de polymère mis en contact avec le substrat de bois, de maçonnerie ou de cuir est suffisante pour donner de 0,2 g de fluor/m² à 2,3 g de fluor/m² et la quantité de polymère mis en contact avec le substrat fibreux est suffisante pour donner une teneur en fluor d’au moins environ 200 µg/g en poids du substrat sec.
9. Procédé suivant la revendication 7, dans lequel le substrat est soumis à un durcissement à basse température.
10. Substrat de bois, de maçonnerie ou de cuir traité pour donner un caractère oléofuge et un caractère hydrofuge suivant le procédé de la revendication 7.
11. Substrat fibreux traité pour donner un caractère oléofuge et un caractère hydrofuge suivant le procédé de la revendication 7.