EUROPEAN PATENT SPECIFICATION

<table>
<thead>
<tr>
<th>Date of publication and mention of the grant of the patent:</th>
<th>Int Cl.: C02F 1/32, F21V 19/00, B01J 19/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application number: 99924609.3</td>
<td>International application number: PCT/CA1999/000520</td>
</tr>
</tbody>
</table>

APPARATUS AND METHOD FOR ULTRAVIOLET LIGHT TREATMENT OF FLUIDS

<table>
<thead>
<tr>
<th>Designated Contracting States: CH DE ES FR GB IT LI NL SE</th>
<th>Representative: Müller, Frank Peter, Dipl.-Ing. Müller, Schupfner & Gauger Patentanwälte Postfach 10 11 61 80085 München (DE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of publication of application: 24.04.2002 Bulletin 2002/17</td>
<td>References cited:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proprietor: Kozłowski, Henry Toronto, Ontario M2R 3J8 (CA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventor: Kozłowski, Henry Toronto, Ontario M2R 3J8 (CA)</td>
</tr>
</tbody>
</table>

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

Field of the Invention

[0001] The present invention relates to an apparatus and a method for ultraviolet treatment of fluids such as water. More particularly, the present invention relates to an apparatus that employs a particular arrangement of ballasts and ultraviolet lamps.

Background to the Invention

[0002] It is known to treat water with ultraviolet light in order to destroy undesirable bacteria and other microorganisms. For example, U.S. Patent 5 660 719 which issued August 26, 1997 to Kurtz et al. discloses an ultraviolet lamp rack assembly comprising an array of vertically disposed ultraviolet lamps for the treatment of fluids. The assembly has a separate enclosure for the housing at least one ballast and electronic components to power the lamps. Kurtz et al. indicate that substantial amounts of heat are generated during functioning of the ballast and that cooling is required. Cooling is provided by blowing air through the enclosure, or by means of air conditioning or the use of a heat exchanger.

[0003] Another arrangement is disclosed in U.S. Patent 5 019 256 which issued May 28, 1991 to Ifill et al. This patent discloses an ultraviolet lamp rack assembly comprising a vertical array of horizontally disposed ultraviolet lamps for the treatment of waste water. A power control panel is provided at a location remote from the rack assembly for the inclusion of ballasts and various electronic components. Alternatively, the ballasts for the lamps may be located in a submerged vertical conduit which forms a part of the rack. One of the problems associated with such an arrangement is that the ballasts are difficult to remove from the rack, and if one ballast needs to be replaced then all of the ballasts must be removed. This is inefficient, as the ultraviolet treatment unit is out of service for a long period of time. Variations of the device of U.S. Patent 5 019 256 to Ifill et al. are disclosed in U.S. Patents 4 482 809, 4 872 980 and 5 006 244 to J.M. Maarschalkwerde which issued November 13, 1984, October 10, 1989 and April 9, 1991 respectively. The ballasts and power supply to the lamps are separate from the lamps and lamp racks.

[0004] Most commercial treatment systems for water, in which the water is treated with ultraviolet radiation, use ultraviolet lamps which have electrodes therein and are associated with ballasts. The present invention is also suitable for lamps which are electrodeless and are associated with high frequency excitation couplers. A description of a typical electrodeless lamp and coupler may be found in United States Patent 5 070 277 to W. P. Lapatovich which issued December 3, 1991.

[0005] The present invention attempts to overcome the deficiencies of the previous systems and provide a system which is easily maintained.

Summary of the Invention

[0006] The term "wire", as used herein in relation to the present invention, includes a plurality of wires, e.g. as in a cable.

[0007] The terms "comprising/comprises" when used in this specification are taken to specify the presence of the stated features, integers, steps or components but do not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.

[0008] Accordingly, one aspect of the present invention provides a radiation source assembly for use with a fluid, according to claim 1.

[0009] Further embodiments of the invention are claimed in sub-claim including claim 14 which concerns a method for treating water.

[0010] In one embodiment, the radiation source is a lamp for emitting ultraviolet radiation.

[0011] In another embodiment, the lamp has electrodes and the excitation controlling means is a ballast electrically connected to the lamp.

[0012] In a further embodiment, the lamp is an electrodeless lamp and the excitation controlling means is a high frequency coupler.

[0013] In another aspect of the present invention provides a radiation source assembly for use with a material selected from the group consisting of a liquid and a flowing fluid, comprising:

a) when the material is a liquid,
 at least one radiation source adapted to be immersed in said liquid when the assembly is in use;
 at least one excitation controlling means for controlling excitation of gas within the radiation source, said excitation controlling means being adapted to be immersed in said liquid when the assembly is in use;
 and electrical conducting means for providing electrical energy to the excitation controlling means; or
b) when the material is a flowing fluid,
 at least one radiation source adapted to be immersed in said flowing fluid when the assembly is in use;
 at least one excitation controlling means for controlling excitation of gas within the radiation source, said excitation controlling means being adapted to be immersed in said flowing fluid when the assembly is in use;
 and electrical conducting means for providing electrical energy to the excitation controlling means.

[0014] In yet another embodiment, the radiation source assembly has a first elongate frame member having a portion adapted to be immersed in the liquid or
has an external retaining ring fixed adjacent the first end through the outer wall, the excitation controlling means thread a tubular stub surrounding an access aperture frame member is tubular with an outer wall and, for each frame member.

connection to the portion of the first elongate frame member, and mounted at a second end to the second elongate connection to the portion of the first elongate frame member.

sleeve is mounted at the first end with a fluid-tight con-
nexion to the portion of the first elongate frame member.

are encased in a transparent sleeve which is fluid-tight.

In another embodiment, the ballast is support-
ed by the first elongate frame member.

In a further embodiment, the ballast is elongate and has first and second opposed ends, the first end of which is mounted on said portion, the lamp is elongate and has first and second opposed ends, the first end of which is connected to the second end of the ballast.

In another embodiment, the lamp is elongate and has first and second ends, the first end of which is connected to the ballast and the second end of the lamp is supported by the first elongate frame member.

In a further embodiment, the assembly has a plurality of excitation controlling means, each with a radiation source associated therewith.

In yet another embodiment, the assembly has a plurality of radiation sources connected to each excitation controlling means.

In another embodiment, the electrical conducting means includes, for each excitation controlling means, an electrical wire which extends from the excitation controlling means to a location which is not immersed in the liquid or flowing fluid.

In another embodiment, the ballast and lamp have a coating which is in contact with the liquid or flowing fluid.

In another embodiment, the assembly has a second elongate frame member, and when each ballast is supported by the first elongate frame member, the second end of each associated lamp is supported by said second elongate frame member.

In another embodiment, the ballast and lamp are encased in a transparent sleeve which is fluid-tight.

In a further embodiment, the transparent sleeve is mounted at a first end with a fluid-tight connection to the portion of the first elongate frame member.

In another embodiment, the transparent sleeve is mounted at the first end with a fluid-tight connection to the portion of the first elongate frame member, and mounted at a second end to the second elongate frame member.

In yet another embodiment, the first elongate frame member is tubular with an outer wall and, for each excitation controlling means, a support with an externally threaded tubular stub surrounding an access aperture through the outer wall, the excitation controlling means has an external retaining ring fixed adjacent the first end thereof, the assembly further comprising an internally threaded coupling for engaging the stub and the retaining ring, so as to move the stub and the ring toward each other, and a resilient sealing member between the stub and the coupling such that the retaining ring is pressed against the exterior of the excitation controlling means when the coupling is tightened.

In a further embodiment, the assembly has a sleeve surrounding each radiation source, said sleeve having one open end and one closed end and being made of a material transparent to radiation emitted by the radiation source, and a further coupling which sealedly supports the open end of said sleeve from the second end of the excitation controlling means.

In a further embodiment, the excitation controlling means is a ballast and the radiation source is a lamp with electrodes.

Another aspect of the invention provides an assembly for use in a photochemical treatment of a fluid, comprising:

at least one radiation source for producing radiation by excitation of a gas;
at least one excitation controlling means adapted to be immersed in said fluid when the assembly is in use, for controlling excitation of the gas within the radiation source;
a submersible frame member having a portion adapted to be immersed in the fluid when the assembly is in use and having a plurality of supports, each support providing support for at least one of a) a radiation source, b) a radiation-transparent sleeve for the radiation source and b) an excitation controlling means; and electrical conducting means for providing electrical energy to the excitation controlling means.

In one embodiment for treatment of a liquid, the assembly is selected from the group consisting of

A) an assembly in which the excitation controlling means is a ballast, said ballast having a second end opposed to a first end, and said lamp having an outer sleeve which encloses components of the ballast, the sleeve being sealed to prevent ingress of liquid into the ballast, said ballast and support having connection means for mechanically connecting the first end of the ballast to the support;
the radiation source is an elongate ultraviolet lamp having first and second opposed ends, said lamp and ballast having connection means for mechanically and electrically connecting the first end of the lamp to the second end of the ballast; and

and the assembly has means for sealing the lamp against direct contact with the liquid;
B) an assembly in which the radiation source is an elongate ultraviolet lamp having connection means for mechanically connecting the lamp to the sup-
the excitation controlling means is a ballast, said lamp and ballast having means for electrically connecting them together; and

the assembly has sealing means for sealing the lamp and ballast against direct contact with the liquid; C) an assembly in which the radiation source is an elongate ultraviolet lamp;

the excitation controlling means is a ballast, said lamp and ballast having means for electrically connecting them together;

and the assembly has a sleeve covering and sealing the lamp and ballast against direct contact with the liquid, and the assembly has connection means for mechanically connecting the sleeve means to the support; and

D) an assembly in which the excitation controlling means is a ballast, having an outer sleeve which encloses components of the ballast, the sleeve being sealed to prevent ingress of liquid into the ballast, said ballast having connection means for mechanically connecting the ball to the support;

the radiation source is an elongate ultraviolet lamp having connection means for mechanically connecting the lamp to the support separately from the ballast, and means for sealing the lamp against direct contact with the liquid, said lamp and ballast having means for electrically connecting them together.

In another embodiment, the means for sealing the lamp in embodiments A), B) or D) is a sleeve which is transparent to ultraviolet radiation.

In a further embodiment, submersible frame member is tubular, and the support surrounds an aperture in a side wall of the frame member, and the assembly further includes 1) a first electrical connection between the ballast and electrically conductive means within the tubular frame member, said first electrical connection having the form of pins entering suitable sockets, and 2) a second electrical connection between the ballast and the ultraviolet lamp, said second electrical connection also having the form of pins entering suitable sockets.

In yet another embodiment, the assembly includes electrical power transmission means for transmitting electrical power from a power source to each ballast, said power transmission means being outside the submersible frame member.

Preferably, all connections are substantially water tight.

In another embodiment, the means for sealing the liquid in the liquid tight seal between the lamp, sleeve and ballast.

In yet another embodiment, there is a screw coupling with a liquid tight seal between the lamp, sleeve and ballast.

In another embodiment, there is a screw coupling and a liquid tight seal between the ballast and the conduit.

In another embodiment, the liquid is water.

The invention also provides a method for treating liquids such as water with ultraviolet light comprising passing the liquid over an ultraviolet lamp and ballast assembly which is submerged in the liquid.

Another aspect of the invention provides means for transmission of electrical power and electrical signals, in the form of a laminate which comprises:

a plurality of elongated electrically conducting members, each with a plurality of connectors at spaced apart intervals along the member, said electrically conducting members having an electrically insulating material between the members.

In one embodiment, each electrically conducting member is sandwiched between two electrically insulating strips, and at least one of the strips has notches at spaced apart intervals along the strip, wherein the connectors are housed in the notches.

In another embodiment, the laminate has first and second elongated electrically conducting members, said first electrically conducting member being sandwiched between first and second electrically insulating members and said second electrically conducting member being sandwiched between second and third electrically insulating members.

In a further embodiment, the connectors are spring clip connectors for connecting with electrically conducting pins.

In yet another embodiment, each outer electrically insulating member is clad with a further electrically insulating member.

In another embodiment, the electrically con-
ducting members are metal strips.

Brief Description of the Drawings

[0053]

Figure 1 is a partial side view of a single modular UV lamp rack assembly in accordance with the invention.

Figure 2 is a cross-sectional view of a ballast and associated connections in accordance with the invention.

Figure 3, which is located between Figures 1 and 2, is an end view of a ballast used in Figure 2.

Figure 4 is a perspective view of a portion of a vertical conduit in a UV lamp rack assembly, useful in the present invention.

Figure 5 is a cross-sectional view of a ballast and lamp which has an outer sleeve attached to a submersible conduit.

Figure 6 is a cross-sectional view of a ballast and an associated lamp which are separately attached to a submersible conduit.

Figure 7 is an exploded view of a laminate useful for securing the ballast and lamps in place are possible without departing from the essence of the invention. For example, sleeve 16 and tubular stub 29 may have the same diameter, and abutting ends may be externally threaded and held together with an internally threaded coupling which screws onto both the sleeve and the stub.

[0054] Referring to Figure 1, there is an ultraviolet lamp rack assembly 10 which has a vertical conduit 11, a vertical support member 12 and a bar 13. Located between vertical conduit 11 and vertical member 12 are a plurality of ultraviolet lamps 14 encased in transparent sleeves 15 (partially seen in Figure 2), with associated ballasts 16 and caps 18. The sleeves 15 are made from a material which permits passage of ultraviolet light. A preferred material is quartz glass. The ultraviolet lamps 14 and ballasts 16 are submerged in liquid 66, e.g. waste water. The surface of the liquid is shown at 17 and in Figure 1 is beneath bar 13.

[0055] Figure 2 shows the arrangement of one of the ballasts 16. Ballast 16 has internal components 22 encased in sleeve 21. At one end of ballast 16 there are female electrical connectors 20 for cooperation with electrical pins 19 on ultraviolet lamp 14. At the other end of ballast 16 there is an electrical line pin 23 and an electrical neutral pin 24. Between line pin 23 and neutral pin 24 there is an electrical insulation barrier 25. Attached to sleeve 21 is a retaining ring 26, the purpose of which will be explained hereinafter.

[0056] Figure 2 also shows vertical conduit 11 in which there are female electrical connectors 34 and 35, which are electrically connected to electrical conduits, e.g. wires. There is an aperture 36 adjacent to connectors 34 and 35, through which pins 23 and 24 may be connected to connectors 34 and 35 respectively. Attached, e.g. welded, to vertical conduit 11 is a tubular stub 29, which has an exterior screw thread, as shown in Figures 2 and 4. Ballast 16 is held in place by means of an internally screw threaded coupling 27. The joint between ballast 16 and tubular stub 29 is made watertight by means of an O-ring 28 which is trapped between retaining ring 26 and tubular stub 29.

[0057] As indicated above, the ultraviolet light lamp 14 is electrically connected to ballast 16 by means of pins 19 and female connectors 20. At the end of ballast 16 adjacent to the connectors 20, there is a tubular stub 31 which has an external screw thread 31a. Tubular stub 31 is connected to sleeve 21 by a weld or similar. It will be understood that tubular stub 31 may be an integral part of sleeve 21. Quartz sleeve 15 surrounds ultraviolet lamp 14. The connection between the quartz sleeve 15 and tubular stub 31, and thus between ultraviolet lamp 14 and ballast 16, is kept waterproof by means of an O-ring 33 which is trapped between tubular stub 31 and internally threaded retaining nut 32.

[0058] It will be understood that other arrangements for securing the ballast and lamps in place are possible without departing from the essence of the invention. For example, sleeve 16 and tubular stub 29 may have the same diameter, and abutting ends may be externally threaded and held together with an internally threaded coupling which screws onto both the sleeve and the stub.

[0059] Figure 3 shows an end of ballast 16, which has line and neutral pins 23 and 24 separated by an electrical insulation barrier 25. The ballast end may have auxiliary pins 38 for alarms and other features.

[0060] Figures 5 and 6 illustrate different arrangements of a ballast and an ultraviolet lamp. In Figure 5, ballast 70 is electrically and mechanically connected to ultraviolet lamp 71. Ballast 70 and lamp 71 are enclosed in sleeve 72. Sleeve 72 has a closed end 73 and an open end 74. Open end 74 fits over and is supported by tubular stub 75 which is welded to a vertically arranged tubular conduit 76. There is an aperture in conduit 76 so that there may be electrical communication through conduit 76 to the ballast 70 inside sleeve 72. Electrical communication is accomplished through wires 77 which are appropriately connected to ballast 70. Sleeve 72 is sealed against ingress of fluid, e.g. liquid, outside the sleeve, by means of O-ring 78 or similar. Figure 5 also shows closed end 73 of sleeve 72 being supported in a cavity 79 in vertically arranged support member 80.

[0061] In Figure 6, ballast 90 is physically separated from ultraviolet lamp 91, although ballast 90 and lamp 91 are electrically connected by wires 92. Lamp 91 is enclosed in sleeve 93. Sleeve 93 has a closed end 94 and an open end 95. Open end 95 fits over and is supported by tubular stub 96 which is welded to vertically arranged tubular conduit 97. There is an aperture in conduit 97 so that there may be electrical communication
through conduit 97 to the ballast 90. Ballast 90, which has a threaded end, is mechanically supported by externally threaded stub 98 and internally threaded coupling 99. There is an O-ring 100 trapped between ballast 90 and stub 98 to provide a seal to prevent ingress of fluid into the electrical connections for the ballast and lamp. Ballast 90 has power supply wires 101 connected thereto. Sleeve 93 is sealed against ingress of fluid, e.g., liquid, outside the sleeve, by means of O-ring 102 or similar. Closed end 94 of sleeve 93 has a boot 103 surrounding closed end 94, and boot 103 is supported in a cavity 104 in vertically arranged support member 105.

The laminate shown in Figure 8 also has notches 54 and 56 in outer strips 46 and 40 respectively. In notches 54 and 56 there are power strips with spring connectors 55 and 57 respectively therein.

Although not shown, microprocessor chips may be embedded between strips so that the microprocessor chips are protected from the environment, e.g., are protected from water damage. The chips can be used for a variety of purposes, e.g., to monitor the lamps, ballasts, excitation couplers and other electrical or electronic components, and trigger alarms at alarm remote panels.

It will be understood that electrical pins 23 and 24 form an electrical connection with power strips 47 and 50 when pushed into spring clips 48 and 49 respectively. Connectors 55 and 57 are preferably for auxiliary connections, e.g., for detection of burnt-out lamps, defective ballasts, leaking joints and the like.

Although the drawings show electrical power being fed to ballasts 16 by means of wires or laminates through conduit 11, electrical power may be fed to ballast 16 through means external to conduit 11. In such an instance, waterproof wires may be used, which enter a waterproof coupling to the ballast. As will be understood, in such an instance, conduit 11 could be replaced by a submersible tube or bar which merely supports ballast 16. Such support may be provided by a flexible or rigid boot attached to the submersible bar. Alternatively, the ballast may be physically separated from the lamp as shown in Figure 6.
therein without departing from the scope of this invention, as set forth in the appended claims.

Claims

1. A radiation source assembly for use in a photochemical treatment of a liquid and fluid, respectively, comprising:
 - a least one radiation source (14; 91) adapted to be immersed in said fluid (66) when the assembly is in use;
 - at least one excitation controlling means (16; 70; 90) mechanically and electrically connected to each radiation source (14; 91), said excitation controlling means (16; 70; 90) being adjacent to the radiation source (14; 91), said excitation controlling means (16; 70; 90) being adapted to be immersed in and cooled by said fluid (66) when the assembly is in use;
 - an elongate frame member (11; 76; 97) having a portion adapted to be immersed in the fluid (66) when the assembly is in use, the frame member (11; 76; 97) being connected to at least one of the radiation source (14; 91) and the excitation controlling means (16; 70; 90) and electrical conducting means (23, 24; 77; 92) for providing electrical energy to the excitation controlling means (16; 70; 90).

2. Assembly as claimed in claim 1 wherein said radiation source (14; 91) is an elongated ultraviolet lamp and wherein the excitation controlling means (16; 70; 90) is a ballast electrically connected to the ultraviolet lamp, said ultraviolet lamp having an ultraviolet-transparent sleeve (15; 72; 93).

3. Assembly as claimed in claim 2 wherein the fluid (66) into which the ultraviolet lamp is adapted to be immersed is water, said ultraviolet lamp and ballast being adapted to be immersed in and cooled by said water when the assembly is in use.

4. Assembly as claimed in one of claims 2 to 5 wherein the excitation controlling means (16; 70; 90) is supported by said elongate frame member (11; 76; 97), the ultraviolet transparent sleeve (15; 72; 93) is quartz and the electrical conducting means (23, 24; 77; 92) includes, for each excitation controlling means (16; 70; 90), an electrical wire which extends from the excitation controlling means (16; 70; 90) to a location which is not immersed in the fluid (66).

5. Assembly as claimed in claim 4 wherein the ballast is elongate and has first and second opposed ends, the first end of which is mounted on a portion of the first elongate frame member (16; 76; 97) which is to be immersed in the fluid (66), the ultraviolet lamp has first and second opposed ends, the first end of each ultraviolet lamp being connected to the second end of the corresponding ballast.

6. Assembly as claimed in any of claims 2 to 5 wherein the assembly has a further elongate frame member (80; 105) and the second end of each associated ultraviolet lamp is supported by said further elongate frame member (80; 105).

7. Assembly as claimed in any of the preceding claims wherein the first elongate frame member (11; 76; 97) is tubular with an outer wall and wherein there is, for each excitation controlling means (16; 70; 90), a support with an externally threaded tubular stub (29; 98) surrounding an access aperture through the outer wall, the excitation controlling means (11; 76; 97) having an external retaining ring (26) fixed adjacent the first end thereof, the assembly further comprising an internally threaded coupling (27; 99) for engaging the stub (29; 98) and the retaining ring (26) so as to move the stub (29; 98) and the ring (26) toward each other, and a resilient sealing member (28; 100) between the stub and the coupling such that the retaining ring (26) is pressed against the exterior of the excitation controlling means (16; 70; 90) when the coupling is tightened.

8. Assembly as claimed in any of claims 2 to 7 wherein said ultraviolet transparent sleeve (15; 72; 93) surrounding each ultraviolet lamp comprises one open end and one closed end, and wherein a coupling sealingly supports the open end of said sleeve (15; 72; 93) from the second end of the excitation controlling means (16; 70; 90).

9. Assembly as claimed in any of claims 1 to 8 wherein said ballast comprises an outer sleeve (21) which encloses components of the ballast (21) and is sealed to prevent ingress of liquid (66) into the ballast, said ballast and support having connection means for mechanically connecting the first end of the ballast to the support (11; 76; 97).

10. Assembly as claimed in any of claims 2 to 8 wherein the ultraviolet lamp has connection means (19; 20) for mechanically connecting the lamp to the support (97), the excitation controlling means (16; 70; 90) is a ballast, said lamp and ballast having means (92) for electrically connecting them together, and the assembly has sealing means (33) for sealing the lamp and ballast against direct contact with the liquid (66).
11. Assembly as claimed in any of the preceding claims wherein the tubular elongate frame member (11; 76; 97) contains electrical conducting means (77; 101) and the excitation controlling means (16; 70; 90) are removably coupled, electrically, to power transmission means (47; 50).

12. Assembly as claimed in any of the preceding claims wherein the electrical conducting means comprises a laminate (39) having a plurality of elongated electrical conducting members (41; 43), each member having a plurality of electrical connectors at spaced apart intervals along the member, said laminate having electrically insulating material (25) between the members.

13. Assembly as claimed in claim 12 wherein each electrically conducting member is sandwiched between electrically insulating strips (41; 43; 45), at least one of the strips having notches (51; 52; 53) at spaced apart intervals along the strip for receiving connectors therein.

14. Method for treating water with ultraviolet light comprising passing the water over a radiation source (14; 91) and excitation controlling means (16; 70; 90) as claimed in any of the preceding claims wherein said assembly being immersed in waste water.

Patentansprüche

1. Strahlungsquellenanordnung zur Verwendung bei einer photochemischen Behandlung einer Flüssigkeit bzw. eines Fluids, die folgendes aufweist:
 - wenigstens eine Strahlungsquelle (14; 91), die zum Eintauchen in das Fluid (66) geeignet ist, wenn die Anordnung in Verwendung ist;
 - wenigstens eine Erregungssteuereinrichtung (16; 70; 90) und
 - eine elektrisch leitende Einrichtung (23, 24; 77; 92) zum Liefern von elektrischer Energie zu der Erregungssteuereinrichtung (16; 70; 90).

2. Anordnung nach Anspruch 1, bei welcher die Strahlungsquelle eine längliche UV-Lampe ist und die Erregungssteuereinrichtung (16; 70) ein Ballast ist, der mit der UV-Lampe elektrisch verbunden ist, wobei die UV-Lampe eine UV-transparente Hülse (15; 72; 93) hat.

3. Anordnung nach Anspruch 2, bei welcher das Fluid (66), in welches die UV-Lampe geeignet ist, eintaucht zu werden, Wasser ist, wobei die UV-Lampe und der Ballast dazu geeignet sind, in das Fluid (66) eintaucht und davon gekühlt zu werden, wenn die Anordnung in Verwendung ist.

4. Anordnung nach einem der Ansprüche 2 bis 5, bei welcher die Erregungssteuereinrichtung (16; 70; 90) von dem länglichen Rahmenelement (11; 76; 97) gestützt wird, die UV-transparente Hülse Quarz ist und die elektrische Leitungseinrichtung (23, 24; 77; 92) für jede Erregungssteuereinrichtung (16; 70; 90) einen elektrischen Draht umfaßt, der sich von der Erregungssteuereinrichtung (16; 70; 90) zu einer Stelle erstreckt, die nicht in das Fluid (66) eintaucht ist.

5. Anordnung nach Anspruch 4, bei welcher der Ballast länglich ist und erste und zweite gegenüberliegende Enden hat, von denen das erste Ende an einem Abschnitt des ersten länglichen Rahmenelements (16; 76; 97) angebracht ist, das in das Fluid (66) eintaucht werden soll, die UV-Lampe erste und zweite gegenüberliegende Enden hat, wobei das erste Ende jeder UV-Lampe mit dem zweiten Ende des entsprechenden Ballastes verbunden ist.

6. Anordnung nach einem der Ansprüche 2 bis 5, bei welcher die Anordnung ein weiteres längliches Rahmenelement (80; 105) hat und das zweite Ende jeder zugehörigen UV-Lampe von dem weiteren länglichen Rahmenelement (80; 105) gestützt wird.

7. Anordnung nach einem der vorhergehenden Ansprüche, bei welcher das erste längliche Rahmenelement (11; 76; 97) rohrförmig mit einer äußeren Wand ist und bei welcher es für jede Erregungssteuereinrichtung (16; 70; 90) einen Träger mit einem rohrförmigen Stumpf (29; 98) mit Außengewinde gibt, welcher eine Zugangsoffnung durch die äußere Wand umgibt, wobei die Erregungssteuereinrichtung (11; 76; 97) einen äußeren Halterling (26) hat, der angrenzend an ein erstes Ende befestigt ist, wobei die Anordnung ferner eine Kupplung (27;
9) mit Innengewinde aufweist, um an dem Stumpf (29; 98) und dem Haltering (26) anzugreifen, so daß der Stumpf (29; 98) und der Ring (26) zueinander bewegt werden, und ein elastisches Dichtungselement (28; 100) zwischen dem Stumpf und der Kupp- lung, so daß der Haltering (26) gegen das Äußere der Erregungssteuereinrichtung (16; 70; 90) gedrückt wird, wenn die Kupplung angezogen wird.

8. Anordnung nach einem der Ansprüche 2 bis 7, bei welcher die UV-transparente Hülse (15; 72; 93), jede UV-Lampe umgibt, ein offenes Ende und ein geschlossenes Ende aufweist, und bei welcher eine Kupplung dichtend das offene Ende der Hülse (15; 72; 93) von dem zweiten Ende der Erregungssteuereinrichtung (16; 70; 90) stützt.

9. Anordnung nach einem der Ansprüche 1 bis 8, bei welcher der Ballast eine äußere Hülse (21) aufweist, welche Komponenten des Ballastes (21) umgibt und versiegelt ist, um das Eindringen von Flüs-
sigkeit (66) in den Ballast zu verhindern, wobei der Ballast und der Träger Verbindungsmittel zum me-
chanischen Verbinden des ersten Endes des Balla-
astes mit dem Träger (11; 76; 97) haben.

10. Anordnung nach einem der Ansprüche 2 bis 8, bei welcher die UV-Lampe Verbindungsmittel (19; 20) zum mechanischen Verbinden der Lampe mit dem Träger (97) hat, die Erregungssteuereinrichtung (16; 70; 90) ein Ballast ist, wobei die Lampe der Ballast und der Träger Verbindungsmittel zum me-
chanischen Verbinden der Lampe und des Balla-
astes gegen direkten Kontakt mit der Flüssig-
keit (66) abgedichtet.

11. Anordnung nach einem der vorhergehenden An-
sprüche, bei welcher das Rohrformige, längliche Rahmenelement (11; 76; 97) elektrische Leitungs-
mittel (77; 101) enthält und die Erregungssteuermittel (16; 70; 90) abnehmbar elektrisch mit Leistungs-
übertragungsmitteln (47; 50) gekoppelt sind.

12. Anordnung nach einem der vorhergehenden An-
sprüche, bei welcher die elektrischen Leitungs-
mittel (11; 76; 97) elektrische Leitungselemente (41; 43) aufweisen, wobei jedes Element mehrere elektrische Verbin-
der in beabsichtigten Intervallen entlang des Ele-
ments hat, wobei das Laminat elektrisch isolieren-
des Material (25) zwischen den Elementen hat.

13. Anordnung nach Anspruch 12, bei welcher eines elektrisch leitende Element zwischen elektrisch isolierenden Streifen (41; 43; 45) sandwichartig angeordnet ist, wobei wenigstens einer der Streifen Ker-
ben (51; 52; 53) in entlang des Streifens beabstan-
denen Intervallen aufweist, um Verbindung darin aufzunehmen.

14. Verfahren zur Behandlung von Wasser mit UV-Licht, welches das Strömen von Wasser über eine Strahlungsquelle (14; 91) und Erregungssteuer-
mitel (16; 70; 90) nach einem der vorhergehen-
den Ansprüche umfaßt, wobei die Anordnung in Ab-
wasser eingetaucht wird.

Revendications

1. Arrangement de source de rayonnement pour usa-
ge dans le traitement photochimique d’un liquide et
fluide, respectivement, comprenant:

au moins une source de rayonnement (14; 91) adapté à être immergée dans ledit fluide (66)

au moins un moyen de commande d'excitation (16; 70; 90) relié mécaniquement et électrique-
ment à chaque source de rayonnement (14; 91), ledit moyen de commande d'excitation (16; 70; 90) étant adjacent à la source de rayonne-
ment (14; 91), le moyen de commande d'excitation (16; 70; 90) étant adapté à être immergé
dans ledit fluide (66) et être refroidi par ce der-
drier quand l'arrangement est en usage;

un élément cadre oblong (11; 76; 97) ayant une
section adaptée à être immergée dans le fluide
(66) quand l'arrangement est en usage, l'élé-
ment cadre (11; 76; 97) étant relié au moins à
la source de rayonnement (14; 91) ou le moyen
de commande d'excitation (16; 70; 90);

et des moyens conducteurs électriquement
(23, 24; 77; 92) pour fournir de l'énergie électrique au moyen de commande d'excitation (16; 70; 90).

2. Arrangement selon la revendication 1, dans lequel
la source de rayonnement (14; 91) est une lampe UV oblongue et dans lequel le moyen de comman-
de d'excitation (16; 70) est un ballast électriquement
relé à la lampe UV, ladite lampe UV ayant une
gaine (15; 72; 92) étant transparent pour l'UV.

3. Arrangement selon la revendication 2, dans lequel
le fluide (66), dans lequel la lampe UV peut être im-
mergé, est de l'eau, la lampe UV et le ballast étant
adaptés à être immergés dans ladite eau et être re-
froidis par celle-ci quand l'arrangement est en usa-
ge.

4. Arrangement selon l'une des revendications 2 à 5,
dans lequel le moyen de commande d'excitation (16; 70; 90) est soutenue par ledit élément cadre oblong (11; 76; 97), la gaine transparente pour l'UV (15; 72; 93) est du quartz et le moyen électriquement conducteur (23, 24; 77; 92) inclut, pour chaque moyen de commande d'excitation (16; 70; 90), un fil électrique qui s'étend depuis le moyen de commande d'excitation (16; 70; 90) à un endroit qui n'est pas immergé dans le fluide (66).

5. Arrangement selon la revendication 4, dans lequel le ballast est oblong et a des premières et secondes extrémités opposées, dont la première extrémité est montée sur une section du premier élément cadre (16; 76; 97) qui doit être immergée dans le fluide (66), la lampe UV a des premières et secondes extrémités opposées, la première extrémité de chaque lampe UV étant reliée à la deuxième extrémité du ballast correspondant.

6. Arrangement selon l'une des revendications 2 à 5, dans lequel l'arrangement a un autre élément cadre oblong (80; 105) et la deuxième extrémité de chaque lampe UV associée est soutenue par cet autre élément cadre oblong (80; 105).

7. Arrangement selon l'une des revendications précédentes, dans lequel le premier élément cadre (11; 76; 97) est tubulaire avec une paroi extérieure et dans lequel il y a, pour chaque moyen de commande d'excitation (16; 70; 90), un support avec un bout tubulaire à filet extérieur (29; 98) entourant un orifice d'accès à travers la paroi extérieure, le moyen de commande d'excitation (11; 76; 97) ayant un anneau de retenue extérieur (26) attaché adjacent à la première extrémité, l'arrangement comprenant en outre un accouplement à filet externe (27; 99) pour engager le bout (29; 98) et l'anneau de retenue (26) afin de mouvoir le bout (29; 98) et l'anneau (26) l'un vers l'autre, et un élément étanchéité élastique (28; 100) entre le bout et l'accouplement tel que l'anneau de retenue (26) est pressé contre l'extérieur du moyen de commande d'excitation (16; 70; 90) quand l'accouplement est serré.

8. Arrangement selon l'une des revendications 2 à 7, dans lequel la gaine transparente pour l'UV (15; 72; 93), qui entoure chaque lampe UV, comprend une extrémité ouverte et une extrémité fermée, et dans lequel un accouplement soutient, d'une manière étanche, l'extrémité de ladite gaine (15; 72; 93) depuis la deuxième extrémité du moyen de commande d'excitation (16; 70; 90).

9. Arrangement selon l'une des revendications 1 à 8, dans lequel ledit ballast comprend une gaine extérieure (21) qui renferme des composants du ballast (21) et est étanchée pour empêcher le liquide (66) d'entrer dans le ballast, ledit ballast et le support ayant des moyens de connexion pour connecter mécaniquement la première extrémité du ballast au support (11; 76; 97).

10. Arrangement selon l'une des revendications 2 à 8, dans lequel la lampe UV a des moyens de connexion (19; 20) pour connecter mécaniquement la lampe au support (97), le moyen de commande d'excitation (16; 70; 90) est un ballast, la lampe et le ballast ayant des moyens (92) pour les relier électriquement, et l'arrangement a des moyens d'étanchéité pour étancher la lampe et le ballast contre le contact direct avec le liquide (66).

11. Arrangement selon l'une des revendications précédentes, dans lequel l'élément cadre oblong tubulaire (11; 76; 97) contient des moyens conducteurs électriquement (77; 101) et les moyens de commande d'excitation (16; 70; 90) sont électriquement couplés, d'une manière amovible, à des moyens de transmission de puissance (47; 50).

12. Arrangement selon l'une des revendications précédentes, dans lequel le moyen conducteur électriquement comprend un stratifié (39) ayant plusieurs éléments conducteurs électriquement (41; 43), chaque élément ayant plusieurs connecteurs électriques dans des intervalles espacés le long de l'élément, le stratifié ayant du matériau conducteur électrique (25) entre les éléments.

13. Arrangement selon la revendication 12, dans lequel chaque élément conducteur électriquement est disposé en sandwich entre des bandes isolantes électriquement (41; 43; 45), au moins l'une des bandes ayant des encoches (51; 52; 53) dans des intervalles espacés le long de la bande pour recevoir des connecteurs là-dedans.

14. Procédé pour le traitement d'eau par la lumière ultraviolette, comprenant le passage de l'eau sur une source de rayonnement (14; 91) et des moyens de commande d'excitation (16; 70; 90) selon l'une des revendications précédentes, dans lequel l'arrangement est immergé dans des eaux usées.