Mixtures of phenolic and inorganic materials with antimicrobial activity

Mischungen aus phenolischen und anorganischen Materialien, die antimikrobielle Aktivität zeigen

Mélanges de matériaux phénoliques et inorganiques avec l’activité antimicrobienne

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Date of publication of application: 27.03.2002 Bulletin 2002/13

Proprietor: Ciba Specialty Chemicals Holding Inc. 4057 Basel (CH)

Inventors:
- Herbst, Heinz 79541 Lörrach (DE)
- Stadler, Urs Leo Madison, NJ 07940 (US)

References cited:
WO-A-00/52088 WO-A-00/57933

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to combinations of phenolic and inorganic compounds which exhibit excellent antimicrobial activity when incorporated into a substrate resin, which mixtures do not exhibit the negative effects associated with the use of either alone. Plastic articles manufactured via a variety of processes from such resins are provided long term antimicrobial activity and exhibit superior resistance to discoloration and maintenance of physical properties, especially upon exposure to ultraviolet radiation.

Triclosan, or Irgaguard®, Ciba Specialty Chemicals, 2,4,4’-trichloro-2’-hydroxydiphenyl ether, is a known antimicrobial for plastics applications. It is known to have high activity against numerous gram-positive and gram-negative bacterial. It can be incorporated as a neat material or via a masterbatch into a variety of polymer substrates, for example, LDPE, HDPE, MDPE, PP, ABS, SAN, PS, polyacrylates, PMMA, polyamide, polyesters, PVC, latex, PUR, TPU, UP, UF, etc. Irgaguard® exhibits high activity at the surface of plastic articles and the activity remains after repeated washing of plastic articles. Further, Irgaguard® has a good toxicological profile.

Disadvantages of Irgaguard® are that plastic articles formulated with it exhibit strong discoloration upon weathering. For example, polypropylene samples containing Irgaguard® exposed in a Xenon Arc Weather-Ometer at 0.35 W/m², 63°C discolor within hours. Further, processing at temperatures greater than 250°C is problematic due to the volatility of Irgaguard®.

Silver based materials, such as colloidal silver, silver nitrate, silver sulfate, silver chloride, silver complexes and silver ion containing zeolites are known antimicrobial agents for plastic articles. Silver compounds exhibit high activity against microorganisms and they have a good toxicological profile. High processing temperatures are possible with silver compounds (greater than 300°C).

Disadvantages of silver based antimicrobials are that plastic articles containing them often exhibit discoloration upon weathering, and the activity on the surface of the articles is often lost after repeated washing.

It has been found, surprisingly, that a combination of certain phenolic compounds with certain inorganic compounds avoids the disadvantages of using either Irgaguard® or silver based antimicrobials alone in plastic articles while providing excellent long-term antimicrobial activity to the articles.

An object of the present invention is to provide a novel mixture of antimicrobial agents for plastics applications. Another object of the invention is to provide plastic articles or films with antimicrobial activity which also exhibit superior resistance to discoloration, may be processed at high temperatures, and which maintain physical properties upon weathering, especially upon exposure to UV radiation.

The instant invention pertains to an use of a mixture of antimicrobial agents for plastics applications which comprises:

a) at least one phenolic antimicrobial compound of the formula (I)

\[
\begin{align*}
\text{R}_1 & \quad \text{X} & \quad \text{R}_2 \\
\text{R}_3 & \quad & \text{R}_4 \\
\text{R}_5 & \quad & \text{R}_6 \\
\text{R}_7 & \quad & \text{R}_8 \\
\text{R}_9 & \quad & \text{R}_{10}
\end{align*}
\]

Wherein:
- \(n \) is 0 or 1,
- \(\text{R}_1 \) and \(\text{R}_2 \) are hydrogen or chlorine,
- \(\text{R}_3 \) is hydrogen or hydroxyl,
- \(\text{R}_4, \text{R}_5 \) and \(\text{R}_6 \) are hydrogen or chlorine,
- \(\text{R}_7 \) is hydroxyl, and
- \(\text{X} \) is -O- or -CH₂-; and

b) at least one inorganic antimicrobial compound selected from the group consisting of zinc oxide, copper and copper compounds, silver, colloidal silver, silver nitrate, silver sulphate, silver chloride, silver complexes, metal-containing zeolites and surface-modified metal-containing zeolites; and

wherein the ratio of components a) : b) is from 1 : 9 to 9 : 1, for stabilizing a polymer substrate against discoloration.
Preferred phenolic antimicrobial compounds of component a) are o-benzyl-phenol, 2-benzyl-4-chloro-phenol, 2,4,4'-trichloro-2'-hydroxydiphenyl ether, 4,4'-dichloro-2'-hydroxydiphenyl ether, 5-chloro-2-hydroxy-diphenyl-methane, mono-chloro-o-benzyl-phenol, 2,2'-methylene bis-(4-chloro-phenol) and 2,4,6-trichlorophenol.

Most preferred phenolic antimicrobial compounds of component a) are 2,4,4'-trichloro-2'-hydroxydiphenyl ether and 4,4'-dichloro-2'-hydroxydiphenyl ether.

Of special interest is a mixture of antimicrobial agents for plastic applications wherein the inorganic antimicrobial compound is a metal-containing zeolite or a surface-modified metal-containing zeolite.

The metal-containing zeolites of component b) are those such as described in U.S. Patent Nos. 4,775,585, 4,911,898, 4,911,899 and 6,071,542, the disclosures of which are hereby incorporated by reference. A zeolite is generally aluminosilicate having a three dimensionally grown skeleton structure and is generally represented by $\text{M}_{x}\text{SiO}_{y}$. $\cdot z\text{H}_{2}\text{O}$, written with Al_2O_3 as a basis, wherein M represents an ion-exchangeable metal ion, which is usually the ion of a monovalent or divalent metal; n corresponds to the valence of the metal; x is a coefficient of the metal oxide; y is the coefficient of silica; and z is the number of water of crystallization. The zeolites of the present invention have a specific surface area of at least 150m2/g.

Antibacterial metals for use in metal-containing zeolites include silver, copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium, cobalt, nickel, zirconium, or a combination of two or more of these metals. Preference is given to silver, copper, zinc and zirconium, or a combination of these. Especially preferred metals are silver alone or a combination of silver with copper, zinc or zirconium.

Particularly preferred inorganic antimicrobial compounds of component b) are surface-modified metal-containing zeolites according to U.S. Patent No. 6,071,542.

Inorganic antimicrobial compounds of component b) which are of special interest are surface-modified metal-containing zeolites wherein the metal is selected from the group consisting of silver and combinations of silver with copper, zinc or zirconium.

Especially preferred is the antimicrobial mixture wherein component a) is 2,4,4'-trichloro-2'-hydroxydiphenyl ether and wherein the inorganic antimicrobial compound of component b) is a surface-modified silver-containing zeolite. The term "silver-containing" includes the combination of silver with other metals such as zinc, copper and zirconium.

BACTEKILLER BM-102GA (Kanebo) is an example of a surface-modified silver-containing zeolite according to U.S. Patent No. 6,071,542.

In addition to zeolites, it is also contemplated that antibacterial metals such as silver, silver compounds and silver complexes may be supported on other inert materials, for example SiO$_2$, TiO$_2$ and glass.

The novel antimicrobial mixture of components a) and b) may be incorporated into the plastic resin prior to its being subjected to such manufacturing processes as blown film, rotational molding, fiber spinning, etc. The mixture of components a) and b) is able to withstand demanding processing conditions such as high temperature, e.g. temperatures greater than 200°C.

The plastic films, fibers and articles comprising the present antimicrobial mixture of components a) and b) is suitable for outdoor exposure; they are resistant to weathering and UV light degradation.

The antimicrobial mixture of components a) and b) exhibit good long-term activity and a good toxicological profile.

Triclosan containing plastic samples lead to a strong discoloration within a very short time when exposed to weathering. Plastic samples containing the present combination of components a) and b) exhibit only minimal color changes.

Triclosan containing plastic samples exhibit a reduced light stability. Plastic samples containing the present combination of components a) and b) exhibit physical properties that are comparable to a control formulation without antimicrobial agents.

The plastic films, fibers and articles of the present invention are advantageously employed for applications that require long-term hygienic activity on the surface, e.g., medical devices, hand rails, door handles, etc. The antimicrobial plastic films, fibers and articles of the present invention are used for example in hospitals, households, public institutions, ventilation systems, air cleaning and air conditioning systems and waste disposal systems. Plastic articles exposed to outdoor weathering that may have incorporated therein the antimicrobial mixture of the present invention are for example waste containers, swimming pool equipment, outdoor swing set equipment, slides, and stadium seats.

The plastic films, fibers and articles of the present invention exhibit high antimicrobial activity at the surface. The antimicrobial activity remains after repeated washings.

The compositions, plastic films, fibers and articles of the present invention, that is to say, the polymer substrates, may also have incorporated therein one or more of the following known additives:

1. **Antioxidants**

 1.1. Alkylated monophenols, for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicy-
1. **Alkylthiomethylphenols**, for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4,6-di-dodecylthiomethyl-4-methylphenol.

2. **Hydroquinones and alkylated hydroquinones**, for example 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadeckylohydroquinone, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl steareate, bis(3,5-di-tert-butyl-4-hydroxyphenyl) adipate.

3. **Tocopherols**, for example α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol and mixtures thereof (vitamin E).

4. **Hydroxylated thiophenyl ethers**, for example 2,2'-thiobis(6-tert-butyl-4-methylphenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis(3,6-di-sec-amylphenol), 4,4'-bis(2,6-dimethyl-4-hydroxyphenyl)-disulfide.

5. **Alkylidenebisphenols**, for example 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 2,2'-methylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis(4-methyl-6-(α-methylcyclohexyl)-phenol), 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4-methylphenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2'-ethylenedibis(4,6-di-tert-butylphenol), 2,2'-ethylenedibis(6-tert-butyl-4-isobutylphenol), 2,2'-ethylenedibis(6-(α-methylbenzyl)-4-nonylphenol), 2,2'-ethylenedibis[6-(α,α-dimethylbenzyl)-4-nonylphenol], 4,4'-ethylenedibis(2,6-di-tert-butylphenol), 4,4'-ethylenedibis(6-tert-butyl-2-methylphenol), 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-tris(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis[3,3-bis(3-tert-butyl-4'-hydroxyphenyl)butylate], bis(3-tert-butyl-4-hydroxy-5-methyl-phenyl)dicyclopentadiene, bis[2-(3-tert-butyl-2'-hydroxy-5'-methylbenzyl)-6-tert-butyl-4-methylphenyl]terephthalate, 1,1-bis(3,5-dimethyl-2-hydroxyphenyl)butane, 2,2-bis(3,5-di-tert-butyl-4-hydroxyphenyl)propane, 2,2-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n-dodecylmercaptobutane, 1,1,5,5-tetra(5-tert-butyl-4-hydroxy-2-methylphenyl)pentane.

6. **O-, N- and S-benzyl compounds**, for example 3,5,3',5'-tetra-tert-butyl-4,4'-dihydroxydibenzyl ether, octa-decyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4-tert-butyl-3-hydroxy-2,6-dimethylphenyl)dithioperthalate, bis(3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, isoocyt-3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetate.

7. **Hydroxybenzylated malonates**, for example dioctadecyl-2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)malonate, di-octadecyl-2-(3,5-di-tert-butyl-4-hydroxy-5-methylbenzyl)malonate, didodecylmercaptoethyl-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.

8. **Aromatic hydroxybenzyl compounds**, for example 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzenes, 1,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetraunethylenes, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.

9. **Triazine compounds**, for example 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxymethyl)-1,3,5-triazine, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenoxymethyl)-1,3,5-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenylethyl)-1,3,5-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazine, 1,3,5-tris(3,5-dicyclohexyl-4-hydroxybenzyl)isocyanurate.

10. **Benzylphosphonates**, for example dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctade-
cyl-5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.

1.12. Acyaminophenols, for example 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N-(3,5-di-tert-butyl-4-hydroxyphenyl)carbamate.

1.13. Esters of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, diethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

1.14. Esters of β-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, diethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane; 3,9-bis[2-(3,5-di-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylbenzyl; 2,4,8,10-tetraoxaspiro[5.5]undecane.

1.15. Esters of β-(3,5-di-cyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, 1-octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, diethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

1.16. Esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, 1-octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, diethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

1.17. Amides of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl)hexamethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl)trimethylenediamide, N,N'bis(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl)hydrazide, N,N'-bis[2-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxy]ethyl)oxamide (Naugard® XL-1, supplied by Uniroyal).

1.18. Ascorbic acid (vitamin C)

1.19. Aminic antioxidants, for example N,N'-di-isopropyl-p-phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, N,N'-bis(1,4-dimethylpentyl)-p-phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N,N'-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, N-(1-methylheptyl)-N'-phenyl-p-phenylenediamine, N-cyclohexyl-N'-phenyl-p-phenylenediamine, 4-(p-toluenesulfamoyl)phenylenediamine, N,N'-dimethyl-N,N'-di-sec-butyl-p-phenylenediamine, diphenylamine, N-allyldiphenylamine, 4-isopropoxydiphenylamine, N-phenyl-1-naphthylamine, N-(4-tert-octylphenyl)-1-naphthylamine, N-phenyl-2-naphthylamine, octcylated diphenylamine, for example p,p'-di-tert-octylidiphenylamine, 4-n-butylaminophenol, 4-butyrylaminophenol, 4-nonanoylamino-phenol, 4-dodecanoylaminophenol, 4-octadecanoylaminophenol, bis(4-methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylaminomethylphenol, 2,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, N,N,N',N'-tetramethyl-4,4'-diaminodiphenylmethane, 1,2-bis[2-(methylphenyl)amino]ethane, 1,2-bis(phenylamino)propane, (o-toly)biguanide, bis[4-(1',3',5'-dimethylphenyl)phenyl]amine, tert-oclylated N-phenyl-1-naphthylamine, a mixture of mono- and dialkylated tert-butyl-tert-octylidiphenylamines, a mixture of mono- and dialkylated nonylphenylamines, a mixture of mono- and dialkylated dodecylphenylamines, a mixture of mono- and dialkylated isopropyl/isosexylidiphenylamines, a mixture of mono- and dialkylated tert-butylphenylamines, 2,3-dihydro-3,3-dimethyl-4H-1,4-benzothiazine, phenothiazine, a mixture of mono- and dialkylated tert-butyl/tert-octylphenothiazines, a mixture of mono- and dialkylated tert-octylphenothiazines, N-allylphenothiazine, N,N,N',N'-tetra-phenyl-1,4-diaminobut-2-ene.
2. UV absorbers and light stabilizers

2.1. 2-(2'-Hydroxyphenyl)benzotriazoles, for example 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(3',5'-diterbutyl-2'-hydroxyphenyl)benzotriazole, 2-(5'-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-5'-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole, 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-methylphenyl)-5-chlorobenzotriazole, 2-(3'-sec-butyl-5'-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-4'-octoxyphenyl)benzotriazole, 2-(3',5'-di-tert-amy1-2'-hydroxyphenyl)benzotriazole, 2-(3',5'-bis(α,α-dimethylbenzyl)-2'-hydroxyphenyl)benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-octyloxybenzyl)phenyl)benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-ethylhexyloxy)carbonyl phenyl)-2'-hydroxyphenyl)benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-ethylhexyloxy)carbonylphenyl)benzotriazole, 2-(3'-dodecyl-2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-isooctyloxybenzyl)phenyl)benzotriazole, 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-benzotriazol-2'-ylphenol]; the transesterification product of 2-[3'-tert-butyl-5'-(2-methoxybenzoyl)-2'-hydroxyphenyl]2'H-benzotriazole with polyethylene glycol 300;

\[
\[R - \text{CH}_2\text{CH}_2\text{-COO} - \text{CH}_2\text{CH}_2 \]_2^-
\]

where \(R = 3'\text{-tert-butyl-4'\text{-hydroxy-5'\text{-2H-benzotriazol-2\text{-ylphenyl}}, \[2'\text{-hydroxy-3'-(α,α-dimethylbenzyl)-5'}-(1,1,3,3\text{-tetramethylbutyl)}\text{- phenyl]benzotriazole; 2-[2'\text{-hydroxy-3'-(1,1,3,3\text{-tetramethylbutyl})-5'}-(α,α-dimethylbenzyl)phenyl]benzotriazole.\]

2.2. 2-Hydroxybenzophenones, for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzylxy, 4,2,4,3-trihydroxy and 2'-hydroxy-4,4'-dimethoxy derivatives.

2.3. Esters of substituted and unsubstituted benzoic acids, for example 4-tert-butylphenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadearyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.

2.4. Acrylates, for example ethyl α-cyano-β,β-diphenylacrylate, isooctyl α-cyano-β,β-diphenylacrylate, methyl α-carbethoxyacrylaminate, methyl α-cyano-β,β-diphenylmethylacrylaminate, butyl α-cyano-β,β-dimethyl-p-methoxyacrylaminate, methyl α-carbethoxy-p-methoxyacrylaminate and N-(β-carbethoxy-β-cyanovinyl)-2-methylindoline.

2.5. Nickel compounds, for example nickel complexes of 2,2'-thiobis[4-(1,1,3,3-tetramethylbutyl)phenol], such as the 1:1 or 1:2 complex, with or without additional ligands such as n-butylamine, triethanolamine or N-cyclohexylidethanolamine, nickel dibutylidithiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphenylundecyketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxyprazol, with or without additional ligands.

2.6. Sterically hindered amines, for example bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate, bis(1-octyl-2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl) n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypridipiperidine and succinic acid, linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-tet-cycloamino-2,6-dichloro-1,3,5-triazine, tris(2,2,6,6-tetramethyl-4-piperidyl)nitrilotriacetate, tris(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butane tetraacrylate, 1,1'-(1,2-ethenediy)-bis(3,3,5,5-tetramethylpiperazinone), 4-benzoyl-2,2,6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate, 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4,5]decane-2,4-dione, bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate, bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate, linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine, the condensate of 2-chloro-4,6-bis(4-n-butylami-
no-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane, the condensate of 2-chloro-4,6-di-(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane, 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione, 3-dodecyl-1(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione, 3-dodecyl-1(2,2,6,6-pentamethyl-4-piperidyl)pyrrolidine-2,5-dione, a mixture of 4-hexacycloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine, a condensate of N,N'-bis (2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine, a condensate of 1,2-bis(3-aminopropylamino)ethane and 2,4,6-trichloro-1,3,5-triazine as well as 4-butylamino-2,2,6,6-tetramethylpiperidine (CAS Reg. No. [136504-96-6]); a condensate of 1,6-hexanediamine and 2,4,6-trichloro-1,3,5-triazine as well as N-dIBUTYLAMINE and 4-butylamino-2,2,6,6-tetramethylpiperidineridine (CAS Reg. No. [192268-64-7]); N-(2,2,6,6-tetramethyl-4-piperidyl)-n-dodecylsuccinimide, N-(1,2,2,6,6-pentamethyl-4-piperidyl)-n-dodecylsuccinimide, 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro[4.5]decane, a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxo-spiro[4.5]decane and epichlorhydrin, 1,1-bis(1,2,2,6,6-pentamethyl-4-piperidyl)oxyxylcarbonyl)-2-(4-methoxyphenyl)ethene, N,N'-bis-formyl-N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine, a diester of 4-methoxymethylenemalonic acid with 1,2,2,6,6-pentamethyl-4-hydroxypiperidine, poly[methyl(4-0xy)-4-(2,2,6,6-tetramethyl-4-piperidyl)lsi-
oloxane, a reaction product of maleic acid anhydride-α-olefin copolymer with 2,2,6,6-tetramethyl-4-amino-
piperidine or 1,2,2,6,6-pentamethyl-4-amino-piperidine.

The sterically hindered amine may also be one of the compounds described in GB-A-2 301 016 as component
I-a), l-b), l-c), l-d), l-e), l-f), l-g), l-h), l-i), l-j) or l-l), in particular the light stabilizer 1-a-1, 1-a-2, 1-b-1, 1-c-1, 1-c-2, 1-d-1, 1-d-2, 1-d-3, 1-e-1, 1-f-1, 1-g-1, 1-g-2 or 1-h-1 listed on pages 68 to 73 of said GB-A-2 301 016. The stericly hindered amine may also be one of the compounds described in EP-A-0 782 994, for example
compounds as described in claims 10 or 38 or in Examples 1-12 or D-1 to D-5 therein.

2.7. Stericly hindered amines substituted on the N-atom by a hydroxy-substituted alkyl group, for example
compounds such as 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidineridine, 1-(2-hy-
droxy-2-methylpropoxy)-4-hexadecanoyloxy-2,2,6,6-tetramethylpiperidineridine, the reaction product of 1-oxyl-4-
hydroxy-2,2,6,6-tetramethylpiperidineridine with a carbon radical from t-amylalcohol, 1-(2-hydroxy-2-

2.8. Oxamides, for example 4,4'-dioctyloxyanilide, 2,2'-dihexyloxyanilide, 2,2'-diocetloxy-5,5'-di-tert-butox-
anilide, 2,2'-didodecroyloxy-5,5'-di-tert-butoxanilide, 2-ethoxy-2'-ethoxanilide, N,N'-bis(3-diethylaminophenyl)
oxamide, 2-ethoxy-5-tert-butyl-2'-ethoxanilide and its mixture with 2-ethoxy-2'-ethyl-5,4'-di-tert-butoxanilide,
mixtures of o- and p-methoxy-disubstituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides.

2.9. 2-(2-Hydroxyphenyl)-1,3,5-triazines, for example 2,4,6-tris(2-hydroxy-4-octoxyphenyl)-1,3,5-triazine,
2-(2-hydroxy-4-octoxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-octoxyphenyl)-4,6-bis
2-(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-octoxyphenyl)-4,6-bis(4-methylphenyl)-1,3,5-triazine,
2-(2-hydroxy-4-octoxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-tridecyl oxyph-

3. Metal deactivators, for example N,N'-diphenyl-oxamide, N-salicylal-N'-salicyloyl hydrazine, N,N'-bis(salicyloyl)
hydrazine, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazine, 3-salicyloylaminol-1,2,4-triazole, bis(ben-
ylidenox)oxyaldehydrazide, oxanilide, isothalaloyl dihydrazide, sebacoyal bisphenyhydrazide, N,N'-diacetyladi
diroyl dihydrazide, N,N'-bis(salicloyl)oxyaldehydrazide, N,N'-bis(salicloyl)thiopropionyldihydrazide.
4. Phosphites and phosphonites, for example triphenyl phosphite, diphenylalkyl phosphites, phenyldialkyl phosphites, tris(nonylphenyl) phosphite, trilauryl phosphite, triocadecyl phosphite, distearylpentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,4-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) 4,4'-biphenylene diphosphonite, 6-isooctyloxy-2,4,8,10-tetra-tert-butyl-12H-dibenzo[d,g]-1,3,2-dioxaphosphocin, bis(2,4-di-tert-butyl-6-methylphenyl)methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl)ethyl phosphite, 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenzo[d,g]-1,3,2-dioxaphosphocin, 2,2',2''-nitrilo-[triethyltris(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite], 2-ethylhexyl(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite, 5-butyl-5-ethyl-2-(2,4,6-tri-tert-butylphenoxy)-1,3,2-dioxaphosphirane.

The following phosphites are especially preferred:

Tris(2,4-di-tert-butylphenyl) phosphite (Irgafos® 168, Ciba Specialty Chemicals Inc.), tris(nonylphenyl) phosphite,
5. Hydroxylamines, for example N,N-dibenzylhydroxylamine, N,N-diethylhydroxylamine, N,N-dioctylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-ditetradecylhydroxylamine, N,N-diheptadecylhydroxylamine, N,N-dioctadecylhydroxylamine, N-heptadecyl-N-octadecylhydroxylamine, N,N-dialkylhydroxylamine derived from hydrogenated tallow amine.

7. Amine oxides, for example amine oxide derivatives as disclosed in U.S. Patent Nos. 5,844,029 and 5,880,191, didecyl methyl amine oxide, tridecyl amine oxide, tridodecyl amine oxide and tristearidyl amine oxide amine oxide.

9. Thiosynergists, for example dialauryl thiiodipropionate or diestearyl thiiodipropionate.

10. Peroxide scavengers, for example esters of β-thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercaptopbenzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis(β-dodecylmercapto)propionate.

11. Polyamide stabilizers, for example copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese.

12. Basic co-stabilizers, for example melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids, for example calcium stearate, zinc stearate, magnesium stearate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate.

13. Nucleating agents, for example inorganic substances, such as talcum, metal oxides, such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds, such as mono- or polycaurbylxy acids and the salts thereof, e.g. 4-tet-butylbenzoic acid, adipic acid, diphénylacetic acid, sodium succinate or sodium benzoate; polymeric compounds, such as ionic copolymers (ionomers). Especially preferred are 1,3,2,4-bis[3’-4’-dimethylbenzylidene)sorbitol, 1,3,2,4-di[3-(paramethylidibenzylidene)sorbitol, and 1,3:2,4-di(benzylidene)sorbitol.

14. Fillers and reinforcing agents, for example calcium carbonate, silicates, glass fibres, glass bulbs, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black, graphite, wood flour and flours of fibers of other natural products, synthetic fibers.
15. Other additives, for example plasticisers, lubricants, emulsifiers, pigments, dyes, rheology additives, catalysts, flow-control agents, optical brighteners, slip agents, crosslinking agents, crosslinking boosters, halogen scavengers, smoke inhibitors, flameproofing agents, antistatic agents, clarifiers such as substituted and unsubstituted bisbenzylidene sorbitols, benzoxazine UV absorbers such as 2,2′-phenylene-bis(3,1-benzoxazin-4-one), Cyasorb® 3638 (CAS# 18600-59-4), and blowing agents.

16. Other biocides, for example fungicides such as 3,5-dimethyl-tetrahydro-1,3,5-2H-thiodiazin-2-thione, Bis-tributylinoxide, 4,5-dichlor-2-n-octyl-4-isothiazolin-3-one, N-butyl-benzisothiazoline, 10,10′-oxybisphenoxysarline, zinc-2-pyrindinthiol-1-oxide, etc., and algicides such as 2-methylthio-4-cyclopropylamino-6-(α,β-dimethylpropylamino)-s-triazine, 2-methylthio-4-cyclopropylamino-6-tert-butylamino-s-triazine, 2-methylthio-4-ethylamino-6-(α,α-dimethylpropylamino)-s-triazine, etc.

[0027] Preferred additional additives are selected from the group consisting of antioxidants, ultraviolet light absorbers, hindered amines, phosphites or phosphonites, hydroxylamines, nitrones, benzofuran-2-ones, thiosynergists, polyamide stabilizers, metal stearates, nucleating agents, fillers, reinforcing agents, lubricants, emulsifiers, dyes, pigments, optical brighteners, flame retardants, antistatic agents and blowing agents.

[0028] In general the plastic resins polymer substrates with antimicrobial activity according to the present invention may be selected from:

1. Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyvinylcyclohexane, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE).

Polyolefins, i.e. the polymers of monoolefins exemplified in the preceding paragraph, preferably polyethylene and propylene, can be prepared by different, and especially by the following, methods:

a) radical polymerisation (normally under high pressure and at elevated temperature).

b) catalytic polymerisation using a catalyst that normally contains one or more than one metal of groups IVb, Vb or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either π- or σ-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerisation medium. The catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkylxanes, said metals being elements of groups Ia, Ila and/or Ila of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).

2. Mixtures of the polymers mentioned under 1), for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE).

3. Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, ethylene/vinylcyclohexene copolymers, ethylene/cycloolefin copolymers (e.g. ethylene/norbornene like COC), ethylene/1-olefins copolymers, where the 1-olefin is generated in-situ; propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/vinylcyclohexene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
4. Hydrocarbon resins (for example C₅-C₉) including hydrogenated modifications thereof (e.g. tackifiers) and mixtures of polyalkylenes and starch. Homopolymers and copolymers from 1.) - 4.) may have any stereostructure including syndiotactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included.

5. Polystyrene, poly(p-methylstyrene), poly(α-methylstyrene).

6. Aromatic homopolymers and copolymers derived from vinyl aromatic monomers including styrene, α-methylstyrene, all isomers of vinyl toluene, especially p-vinyltoluene, all isomers of ethyl styrene, propyl styrene, vinyl biphenyl, vinyl naphthalene, and vinyl anthracene, and mixtures thereof. Homopolymers and copolymers may have any stereostructure including syndiotactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included.

6a. Copolymers including aforementioned vinyl aromatic monomers and comonomers selected from ethylene, propylene, dienes, nitriles, acids, maleic anhydrides, maleimides, vinyl acetate and vinyl chloride or acrylic derivatives and mixtures thereof, for example styrene/butadiene, styrene/acrylonitrile, styrene/ethylene (interpolymers), styrene/alkyl methacrylate, styrene/butadiene/alkyl acrylate, styrene/butadiene/alkyl methacrylate, styrene/maleic anhydride, styrene/acrylonitrile/methyl acrylate; mixtures of high impact strength of styrene copolymers and another polymer, for example a polycarbonate, a diene polymer or an ethylene/propylene/diene terpolymer; and block copolymers of styrene such as styrene/butadiene/styrene, styrenersoprene/styrene, styrene/ethylene/butylene/styrene or styrene/ethylene/propylene/styrene.

6b. Hydrogenated aromatic polymers derived from hydrogenation of polymers mentioned under 6.), especially including polycyclohexylethylene (PCHE) prepared by hydrogenating atactic polystyrene, often referred to as polyvinylcyclohexane (PVCH).

6c. Hydrogenated aromatic polymers derived from hydrogenation of polymers mentioned under 6a.).

Homopolymers and copolymers may have any stereostructure including syndiotactic, isotactic, hemi-isotactic or atactic; where atactic polymers are preferred. Stereoblock polymers are also included.

7. Graft copolymers of vinyl aromatic monomers such as styrene or α-methylstyrene, for example styrene on polybutadiene, styrene on polybutadiene-acrylonitrile copolymers; styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; styrene, acrylonitrile and methyl methacrylate on polybutadiene; styrene and maleic anhydride on polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; styrene and maleimide on polybutadiene; styrene and alkyl acrylates or methacrylates on polybutadiene; styrene and acrylonitrile on ethylene/propylene/diene terpolymers; styrene and acrylonitrile on polyalkyl acrylates or polyalkyl methacrylates, styrene and acrylonitrile on acrylate/butadiene copolymers, as well as mixtures thereof with the copolymers listed under 6), for example the copolymer mixtures known as ABS, MBS, ASA or AES polymers.

8. Halogen-containing polymers such as polychloroprene, chlorinated rubbers, chlorinated and brominated polymer of isobutylene-isoprene (halobutyl rubber), chlorinated or sulfochlorinated polyethylene, copolymers of ethylene and chlorinated ethylene, epichlorohydrin homo- and copolymers, especially polymers of halogen-containing vinyl compounds, for example polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, as well as copolymers thereof such as vinyl chloride/vinylidene chloride, vinyl chloride/vinyl acetate or vinylidene chloride/vinyl acetate copolymers.

9. Polymers derived from α,β-unsaturated acids and derivatives thereof such as polyacrylates and polymethacrylates; polymethyl methacrylates, polyacrylamides and polyacrylonitriles, impact-modified with butyl acrylate.

10. Copolymers of the monomers mentioned under 9) with each other or with other unsaturated monomers, for example acrylonitrile/butadiene copolymers, acrylonitrile/alkyl acrylate copolymers, acrylonitrile/alkoxyalkyl acrylate or acrylonitrile/vinyl halide copolymers or acrylonitrile/alkyl methacrylate/butadiene terpolymers.

11. Polymers derived from unsaturated alcohols and amines or the acyl derivatives or acetals thereof, for example polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, polyvinyl benzoate, polyvinyl maleate, polyvinyl butyral, polyallyl phthalate or polyallyl melamine; as well as their copolymers with olefins mentioned in 1) above.
12. Homopolymers and copolymers of cyclic ethers such as polyalkylene glycols, polyethylene oxide, polypropylene oxide or copolymers thereof with bisglycidyl ethers.

13. Polyacetals such as polyoxymethylene and those polyoxymethylene which contain ethylene oxide as a comonomer; polyacetals modified with thermoplastic polyurethanes, acrylates or MBS.

14. Polyphenylene oxides and sulfides, and mixtures of polyphenylene oxides with styrene polymers or polyamides.

15. Polyurethanes derived from hydroxyl-terminated polyethers, polyesters or polybutadienes on the one hand and aliphatic or aromatic polyisocyanates on the other, as well as precursors thereof.

16. Polyamides and copolyamides derived from diamines and dicarboxylic acids or the corresponding lactams, for example polyamide 4, polyamide 6, polyamide 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, polyamide 11, polyamide 12, aromatic polyamides starting from m-xylene diamine and adipic acid; polyamides prepared from hexamethylenediamine and isophthalic or/and terephthalic acid and with or without an elastomer as modifier, for example poly-2,4,4,-trimethylhexamethylene terephthalamide or poly-m-phenylene isophthalamide; and also block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers; or with polyethers, e.g. with polyethylene glycol, polypropylene glycol or polytetramethylene glycol; as well as polyamides or copolyamides modified with EPDM or ABS; and polyamides condensed during processing (RIM polyamide systems).

17. Polyureas, polyimides, polyamide-imides, polyetherimids, polyesterimids, polyhydantoins and polybenzimidazoles.

18. Polyesters derived from dicarboxylic acids and diols and/or from hydroxycarboxylic acids or the corresponding lactones, for example polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethylolcyclohexane terephthalate, polyalkylene naphthalate (PAN) and polyhydroxybenzoates, as well as block copolyether esters derived from hydroxyl-terminated polyethers; and also polyesters modified with polycarbonates or MBS.

19. Polycarbonates and polyester carbonates.

20. Polyketones.

22. Crosslinked polymers derived from aldehydes on the one hand and phenols, ureas and melamines on the other hand, such as phenol/formaldehyde resins, urea/formaldehyde resins and melamine/formaldehyde resins.

23. Drying and non-drying alkyd resins.

24. Unsaturated polyester resins derived from copolyesters of saturated and unsaturated dicarboxylic acids with polyhydric alcohols and vinyl compounds as crosslinking agents, and also halogen-containing modifications thereof of low flammability.

25. Crosslinkable acrylic resins derived from substituted acrylates, for example epoxy acrylates, urethane acrylates or polyester acrylates.

26. Alkyd resins, polyester resins and acrylate resins crosslinked with melamine resins, urea resins, isocyanates, isocyanurates, polyisocyanates or epoxy resins.

27. Crosslinked epoxy resins derived from aliphatic, cycloaliphatic, heterocyclic or aromatic glycidyl compounds, e.g. products of diglycidyl ethers of bisphenol A and bisphenol F, which are crosslinked with customary hardeners such as anhydrides or amines, with or without accelerators.

28. Natural polymers such as cellulose, rubber, gelatin and chemically modified homologous derivatives thereof, for example cellulose acetates, cellulose propionates and cellulose butyrates, or the cellulose ethers such as methyl cellulose; as well as rosins and their derivatives.
29. Blends of the aforementioned polymers (polyblends), for example PP/EPDM, Polyamide/EPDM or ABS, PVC/EVA, PVC/ABS, PVC/MBS, PC/ABS, PBTP/ABS, PC/ASA, PC/PBT, PVC/CPE, PVC/acrylates, POM/thermoplastic PUR, PC/thermoplastic PUR, POM/acrylate, POM/MBS, PPO/HIPS, PPO/PA 6.6 and copolymers, PA/HDPE, PA/PP, PA/PPO, PBT/PC/ABS or PBT/PET/PC.

30. Naturally occurring and synthetic organic materials which are pure monomeric compounds or mixtures of such compounds, for example mineral oils, animal and vegetable fats, oil and waxes, or oils, fats and waxes based on synthetic esters (e.g. phthalates, adipates, phosphates or trimellitates) and also mixtures of synthetic esters with mineral oils in any weight ratios, typically those used as spinning compositions, as well as aqueous emulsions of such materials.

31. Aqueous emulsions of natural or synthetic rubber, e.g. natural latex or latices of carboxylated styrene/butadiene copolymers.

32. Polysiloxanes such as the soft, hydrophilic polysiloxanes described, for example, in U.S. Patent No. 4,259,467; and the hard polyorganosiloxanes described, for example, in U.S. Patent No. 4,355,147.

33. Polyketimines in combination with unsaturated acrylic polyacetoacetate resins or with unsaturated acrylic resins. The unsaturated acrylic resins include the urethane acrylates, polyether acrylates, vinyl or acryl copolymers with pendant unsaturated groups and the acrylated melamines. The polyketimines are prepared from polyamines and ketones in the presence of an acid catalyst.

34. Radiation curable compositions containing ethylenically unsaturated monomers or oligomers and a polyunsaturated aliphatic oligomer.

35. Epoxymelamine resins such as light-stable epoxy resins crosslinked by an epoxy functional coetherified high solids melamine resin such as LSE-4103 (Monsanto).

[0029] Preferably, the plastic resin is selected from the group consisting of polyethylene (for example LDPE, HDPE or MDPE), polypropylene, acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile copolymer (SAN), polystyrene (PS), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyamide, polyvinyl chloride (PVC), polymer latex, polyurethane (PUR), thermoplastic polyurethane (TPU), urea formaldehyde resin (UF) and unsaturated polyester (UP).

[0030] The present invention also relates to a novel mixture of antimicrobial agents, which comprises

a) at least one phenolic antimicrobial compound of the formula (I)

\[
\begin{align*}
\text{R}_1 & \quad \text{X} & \quad \text{R}_4 \\
\text{R}_2 & \quad \text{n} & \quad \text{R}_5 \\
\text{R}_3 & \quad & \quad \text{R}_7 \\
\end{align*}
\]

wherein

- n is 0 or 1,
- \text{R}_1 and \text{R}_2 are hydrogen or chlorine,
- \text{R}_3 is hydrogen or hydroxyl,
- \text{R}_4, \text{R}_5 and \text{R}_6 are hydrogen or chlorine,
- \text{R}_7 is hydroxyl, and
- \text{X} is -O- or -CH_2-; and

b) at least one inorganic antimicrobial compound selected from the group consisting of colloidal silver, silver sulphate, silver chloride, metal-containing zeolites and surface-modified metal-containing zeolites; and

wherein the ratio of components a) : b) is from 1 : 9 to 9:1.
The instant invention pertains also to an antimicrobial polymer composition comprising

A) a polymer substrate, and
B) 0.005 to 10 %, based on the weight of component (A), of a mixture of antimicrobial agents as described above.

The mixture of components a) and b) is preferably present in the antimicrobial plastic film, fiber or article in an amount of about 0.005 to about 10 % by weight, relative to the plastic material. An amount of from about 0.01 to about 5 % by weight or about 0.05 to about 3 % by weight of the mixture of components a) and b) relative to the plastic material is especially preferred.

The instant invention also pertains to plastic films, fibers or articles that comprise the novel mixture of components a) and b).

The mixture of components a) and b) and optional further additives may be added to the plastic resin, e.g. the polyolefin, individually or mixed with one another. If desired, the individual components of an additive mixture can be mixed with one another in the melt (melt blending) before incorporation into the plastic material.

The incorporation of the mixture of components a) and b) and optional further additives into the plastic material is carried out by known methods such as dry mixing in the form of a powder, or wet mixing in the form of solutions or suspensions. Components a) and b) and optional further additives may be incorporated, for example, before or after molding or also by applying the dissolved or dispersed stabilizer mixture to the plastic material, with or without subsequent evaporation of the solvent. The mixture of components a) and b) and optional further additives can also be added to the plastic material in the form of a masterbatch which contains these components in a concentration of, for example, about 2.5 % to about 70 % by weight; in such operations, the polymer can be used in the form of powder, granules, solutions, suspensions or in the form of latices.

If added to a plastic resin in the form of a masterbatch or concentrate, the novel antimicrobial mixture of components a) and b) is added via carriers such as LDPE, HDPE, MDPE, PP, ABS, SAN, PS, acrylates, PMMA, polyamide, polyesters, PVC, latex, styrene, polyol, TPU, unsaturated esters, urea, paraformaldehyde, water emulsion, etc. The total concentration of a) + b) in the carriers is from about 2.5 % to about 70 % by weight based on the weight of the carrier.

Components a) and b) and optional further additives can also be added before, during or after polymerization or crosslinking.

Components a) and b) and optional further additives can be incorporated into the plastic material in pure form or encapsulated in waxes, oils or polymers.

Components a) and b) and optional further additives can also be sprayed onto the plastic material. They are able to dilute other additives (for example the conventional additives indicated above) or monomers or their melts so that they can be sprayed also together with these additives onto the plastic material. Addition by spraying during the deactivation of the polymerization catalysts is particularly advantageous, it being possible to carry out spraying using, for example, the steam used for deactivation.

In the case of spherically polymerized polyolefins it may, for example, be advantageous to apply components a) and b) and optionally together with other additives, by spraying.

The instant invention relates also to a process for stabilizing an antimicrobial polymer against discoloration which comprises incorporating into said polymer an effective antimicrobial amount of a mixture of antimicrobial agents as described above.

The following examples illustrate the invention in more detail. They are not to be construed as limiting the instant invention in any manner whatsoever. The invention is declared to cover all changes and modifications of the specific examples which do not constitute departure from the spirit and scope of the invention. Parts and percentages are by weight.

Example 1: Stabilization of polyethylene.

High density polyethylene, Borealis MS 6591, is dry blended with the antimicrobial agents set forth in Table 1. The levels are percent by weight based on the HDPE. The mixtures are compounded with a twin screw at a maximum temperature of 220°C. The samples are injection molded into 2 mm plaques at a maximum temperature of 220°C. The plaques are subjected to accelerated weathering in a Ci65 Xenon Arc Weather-Ometer at 63°C, 0.35 W/m² with a spray cycle. Yellowness Index is measured according to ASTM D-1925-77. Low YI values denote little discoloration, high YI values severe discoloration of the samples. The results are summarized in Table 1.
Example 2: Stabilization of polypropylene.

Polypropylene homopolymer, Montell Profax 6301, is dry blended with the antimicrobial agents set forth in Table 2. The levels are percent by weight based on the polypropylene. The mixtures are additionally formulated with 0.06 % Irgastab® FS-301, 0.06 % Tinuvin® 783 and 0.05 % calcium stearate. The polypropylene samples are spun into fibers at 260°C. The fibers are subjected to accelerated weathering in a Ci65 Xenon Arc Weather-Ometer at 63°C, 0.35 W/m² with a spray cycle. Yellowness Index is measured according to ASTM D-1925-77. Low YI values denote little discoloration, high YI values severe discoloration of the samples. The results are summarized in Table 2.

<table>
<thead>
<tr>
<th>Example</th>
<th>Antimicrobial Agents</th>
<th>Yellowness Index (YI) after hours (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 h</td>
</tr>
<tr>
<td>1a<sup>b)</sup></td>
<td>0.2 % Irgaguard® B1000<sup>c)</sup></td>
<td>4.0</td>
</tr>
<tr>
<td>1b<sup>b)</sup></td>
<td>0.2 % Irgaguard® B1000<sup>c)</sup> 0.1 % BM-102GA<sup>d)</sup></td>
<td>1.1</td>
</tr>
<tr>
<td>1c<sup>b)</sup></td>
<td>0.5 % Irgaguard® B1000<sup>c)</sup> 0.1 % BM-102GA<sup>d)</sup></td>
<td>2.2</td>
</tr>
</tbody>
</table>

a) Comparison Example.
b) Example of this invention.
c) Irgaguard® B1000 is 2,4,4′-trichloro-2′-hydroxydiphenyl ether, Ciba Specialty Chemicals.
d) BM-102GA (Kanebo) is a surface-modified silver-containing zeolite.

It can be seen that the formulations of the present invention, using a combination of antimicrobial agents of components a) and b), provide superior resistance to yellowing upon accelerated weathering. Tinuvin® 783 is a combination of sterically hindered amine light stabilizers available from Ciba Specialty Chemicals, Tinuvin® 622 and Chimassorb® 944.
Irgastab® FS-301, Ciba Specialty Chemicals, is a combination of Irgafos® 168 and Irgastab® FS-042. Irgafos® 168 is tris-(2,4-di-tert-butylphenyl)phosphite. Irgastab® FS-042 is the N,N-di(alkyl)hydroxylamine produced by the direct oxidation of N,N-di(hydrogenated tallow)amine.

Claims

1. An use of a mixture of antimicrobial agents, which comprises
 a) at least one phenolic antimicrobial compound of the formula (I)

 ![Chemical Structure](image)

 wherein
 n is 0 or 1,
 R₁ and R₂ are hydrogen or chlorine,
 R₃ is hydrogen or hydroxyl,
 R₄, R₅ and R₆ are hydrogen or chlorine,
 R₇ is hydroxyl, and
 X is -O- or -CH₂-; and
 b) at least one inorganic antimicrobial compound selected from the group consisting of zinc oxide, copper and
copper compounds, silver, colloidal silver, silver nitrate, silver sulphate, silver chloride, silver complexes, metal-containing zeolites and surface-modified metal-containing zeolites; and

wherein the ratio of components a) : b) is from 1 : 9 to 9 : 1, for stabilizing a polymer substrate against discoloration.

2. An use according to claim 1, wherein the phenolic antimicrobial compound is selected from the group consisting of o-benzyl-phenol, 2-benzyl-4-chloro-phenol, 2,4,4'-trichloro-2'-hydroxydiphenyl ether, 4,4'-dichloro-2'-hydroxydiphenyl ether, 5-chloro-2-hydroxy-diphenylmethane, mono-chloro-o-benzyl-phenol, 2,2'-methylene bis-(4-chlorophenol) and 2,4,6-trichlorophenol.

3. An use according to claim 1, wherein the phenolic antimicrobial compound is selected from the group consisting of 2,4,4'-trichloro-2'-hydroxydiphenyl ether and 4,4'-dichloro-2'-hydroxydiphenyl ether.

4. An use according to claim 1, wherein the inorganic antimicrobial compound is a metal-containing zeolite or a surface-modified metal-containing zeolite.

5. An use according to claim 4, wherein the metal is selected from the group consisting of silver, copper, zinc, zirconium and combinations thereof.

6. An use according to claim 4 wherein the metal is selected from the group consisting of silver and combinations of silver with copper, zinc or zirconium.

7. An use according to claim 1, wherein the inorganic antimicrobial compound is a surface-modified metal-containing zeolite wherein the metal is selected from the group consisting of silver and combinations of silver with copper, zinc or zirconium.

8. An use according to claim 1 wherein component a) is 2,4,4'-trichloro-2'-hydroxydiphenyl ether and wherein component b) is a surface-modified metal-containing zeolite.

9. An use according to claim 1, wherein the mixture of components (a) and (b) is present in an amount from 0.005 to 10 %, based on the weight of the plastic film, fiber or article.

10. An use according to claim 1 wherein the plastic is selected from the group consisting of polyethylene, polypropylene, acrylonitrile-butadiene-styrene copolymer, styrene-acrylonitrile copolymer, polystyrene, polymethyl methacrylate, polyethylene terephthalate, polyamide, polyvinyl chloride, polymer latex, polyurethane, thermoplastic polyurethane, urea formaldehyde resin and unsaturated polyester.

11. An use according to claim 1, wherein additional additives are present besides components (a) and (b).

12. An use according to claim 11, wherein the additional additives are selected from the group consisting of antioxidants, ultraviolet light absorbers, hindered amines, phosphites or phosphonites, hydroxylamines, nitrogen, benzofuran-2-ones, thiosynergists, polyamide stabilizers, metal stearates, nucleating agents, fillers, reinforcing agents, lubricants, emulsifiers, dyes, pigments, optical brighteners, flame retardants, antistatic agents and blowing agents.

13. A mixture of antimicrobial agents, which comprises

a) at least one phenolic antimicrobial compound of the formula (I)
wherein
n is 0 or 1,
R₁ and R₂ are hydrogen or chlorine,
R₃ is hydrogen or hydroxyl,
R₄, R₅ and R₆ are hydrogen or chlorine,
R₇ is hydroxyl, and
X is -O- or -CH₂-; and
b) at least one inorganic antimicrobial compound selected from the group consisting of colloidal silver, silver sulphate, silver chloride, metal-containing zeolites and surface-modified metal-containing zeolites; and

wherein the ratio of components a): b) is from 1 : 9 to 9:1.

14. An antimicrobial composition comprising
A) a polymer substrate, and
B) 0.005 to 10%, based on the weight of component (A) of a mixture of antimicrobial agents according to claim 13.

15. An antimicrobial plastic film, fiber or article which has incorporated therein a mixture of antimicrobial agents according to claim 13.

Patentansprüche

1. Verwendung eines Gemisches aus antimikrobiellen Mitteln, das umfasst
a) mindestens eine phenolische antimikrobielle Verbindung der Formel (I)

![Chemical Structure](image)

worin
n 0 oder 1 ist,
R₁ und R₂ Wasserstoff oder Chlor darstellen,
R₃ Wasserstoff oder Hydroxyl darstellt,
R₄, R₅ und R₆ Wasserstoff oder Chlor darstellen,
R₇ Hydroxyl darstellt und
X -O- oder -CH₂- darstellt; und
b) mindestens eine anorganische antimikrobielle Verbindung, ausgewählt aus der Gruppe, bestehend aus Zinkoxid, Kupfer und Kupferverbindungen, Silber, kolloidalem Silber, Silbernitrat, Silbersulfat, Silberchlorid, Silberkomplexen, Metall enthaltenden Zeolithen und Oberflächenmodifizierten Metall enthaltenden Zeolithen; und

2. Verwendung nach Anspruch 1, wobei die phenolische antimikrobielle Verbindung aus der Gruppe, bestehend aus o-Benzylphenol, 2-Benzyl-4-chlor-phenol, 2,4,4‘-Trichlor-2‘-hydroxydiphenylether, 4,4‘-Dichlor-2-hydroxydiphenylether, 5-Chlor-2-hydroxy-diphenyl-methan, Mono-chlor-o-benzyl-phenol, 2,2‘-Methylenbis-(4-chlorphenol) und 2,4,6-Trichlorphenol, ausgewählt ist.

3. Verwendung nach Anspruch 1, wobei die phenolische antimikrobielle Verbindung aus der Gruppe, bestehend aus 2,4,4‘-Trichlor-2‘-hydroxydiphenylether und 4,4‘-Dichlor-2-hydroxydiphenylether, ausgewählt ist.
4. Verwendung nach Anspruch 1, wobei die anorganische antimikrobielle Verbindung ein Metall enthaltender Zeolith oder ein oberflächenmodifizierter, Metall enthaltender Zeolith ist.

5. Verwendung nach Anspruch 4, wobei das Metall aus der Gruppe, bestehend aus Silber, Kupfer, Zink, Zirkonium und Kombinationen davon, ausgewählt ist.

7. Verwendung nach Anspruch 1, wobei die anorganische antimikrobielle Verbindung ein oberflächenmodifizierter, Metall enthaltender Zeolith ist, wobei das Metall ausgewählt ist aus der Gruppe, bestehend aus Silber und Kombinationen von Silber mit Kupfer, Zink oder Zirkonium.

8. Verwendung nach Anspruch 1, wobei Komponente a) 2,4,4'-Trichlor-2'-hydroxydiphenylether darstellt und wobei Komponente b) ein oberflächenmodifizierter, Metall enthaltender Zeolith darstellt.

9. Verwendung nach Anspruch 1, wobei das Gemisch von Komponenten (a) und (b) in einer Menge von 0,005 bis 10 %, bezogen auf das Gewicht des Kunststofffilms, der Faser oder des Gegenstands, vorliegt.

11. Verwendung nach Anspruch 1, wobei die zusätzlichen Additive neben Komponenten (a) und (b) vorliegen.

13. Gemisch aus antimikrobiellen Mitteln, das umfasst

 a) mindestens eine phenolische antimikrobielle Verbindung der Formel (I)

 b) mindestens eine anorganische antimikrobielle Verbindung, ausgewählt aus der Gruppe, bestehend aus kolloidalem Silber, Silbersulfat, Silberchlorid, Metall enthaltenden Zeolithen und oberflächenmodifizierten Metall enthaltenden Zeolithen; und

worin das Verhältnis von Komponenten a):b) 1:9 bis 9:1 ist.
14. Antimikrobielle Zusammensetzung, umfassend

A) ein Polymersubstrat und
B) 0,005 bis 10 %, bezogen auf das Gewicht von Komponente (A), eines Gemisches von antimikrobiellen Mitteln nach Anspruch 13.

Revendications

1. Utilisation d’un mélange d’agents antimicrobiens, qui comprend

a) au moins un composé antimicrobien phénolique de formule (I)

\[
\begin{align*}
\text{R}^1 & \text{ et } \text{R}^2 \text{ représentent chacun un atome d’hydrogène ou de chlore,} \\
\text{R}^3 & \text{ représente un atome d’hydrogène ou un groupe hydroxyle,} \\
\text{R}^4, \text{R}^5 \text{ et } \text{R}^6 \text{ représentent chacun un atome d’hydrogène ou de chlore,} \\
\text{R}^7 & \text{ représente un groupe hydroxyle, et} \\
X & \text{ représente } -\text{O-} \text{ ou } -\text{CH}_2-; \text{ et}
\end{align*}
\]

b) au moins un composé antimicrobien inorganique choisi dans le groupe constitué par l’oxyde de zinc, le cuivre et les composés du cuivre, l’argent, l’argent colloidal, le nitrate d’argent, le sulfate d’argent, le chlorure d’argent, les complexes d’argent, les zéolithes contenant un métal et les zéolithes contenant un métal à surface modifiée ; et

dans laquelle le rapport de composants a):b) va de 1:9 à 9:1,
pour stabiliser un substrat polymère contre une altération de la couleur.

2. Utilisation selon la revendication 1, dans laquelle le composé antimicrobien phénolique est choisi dans le groupe constitué par l’o-benzyl-phénol, le 2-benzyl-4-chloro-phénol, l’éther 2,4,4’-trichloro-2’-hydroxydiphénylique, l’éther 4,4’-dichloro-2-hydroxydiphénylique, le 5-chloro-2-hydroxy-diphényleméthane, le mono-chloro-o-benzyl-phénol, le 2,2’-méthylène-bis-(4-chloro-phénol) et le 2,4,6-trichlorophénol.

3. Utilisation selon la revendication 1, dans laquelle le composé antimicrobien phénolique est choisi dans le groupe constitué par l’éther 2,4,4’-dichloro-2’-hydroxydiphénylique et l’éther 4,4’-dichloro-2-hydroxydiphénylique.

4. Utilisation selon la revendication 1, dans laquelle le composé antimicrobien inorganique est une zéolithe contenant un métal ou une zéolithe contenant un métal à surface modifiée.

5. Utilisation selon la revendication 4, dans laquelle le métal est choisi dans le groupe constitué par l’argent, le cuivre, le zinc, le zirconium et les combinaisons de ceux-ci.

6. Utilisation selon la revendication 4, dans laquelle le métal est choisi dans le groupe constitué par l’argent et les combinaisons d’argent avec le cuivre, le zinc ou le zirconium.
7. Utilisation selon la revendication 1, dans laquelle le composé antimicrobien inorganique représente une zéolithe contenant un métal à surface modifiée dans laquelle le métal est choisi dans le groupe constitué par l’argent et les combinaisons d’argent avec le cuivre, le zinc ou le zircone.

8. Utilisation selon la revendication 1, dans laquelle le composant a) est l’éther 2,4,4’-trichloro-2’-hydroxydiphénylique et dans laquelle le composant b) est une zéolithe contenant un métal à surface modifiée.

9. Utilisation selon la revendication 1, dans laquelle le mélange de composants (a) et (b) est présent à raison de 0,005% à 10%, par rapport au poids de l’article, de la fibre ou du film de matière plastique.

10. Utilisation selon la revendication 1, dans laquelle la matière plastique est choisie dans le groupe constitué par le polyéthylène, le polypropylène, le copolymère acrylonitrile/butadiène/styrène, le copolymère styrène/acrylonitrile, le polystyrène, le poly(méthacrylate de méthyle), le poly(teréphtalate d’éthylène), le polyamide, le poly(chlorure de vinyle), le latex polymère, le polyuréthane, le polyuréthane thermoplastique, la résine urée-formaldéhyde et le polyester insaturé.

11. Utilisation selon la revendication 1, dans laquelle des additifs supplémentaires sont présents en plus des composants (a) et (b).

12. Utilisation selon la revendication 11, dans laquelle les additifs supplémentaires sont choisis dans le groupe constitué par les antioxydants, les absorbents d’ultraviolets, les amines encombrées, les phosphites ou les phosphonites, les hydroxylamines, les nitrones, les stérarates métalliques, les agents de nucléation, les charges, les agents de renforcement, les lubrifiants, les émollients, les colorants, les pigments, les ignifugeants, les agents antistatiques et les agents gonflants.

13. Mélange d’agents antimicrobiens, qui comprend

a) au moins un composé antimicrobien phénolique de formule (I)

b) le minimum un composé antimicrobien inorganique choisi dans le groupe constitué par l’argent colloïdal, le sulfate d’argent, le chlorure d’argent, les zéolithes contenant un métal et les zéolithes contenant un métal à surface modifiée ; et dans laquelle le rapport de composants a):b) va de 1:9 à 9:1.

14. Composition antimicrobienne comprenant

A) un substrat polymère, et
B) 0,005% à 10%, par rapport au poids de composant (A), d’un mélange d’agents antimicrobiens selon la revendication 13.
15. Article, fibre ou film de matière plastique antimicrobienne, dans lequel est incorporé un mélange d’agents antimicrobiens selon la revendication 13.