European Patent Office

EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 06.08.2003 Bulletin 2003/32

Application number: 00938691.3

Date of filing: 27.05.2000

FACTOR VIIA INHIBITORS

FAKTOR VIIA INHIBITORE

INHIBITEURS DU FACTEUR VIIa

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:
AL LT LV MK RO SI

Priority: 08.06.1999 EP 99111109

Date of publication of application: 27.03.2002 Bulletin 2002/13

Proprietor: Aventis Pharma Deutschland GmbH
65929 Frankfurt am Main (DE)

Inventors:
• KLINGLER, Otmar
 D-63110 Rodgau (DE)

References cited:
WO-A-89/09612
WO-A-95/29189

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to compounds of the formula I,

![Chemical Structure](image)

in which $R^1, R^2, R^{91}, R^{92}, R^{93}, R^{94}, R^{95}, R^{96}, R^{97}$, r, s and t have the meanings indicated below. The compounds of the formula I are valuable pharmacologically active compounds. They exhibit a strong antithrombotic effect and are suitable, for example, for the therapy and prophylaxis of thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzyme factor VIIa (F VIIa) and can in general be applied in conditions in which an undesired activity of factor VIIa is present or for the cure or prevention of which an inhibition of factor VIIa is intended. The invention furthermore relates to processes for the preparation of compounds of the formula I, their use, in particular as active ingredients in pharmaceuticals, and pharmaceutical preparations comprising them.

The ability to form blood clots is vital to survival. The formation of a blood clot or a thrombus is normally the result of tissue injury which initiates the coagulation cascade and has the effect of slowing or preventing blood flow in wound healing. Other factors which are not directly related to tissue injury like atherosclerosis and inflammation may also initiate the coagulation cascade. In general, a relationship exists between inflammation and the coagulation cascade. Inflammation mediators regulate the coagulation cascade and coagulation components influence the production and activity of inflammation mediators. However, in certain disease states the formation of blood clots within the circulatory system reaches an undesired extent and is itself the source of morbidity potentially leading to pathological consequences. It is nevertheless not desirable in such disease states to completely inhibit the blood clotting system because life threatening hemorrhage would ensue. In the treatment of such states a well-balanced intervention into the blood clotting system is required, and there is still a need for substances exhibiting a suitable pharmacological activity for achieving such a result.

Blood coagulation is a complex process involving a progressively amplified series of enzyme activation reactions in which plasma zymogens are sequentially activated by limited proteolysis. Mechanistically the blood coagulation cascade has been divided into intrinsic and extrinsic pathways, which converge at the activation of factor X. Subsequent generation of thrombin proceeds through a single common pathway (see Scheme 1). Present evidence suggests that the intrinsic pathway plays an important role in the maintenance and growth of fibrin formation, while the extrinsic pathway is critical in the initiation phase of blood coagulation (H. Cole, Aust. J. Med. Sci. 16 (1995) 87-93; G. J. Broze, Blood Coagulation and Fibrinolysis 6, Suppl. 1 (1995) S7-S13). It is generally accepted that blood coagulation is physically initiated upon formation of a factor VIIa/tissue factor (TF) complex. Once formed, this complex rapidly initiates coagulation by activating factors IX and X. The newly generated activated factor X, i.e. factor Xa, then forms a one-to-one complex with factor Va and phospholipids to form a prothrombinase complex, which is responsible for converting soluble fibrinogen to insoluble fibrin via the activation of thrombin from its precursor prothrombin. As time progresses, the activity of the factor VIIa/tissue factor complex (extrinsic pathway) is suppressed by a Kunitz-type protease inhibitor protein, TFPI, which, when complexed to factor Xa, can directly inhibit the proteolytic activity of factor VIIa/tissue factor.
In order to maintain the coagulation process in the presence of an inhibited extrinsic system, additional factor Xa is produced via the thrombin-mediated activity of the intrinsic pathway. Thus, thrombin plays a dual autocatalytic role, mediating its own production and the conversion of fibrinogen to fibrin. The autocatalytic nature of thrombin generation is an important safeguard against uncontrolled bleeding and it ensures that, once a given threshold level of prothrombinase is present, blood coagulation will proceed to completion. Thus, it is most desirable to develop agents that inhibit coagulation without directly inhibiting thrombin but by inhibiting other steps in the coagulation cascade like factor VIIa activity.

In many clinical applications there is a great need for the prevention of intravascular blood clots or for some anticoagulant treatment. For example, nearly 50% of patients who have undergone a total hip replacement develop deep vein thrombosis (DVT). The currently available drugs like heparin and derivatives thereof are not satisfactory in many specific clinical applications. The currently approved therapies include fixed dose low molecular weight heparin (LMWH) and variable dose heparin. Even with these drug regimes 10% to 20% of patients develop DVT, and 5% to 10% develop bleeding complications.

Another clinical situation for which better anticoagulants are needed concerns subjects undergoing transluminal coronary angioplasty and subjects at risk for myocardial infarction or suffering from crescendo angina. The present, conventionally accepted therapy which consists of administering heparin and aspirin, is associated with a 6% to 8% abrupt vessel closure rate within 24 hours of the procedure. The rate of bleeding complications requiring transfusion therapy due to the use of heparin also is approximately 7%. Moreover, even though delayed closures are significant, administration of heparin after termination of the procedures is of little value and can be detrimental.

The widely used blood-clotting inhibitors like heparin and related sulfated polysaccharides like LMWH and heparin sulfate exert their anti-clotting effects by promoting the binding of a natural regulator of the clotting process, anti-thrombin III, to thrombin and to factor Xa. The inhibitory activity of heparin primarily is directed toward thrombin, which is inactivated approximately 100 times faster than factor Xa. Hirudin and hirulog are two additional thrombin-specific anticoagulants presently in clinical trials. However, these anticoagulants which inhibit thrombin also are associated with bleeding complications. Preclinical studies in baboons and dogs have shown that targeting enzymes involved at earlier stages of the coagulation cascade, such as factor Xa or factor VIIa, prevents clot formation without producing the bleeding side effects observed with direct thrombin inhibitors (L. A. Harker et al., Thromb. Hemostas. 74 (1995) 464-472). Certain peptides and peptide analogs which inhibit blood clotting by specifically inhibiting factor Xa are disclosed, for example, in WO-A-95/29189.

Specific inhibition of the factor VIIa/tissue factor catalytic complex using monoclonal antibodies (WO-A-
92/06711) or a protein such as chloromethyl ketone inactivated factor VIIa (WO-A-96/12800 and WO-A-97/47651) is an extremely effective means of controlling thrombus formation caused by acute arterial injury or the thrombotic complications related to bacterial septicemia. There is also experimental evidence suggesting that inhibition of factor VIIa/tissue factor activity inhibits restenosis following balloon angioplasty (L. A. Harker et al., Haemostasis 26 (1996) S1: 76-82). Bleeding studies have been conducted in baboons and indicate that inhibition of the factor VIIa/tissue factor complex has the widest safety window with respect to therapeutic effectiveness and bleeding risk of any anticoagulant approach tested including thrombin, platelet and factor Xa inhibition (L. A. Harker et al., Thromb. Hemostas. 74 (1995) 464-472).

[0009] A specific inhibitor of factor VIIa which has a favorable property profile would have substantial practical value in the practice of medicine. In particular, a factor VIIa inhibitor would be effective under circumstances where the present drugs of choice, like heparin and related sulfated polysaccharides, are ineffective or only marginally effective. Certain inhibitors of factor VIIa have already been described, e. g. in WO-A-89/09612. EP-A-987274 discloses compounds containing a tripeptide unit which inhibit factor VIIa. However, the property profile of these compounds is still not ideal, and there is a need for further low molecular weight factor VIIa-specific blood clotting inhibitors that are effective and do not cause unwanted side effects. The present invention satisfies this need by providing novel factor VIIa activity inhibiting compounds of the formula I.

[0010] Thus, a subject of the present invention are compounds of the formula I,

\[R^1 \text{ is selected from the series consisting of hydrogen, R}^{11}-\text{CO- and R}^{12}-\text{SO}_2-; \]

\[R^{11} \text{ is selected from the series consisting of hydrogen, (C}_1-C_8\text{-alkyl, (C}_6-C_{14}\text{-aryl, (C}_6-C_{14}\text{-aryl)-(C}_1-C_4\text{-alkyl, Het, Het-(C}_1-C_4\text{-alkyl, (C}_1-C_8\text{-aryl, (C}_6-C_{14}\text{-aryl-(C}_1-C_4\text{-alkyl, amino, (C}_1-C_8\text{-alkylamino, (C}_6-C_{14}\text{-arylamino- and (C}_6-C_{14}\text{-aryl-(C}_1-C_4\text{-alkylamino, where all these groups are unsubstituted or substituted by one or more identical or different substituents R}^{40}; \]

\[R^{12} \text{ is selected from the series consisting of (C}_1-C_8\text{-alkyl, (C}_6-C_{14}\text{-aryl, (C}_6-C_{14}\text{-aryl-(C}_1-C_4\text{-alkyl, Het, Het-(C}_1-C_4\text{-alkyl, di((C}_6-C_{14}\text{-alkylamino- and di((C}_6-C_{14}\text{-aryl-(C}_1-C_4\text{-alkylamino, where all these groups are unsubstituted or substituted by one or more identical or different substituents R}^{40}; \]

\[R^2 \text{ is hydrogen, R}^{21}(R^{22})\text{CH, R}^{23}\text{-Het-(CH}_2)_k, R^{23}(R^{24})\text{N-(CH}_2)_m-D-(CH}_2)_n- or R^{25}(R^{26})\text{N-CO-(CH}_2)_p-D-(CH}_2)_q-, wherein D is a divalent residue -C(R}^{31})(R}^{32}_-; \]

\[\text{a divalent (C}_6-C_{14}\text{-arylene residue or a divalent residue derived from an aromatic group Het containing 5 to 10 ring atoms of which 1, 2, 3 or 4 are identical or different ring heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur, and the numbers k, m, n, p and q which are independent of each other and can be identical or different are 0, 1, 2, 3, 4 or 5, with the proviso that in case D is -C(R}^{31})(R}^{32}_-; \]

\[\text{the sum m+n cannot be 0 and the sum p+q cannot be 0; \]
R²¹ and R²² which are independent of each other and can be identical or different are selected from the series of hydrogen, (C₁₋C₁₂)-alkyl, (C₆₋C₁₄)-aryl, (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkyl-, Het- and Het-(C₁₋C₄)-alkyl-, where all these groups are unsubstituted or substituted by one or more identical or different substituents from the series consisting of R⁴⁰, (C₁₋C₆)-alkylamino-, di-((C₁₋C₈)-alkyl)-amino-, (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkylamino-, (C₆₋C₁₄)-arylamino-, aminocarbonyl- and aminocarbonyl-(C₁₋C₆)-alkyl-;

or R²¹ and R²² together with the carbon atom to which they are bonded form a saturated or unsaturated 3-membered to 8-membered carbocyclic ring which can be condensed to one or two ring systems which are heteroaromatic rings containing 5 to 10 ring atoms of which 1, 2 or 3 are identical or different heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur, and/or (C₆₋C₁₀) carbocyclic aromatic rings, where the resulting group R²¹(R²²)CH- is unsubstituted or substituted by one or more identical or different substituents from the series consisting of R⁴⁰, (C₁₋C₆)-alkylamino-, di-((C₁₋C₈)-alkyl)-amino-, (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkylamino-, (C₆₋C₁₄)-arylamino-, aminocarbonyl- and aminocarbonyl-(C₁₋C₆)-alkyl-;

R²³ is hydrogen, R²⁷-SO₂- or R²₈-CO-;

R²⁴ is selected from the series consisting of hydrogen, (C₁₋C₆)-alkyl, (C₆₋C₁₄)-aryl and (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkyl-;

R²⁵ and R²⁶ which are independent of each other and can be identical or different are selected from the series consisting of hydrogen, (C₁₋C₆)-alkyl, (C₆₋C₁₄)-aryl, (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkyl-, Het- and Het-(C₁₋C₄)-alkyl-, where all these groups are unsubstituted or substituted by one or more identical or different substituents R⁴⁰;

R²⁷ is selected from the series consisting of (C₁₋C₆)-alkyl, (C₆₋C₁₄)-aryl, (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkyl-, Het-, Het-(C₁₋C₄)-alkyl-, amino, (C₁₋C₆)-alkylamino-, di-((C₁₋C₈)-alkyl)amino-, (C₆₋C₁₄)-arylamino- and (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkylamino-, where all these groups are unsubstituted or substituted by one or more identical or different substituents R⁴⁰;

R²⁸ is selected from the series consisting of R²⁷, (C₁₋C₆)-alkyloxy-, (C₆₋C₁₄)-aryloxy- and (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkyloxy-, where all these groups are unsubstituted or substituted by one or more identical or different substituents R⁴⁰;

R³¹ and R³² which are independent of each other and can be identical or different are selected from the series consisting of hydrogen, (C₁₋C₁₂)-alkyl, (C₆₋C₁₄)-aryl, (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkyl-, Het- and Het-(C₁₋C₄)-alkyl-, where all these groups are unsubstituted or substituted by one or more identical or different substituents R⁴⁰;

R³⁰ is selected from the series consisting of halogen, hydroxy, (C₁₋C₆)-alkyloxy-, (C₆₋C₁₄)-aryl-(C₁₋C₆)-alkyloxy-, (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkyl-, (C₁₋C₆)-alkylsulfonyl-, trifluoromethyl, acetylamino-, amino, amidino, guanidino, oxo, nitro and cyano, where the groups R⁴⁰ are independent of each other and can be identical or different;

R⁹¹, R⁹² and R⁹³ which are independent of each other and can be identical or different are selected from the series consisting of hydrogen, (C₁₋C₆)-alkyl, (C₆₋C₁₄)-aryl, (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkyl-, Het- and Het-(C₁₋C₄)-alkyl-;

R⁹⁴ is selected from the series consisting of (C₁₋C₄)-alkyl, (C₆₋C₁₄)-aryl, amino, nitro, halogen, trifluoromethyl, hydroxy, (C₁₋C₄)-alkyloxy-, where the groups R⁹⁴ are independent of each other and can be identical or different;

R⁹⁵ is selected from the series consisting of amidino, guanidino, ((C₁₋C₄)-alkyl)oxycarbonylamidino-, ((C₁₋C₄)-alkyl)oxycarbonylguanidino- and hydroxyamidino-;

R⁹⁶ is hydrogen;

R⁹⁷ is R⁹⁹-(C₁₋C₆)-alkyl-;

R⁹⁹ is selected from the series consisting of hydroxy carbonyl-, (C₁₋C₆)-alkoxy carbonyl-, (C₆₋C₁₄)-aryl-(C₁₋C₄)-alkoxy carbonyl-, aminocarbonyl- and (C₁₋C₆)-alkylaminocarbonyl-;

Het is a saturated, partially unsaturated or aromatic monocyclic or bicyclic heterocyclic ring system containing 3 to 10 ring atoms of which 1, 2, 3 or 4 are identical or different heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur;
in all their stereoisomeric forms and mixtures thereof in any ratio, and their physiologically tolerable salts.

[0011] All residues which can occur several times in the compounds of the formula I, for example the residues \(R^{40}\), \(R^{44}\) or Het, can each independently of one another have the meanings indicated, and can in each case be identical or different.

[0012] As used herein, the term alkyl is to be understood in the broadest sense to mean hydrocarbon residues which can be linear, i.e. straight-chain, or branched and which can be acyclic or cyclic residues or comprise any combination of acyclic and cyclic subunits. Further, the term alkyl as used herein expressly includes saturated groups as well as unsaturated groups which latter groups contain one or more, for example one, two or three, double bonds and/or triple bonds, provided that the double bonds are not located within a cyclic alkyl group in such a manner that an aromatic system results. All these statements also apply if an alkyl group carries substituents or occurs as a substituent on another residue, for example in an alkylxoy residue, an alklyoxy carbonyl residue or an aryalkyl residue. Examples of alkyl residues containing from 1 to 20 carbon atoms are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl and eicosyl, the n-isomers of all these residues, isopropyl, isobutyl, 1-methylbutyl, isopentyl, neopentyl, 2,2-dimethylbutyl, 2-methylpentyl, 3-methylpentyl, isohexyl, 2,3,4-trimethylhexyl, isodecyl, sec-butyl, tert-butyl, or tert-pentyl.

[0013] Unsaturated alkyl residues are, for example, alkenyl residues such as vinyl, 1-propenyl, 2-propenyl (≡ allyl), 2-butenyl, 3-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 5-hexenyl or 1,3-pentadienyl, or alkyln residues such as ethynyl, 1-propynyl, 2-propynyl (≡ propargyl) or 2-butyln. Alkyl residues can also be unsaturated when they are substituted.

[0014] Examples of cyclic alkyl residues are cycloalkyl residues containing 3, 4, 5, 6, 7 or 8 ring carbon atoms like cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl which can also be substituted and/or unsaturated. Unsaturated cyclic alkyl groups and unsaturated cycloalkyl groups like, for example, cyclopentenyl or cyclohexenyl can be bonded via any carbon atom. The term alkyl as used herein also comprises cycloalkyl-substituted alkyl groups like cyclopropylmethyl-, 1-cyclobutylmethyl-, 2-cyclopentylmethyl-, 1-cyclohexylmethyl-, cycloheptylmethyl-, cyclooctylmethyl-, 1-cyclopropylethyl-, 1-cyclobutyethyl-, 1-cyclopentylethyl-, 1-cyclohexylethyl-, 1-cyclooctylethyl-, 2-cyclopropylethyl-, 2-cyclobutyethyl-, 2-cyclopentylethyl-, 2-cyclohexylethyl-, 2-cyclooctylethyl-, 3-cyclopropylpropyl-, 3-cyclobutylpropyl-, 3-cyclopentylpropyl-, 3-cyclohexylpropyl-, 3-cyclooctylpropyl- etc. in which groups the cycloalkyl subgroup as well as acyclic subgroup also can be unsaturated and/or substituted.

[0015] Of course, a cyclic alkyl group has to contain at least three carbon atoms and an unsaturated alkyl group has to contain at least two carbon atoms. Thus, a group like \((C_1-C_4)\)-alkyl is to be understood as comprising, among others, saturated acyclic \((C_1-C_4)\)-alkyl, \((C_3-C_8)\)-cycloalkyl, cycloalkyl-alkyl groups like \((C_3-C_7)\)-cycloalkyl-(C_1-C_5)-alkyl-wherein the total number of carbon atoms can range from 4 to 8, and unsaturated \((C_2-C_8)\)-alkyl like \((C_2-C_8)\)-alkenyl or \((C_2-C_8)\)-alkynyl. Similarly, a group like \((C_1-C_4)\)-alkyl is to be understood as comprising, among others, saturated acyclic \((C_1-C_4)\)-alkyl, \((C_3-C_8)\)-cycloalkyl, cycloalkyl-alkyl, and unsaturated \((C_2-C_4)\)-alkyl like \((C_2-C_4)\)-alkenyl or \((C_2-C_4)\)-alkynyl.

[0016] Unless stated otherwise, the term alkyl preferably comprises acyclic saturated hydrocarbon residues containing from 1 to 6 carbon atoms which can be linear or branched, acyclic unsaturated hydrocarbon residues containing from 2 to 6 carbon atoms which can be linear or branched like \((C_2-C_8)\)-alkenyl and \((C_2-C_8)\)-alkynyl, and cyclic alkyl groups containing from 3 to 8 ring carbon atoms, in particular from 3 to 6 ring carbon atoms. A particular group of saturated acyclic alkyl residues is formed by \((C_1-C_4)\)-alkyl residues like methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and tert-butyl.

[0017] The above statements relating to alkyl groups do not only apply to monovalent residues but correspondingly to divalent residues like alkanediyl groups, alkylene groups or polymethylene groups examples of which are methylene, \(\text{CH}_2\), 1,2-ethylene (= ethene-1,2-diy), 1,1-ethylen (= 1-methylene), 1-isobutylen-methylene, 1,3-propylene, 2,2-dimethylen-1,3-propylene, 1,4-butylene, but-2-en-1,4-diy, 1,2-cyclopropylene, 1,2-cyclohexylene, 1,3-cyclohexylene or 1,4-cyclohexylene.

[0018] Unless stated otherwise, and irrespective of any specific substituents bonded to alkyl groups which are indicated in the definition of the compounds of the formula I, alkyl groups can in general be unsubstituted or substituted by one or more, for example two, three or four, identical or different substituents. Any kind of substituents present in substituted alkyl residues can be present in any desired position provided that the substitution does not lead to an unstable molecule. Examples of substituted alkyl residues are alkyl residues in which one or more, for example 1, 2, 3, 4 or 5, hydrogen atoms are replaced with halogen atoms, in particular fluorine atoms.

[0019] Examples of substituted cycloalkyl groups are cycloalkyl groups which carry as substituent one or more, for example one, two, three or four, identical or different acyclic alkyl groups, for example acyclic \((C_1-C_4)\)-alkyl groups like methyl groups. Examples of substituted cycloalkyl groups are 4-methylcyclohexyl, 4-tert-butylcyclohexyl or 2,3-dimethylcyclohexyl.

[0020] The term aryl refers to a monocyclic or polycyclic hydrocarbon residue in which at least one carbocyclic ring is present that has a conjugated pi electron system. In a \((C_6-C_{14})\)-aryl residue from 6 to 14 ring carbon atoms are
present. Examples of (C₆-H₄)-aryl residues are phenyl, naphthyl, biphenylyl, fluorenyl or anthracenyl. Examples of (C₆-F₃)-aryl residues are phenyl or naphthyl. Unless stated otherwise, and irrespective of any specific substituents bonded to aryl groups which are indicated in the definition of the compounds of the formula I, aryl residues including, for example, phenyl, naphthyl and fluorenyl can in general be unsubstituted or substituted by one or more, for example one, two, three or four, identical or different substituents. Aryl residues can be bonded via any desired position, and in substituted aryl residues the substituents can be located in any desired position.

[0021] In monosubstituted phenyl residues the substituent can be located in the 2-position, the 3-position or the 4-position, the 3-position and the 4-position being preferred. If a phenyl group carries two substituents, they can be located in 2,3-position, 2,4-position, 2,5-position, 2,6-position, 3,4-position or 3,5-position. In phenyl residues carrying three substituents the substituents can be located in 2,3,4-position, 2,3,5-position, 2,3,6-position, 2,4,5-position, 2,4,6-position, or 3,4,5-position. Naphthyl residues can be 1-naphthyl and 2-naphthyl. In substituted naphthyl residues the substituents can be located in any positions, for example in monosubstituted 1-naphthyl residues in the 2-, 3-, 4-, 5-, 6-, 7-, or 8-position and in monosubstituted 2-naphthyl residues in the 1-, 3-, 4-, 5-, 6-, 7-, or 8-position. Biphényl residues can be 2-biphenylyl, 3-biphenylyl or 4-biphenylyl. Fluorenyl residues can be 1-, 2-, 3-, 4- or 9-fluorenyl. In monosubstituted fluorenyl residues bonded via the 9-position the substituent is preferably present in the 1-, 2-, 3- or 4-position.

[0022] Unless stated otherwise, substituents that can be present in substituted aryl groups are, for example, (C₁-C₄)-alkyl, in particular (C₁-C₂)-alkyl, such as methyl, ethyl or tert-butyl, hydroxy, (C₁-C₃)-alkyloxy, in particular (C₁-C₂)-alkyloxy, such as methoxy, ethoxy or tert-butoxy, methylenedioxy, ethylenedioxy, F, Cl, Br, I, cyano, nitro, trifluoromethyl, trifluoromethoxy, hydroxymethyl, formyl, acetyl, amino, mono- or di-(C₁-C₄)-alkylamino, ((C₁-C₄)-alkyl)carbonylamino like acetylamino, hydroxycarbonyl, ((C₁-C₂)-alkyloxy)carbonyl, carbamoyl, optionally substituted phenyl, benzyl optionally substituted in the phenyl group, optionally substituted phenoxy or benzyloxy optionally substituted in the phenyl group. A substituted aryl group that can be present in a specific position of the compounds of formula I can independently of other aryl groups be substituted by substituents selected from any desired subgroup of the substituents listed before and/or in the definition of that group. For example, for a substituted aryl group may be substituted by one or more identical or different substituents from the group consisting of (C₁-C₄)-alkyl, hydroxy, (C₁-C₃)-alkyloxy, F, Cl, Br, I, cyano, nitro, trifluoromethyl, amino, phenyl, benzyl, phenoxy and benzyloxy. Preferably not more than two nitro groups are present in the compounds of the formula I.

[0023] The above statements relating to aryl groups correspondingly apply to divalent residues derived from aryl groups, i. e. to arylene groups like phenylene which can be unsubstituted or substituted 1,2-phenylene, 1,3-phenylene or 1,4-phenylene, or naphthylene which can be unsubstituted or substituted 1,2-naphthalenediyl, 1,3-naphthalenediyl, 1,4-naphthalenediyl, 1,5-naphthalenediyl, 1,6-naphthalenediyl, 1,7-naphthalenediyl, 1,8-naphthalenediyl, 2,3-naphthalenediyl, 2,6-naphthalenediyl or 2,7-naphthalenediyl. The above statements also correspondingly apply to the aryl subgroup in arylalkyl- groups. Examples of arylalkyl- groups which can also be unsubstituted or substituted in the aryl subgroup as well as in the alkyl subgroup, are benzyl, 1-phenylethyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 1-methyl-3-phenyl-propyl, 1-naphthylmethyl, 2-naphthylmethyl, 1-((1-naphthyl)ethyl, 1-(2-naphthyl)ethyl, 2-(1-naphthyl)ethyl, 2-(2-naphthyl)ethyl, or 9-fluorenylethyl. All these explanations also correspondingly apply to aromatic rings which may be condensed (or fused) to a ring formed by the groups R²¹ and R²² and the carbon atom to which these groups are attached.

[0024] The group Het comprises groups containing 3, 4, 5, 6, 7, 8, 9 or 10 ring atoms in the parent monocyclic or bicyclic heterocyclic ring system. In monocyclic groups Het the heterocyclic ring preferably is a 3-membered, 4-membered, 5-membered, 6-membered or 7-membered ring, particularly preferably a 5-membered or 6-membered ring. In bicyclic groups Het preferably two fused rings are present one of which is a 5-membered ring or 6-membered heterocyclic ring and the other of which is a 5-membered or 6-membered heterocyclic or carbocyclic ring, i. e., a bicyclic ring. Het preferably contains 8, 9 or 10 ring atoms, particularly preferably 9 or 10 ring atoms.

[0025] Het comprises saturated heterocyclic ring systems which do not contain any double bonds within the rings, as well as mono-unsaturated and poly-unsaturated heterocyclic ring systems which contain one or more, for example one, two, three, four or five, double bonds within the rings provided that the resulting system is stable. Unsaturated rings may be non-aromatic or aromatic, i. e. double bonds within the rings in the group Het may be arranged in such a manner that a conjugated pi electron system results. Aromatic rings in a group Het may be 5-membered or 6-membered rings, i. e. aromatic groups in a group Het contain 5 to 10 ring atoms. Aromatic rings in a group Het thus comprise 5-membered and 6-membered monocyclic heterocycles and bicyclic heterocycles composed of two 5-membered rings, one 5-membered ring and one 6-membered ring, or two 6-membered rings. In bicyclic aromatic groups in a group Het one or both rings may contain heteroatoms. Aromatic groups Het may also be referred to by the customary term heteroaryl for which all the definitions and explanations above and below relating to Het correspondingly apply. All these explanations also correspondingly apply to heteroaromatic rings which may be condensed (or fused) to a ring formed by the groups R²¹ and R²² and the carbon atom to which these groups are attached.

[0026] Unless stated otherwise, in the groups Het and any other heterocyclic groups preferably 1, 2, 3 or 4 identical
or different ring heteroatoms from the series consisting of nitrogen, oxygen and sulfur atoms are present. Particularly preferably in these groups 1 or 2 identical or different heteroatoms from the group consisting of nitrogen, oxygen and sulfur are present. The ring heteroatoms can be present in any desired number and in any position with respect to each other provided that the resulting heterocyclic system is known in the art and is stable and suitable as a subgroup in a drug substance. Examples of parent structures of heterocycles from which the group Het can be derived are aziridine, oxirane, azetidine, pyrrole, furan, thiophene, dioxole, imidazole, pyrazole, oxazole, isoxazole, thiazole, iso-thiazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, pyridine, pyran, thiopyran, pyridazine, pyrimidine, pyrazine, 1,2-oxo-azine, 1,3-oxazine, 1,4-oxazinone, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, azepine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, indole, isoindole, benzofuran, benzothiophene, 1,3-benzodiox-ole, indazole, benzimidazole, benzoazazole, quinoline, isoquinoline, chromane, isochromane, cinnoline, quinazoline, quinoxaline, phthalazine, pyridimidines, pyridopyrimidines, purine, pteridine etc. as well as ring systems which result from the listed heterocycles by fusion (or condensation) of a carbocyclic ring, for example benzo-fused, cyclopenta-fused, cyclohexa-fused or cyclohepta-fused derivatives of these heterocycles. [0027] The fact that many of the before-listed names of heterocycles are the chemical names of unsaturated or aromatic ring systems does not imply that the groups Het could only be derived from the respective unsaturated ring system. The names here only serve to describe the ring system with respect to ring size and the number of the heter-oatoms and their relative positions. As explained above, the group Het can be saturated or partially unsaturated or aromatic, and can thus be derived not only from the before-listed heterocycles themselves but also from all their partially or completely hydrogenated analogues and also from their more highly unsaturated analogues if applicable. As exam-ples of completely or partially hydrogenated analogues of the before-listed heterocycles from which the groups Het may be derived the following may be mentioned: pyrrole, pyrrolidine, tetrahydrofuran, tetrahydrothiophene, dihydro- pyridine, tetrahydropyridine, piperidine, 1,3-dioxolane, 2-imidazoline, imidazolidine, 4,5-dihydro-1,3-oxazol, 1,3-oxa-zolidine, 4,5-dihydro-1,3-thiazole, 1,3-thiazolidine, perhydro-1,4-dioxane, piperazine, perhydro-1,4-oxazine (= mor-pholine), perhydro-1,4-thiazine (= thiomorpholine), perhydroazepine, indoline, isoindoline, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydrossoquinoline, etc. [0028] The residue Het may be bonded via any ring carbon atom, and in the case of nitrogen heterocycles via any suitable ring nitrogen atom. Thus, for example, a pyrrolyl residue can be 1-pyrrolyl, 2-pyrrolyl or 3-pyrrolyl, a pyrrolidinyl residue can be 1-pyrrolidinyl (= pyrroline), 2-pyrrolidinyl or 3-pyrrolidinyl, a pyridyl residue can be 2-pyridyl, 3-pyridyl or 4-pyridyl, a piperidinyl residue can be 1-piperidinyl (= piperidino), 2-piperidinyl, 3-piperidinyl or 4-piperidinyl. Furfyl can be 2-furyl or 3-furyl, thiophenyl can be 2-thienyl or 3-thienyl, imidazolyl can be 1-imidazolyl, 2-imidazolyl, 4-imidazolyl or 5-imidazolyl, 1,3-oxazolyl can be 1,3-oxazol-2-yl, 1,3-oxazol-4-yl or 1,3-oxazol-5-yl, 1,3-thiazolyl can be 1,3-thiazol-2-yl, 1,3-thiazol-4-yl or 1,3-thiazol-5-yl, pyrimidinyl can be 2-pyrimidinyl, 4-pyrimidinyl (= pyrimidino) or 5-pyrimidinyl, piperazinyl can be 1-piperazinyl (= 4-piperazinyl = piperazino) or 2-piperazinyl. Indolyl can be 1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl or 7-indolyl. Similarly, benzimidazolyl, benzoxazolyl and benzothiazolyl residues can be bonded via the 2-position and via any of the positions 4, 5, 6, and 7, benzimidazolyl also via the 1-position. Quinolyl can be 2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl or 8-quinolyl, isoquinolyl can be 1-isoquinolyl, 3-isoquinolyl, 4-isoquinolyl, 5-isoquinolyl, 6-isoquinolyl, 7-isoquinolyl or 8-isoquinolyl. In addition to being bonded via any of the positions indicated for quinolyl and isoquinolyl, 1,2,3,4-tetrahydroquinoline and 1,2,3,4-tetrahydroisoquinoline can also be bonded via the nitrogen atoms in 1-position and 2-position, respectively. [0029] Unless stated otherwise, and irrespective of any specific substituents bonded to groups Het or any other heterocyclic groups which are indicated in the definition of the compounds of the formula I, the group Het can be unsubstituted or substituted on ring carbon atoms with one or more, for example one, two, three, four or five, identical or different substituents like (C 1 -C 2)-alkyl, in particular (C 1 -C 4)-alkyl, (C 1 -C 8)-alkoxy, in particular (C 1 -C 4)-alkoxy, (C 1 -C 4)-alkylthio, halogen, nitro, amino, ((C 1 -C 4)-alkyl)carbonylamino like acetylaminio, trifluoromethyl, trifluorometh- oxy, hydroxy, oxo, hydroxy-(C 1 -C 4)-alkyl such as, for example, hydroxymethyl or 1-hydroxyethyl or 2-hydroxyethyl, methylenedioxy, ethylenedioxy, formyl, acetyl, cyano, methylsulfonyl, hydroxycarbonyl, aminocarbonyl, (C 1 -C 4)-alkyl- loxycarbonyl, optionally substituted phenyl, optionally substituted phenoxy, benzyl optionally substituted in the phenyl group, benzoxo optionally substituted in the phenyl group, etc. The substituents can be present in any desired position provided that a stable molecule results. Of course an oxo group cannot be present in an aromatic ring. Each suitable ring nitrogen atom in a group Het can independently of each other be unsubstituted, i. e. carry a hydrogen atom, or can be substituted, i. e. carry a substituent like (C 1 -C 8)-alkyl, for example (C 1 -C 4)-alkyl such as methyl or ethyl, opti-onally substituted phenyl, phenyl-(C 1 -C 4)-alkyl, for example benzyl, optionally substituted in the phenyl group, hy-droxy-(C 2 -C 4)-alkyl such as, for example 2-hydroxyethyl, acetyl or another acyl group, methylsulfonyl or another sul-fonfyl group, aminocarbonyl, (C 1 -C 4)-alkylxycarbonyl, etc. Nitrogen heterocycles can also be present as N-oxides or as quaternary salts. Ring sulfur atoms can be oxidized to the sulfioxide or to the sulfone. Thus, for example a tetrahy-drothienyl residue may be present as S,S-dioxide or tetrahydrothielen residue or a thiomorpholinyl residue like 4-thiomor- pholinyl may be present as 1-oxo-4-thiomorpholinyl or 1,1-dioxo-4-thiomorpholinyl. A substituted group Het that can be present in a specific position of the compounds of formula I can independently of other groups Het be substituted
by substituents selected from any desired subgroup of the substituents listed before and/or in the definition of that group.

[0030] The explanations relating to the residue Het correspondingly apply to divalent residues Het including divalent heteroaromatic residues which may be bonded via any two ring carbon atoms and in the case of nitrogen heterocycles via any carbon atom and any suitable ring nitrogen atom or via any two suitable nitrogen atoms. For example, a pyridinediyl residue can be 2,3-pyridinediyl, 2,4-pyridinediyl, 2,5-pyridinediyl, 2,6-pyridinediyl, 3,4-pyridinediyl or 3,5-pyridinediyl, a piperidinediyl residue can be, among others, 1,2-piperidinediyl, 1,3-piperidinediyl, 1,4-piperidinediyl, 2,3-piperidinediyl, 2,4-piperidinediyl or 3,5-piperidinediyl, a piperazine diyl residue can be, among others, 1,3-piperazine diyl, 1,4-piperazine diyl, 2,3-piperazine diyl, 2,5-piperazine diyl, etc. The above statements also correspondingly apply to the Het subgroup in the groups Het-alkyl-. Examples of such groups Het-alkyl- which can also be unsubstituted or substituted in the Het subgroup as well as in the alkyl subgroup are (2-pyridyl)methyl, (3-pyridyl)methyl, (4-pyridyl)methyl, 2-(2-pyridyl)ethyl, 2-(3-pyridyl)ethyl or 2-(4-pyridyl)ethyl.

[0031] Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, particularly preferably chlorine or bromine.

[0032] Optically active carbon atoms present in the compounds of the formula I can independently of each other have R configuration or S configuration. The compounds of the formula I can be present in the form of pure enantiomers or pure diastereomers, or in the form of mixtures of enantiomers and/or diastereomers, for example in the form of racemates. The present invention relates to pure enantiomers and mixtures of enantiomers as well as to pure diastereomers and mixtures of diastereomers. The invention comprises mixtures of two or of more than two stereoisomers of the formula I, and it comprises all ratios of the stereoisomers in the mixtures. In case the compounds of the formula I can be present as E isomers or Z isomers (or cis isomers or trans isomers) the invention relates both to pure E isomers and pure Z isomers and to E/Z mixtures in all ratios. The invention also comprises all tautomeric forms of the compounds of the formula I.

[0033] Diastereomers, including E/Z isomers, can be separated into the individual isomers, for example, by chromatography. Racemates can be separated into the two enantiomers by customary methods, for example, by chromatography on chiral phases or by resolution, for example by crystallization of diastereomeric salts obtained with optically active acids or bases. Stereochemically uniform compounds of the formula I can also be obtained by employing stereoechemically uniform starting materials or by using stereoselective reactions.

[0034] The choice of incorporating into a compound of the formula I a building block with R configuration or S configuration, or in the case of an amino acid unit present in a compound of the formula I of incorporating a building block designated as D-amino acid or L-amino acid, can depend, for example, on the desired characteristics of the compound of the formula I. For example, the incorporation of a D-amino acid building block can confer increased stability in vitro or in vivo. The incorporation of a D-amino acid building block can also achieve a desired increase or decrease in the pharmacological activity of the compound. In some cases it can be desirable to allow the compound to remain active for only a short period of time. In such cases, the incorporation of an L-amino acid building block in the compound can allow endogenous peptidases in an individual to digest the compound in vivo, thereby limiting the individual's exposure to the active compound. A similar effect may also be observed in the compounds of the invention by changing the configuration in another building block from S configuration to R configuration or vice versa. By taking into consideration the medical needs one skilled in the art can determine the desirable characteristics, for example a favorable stereochemistry, of the required compound of the invention.

[0035] Physiologically tolerable salts of the compounds of formula I are nontoxic salts that are physiologically acceptable, in particular pharmaceutically utilisable salts. Such salts of compounds of the formula I containing acidic groups, for example a carboxy group COOH, are for example alkali metal salts or alkaline earth metal salts such as sodium salts, potassium salts, magnesium salts and calcium salts, and also salts with physiologically tolerable quaternary ammonium ions such as tetramethylammonium or tetraethylammonium, and acid addition salts with ammonia and physiologically tolerable organic amines, such as methylamine, dimethylamine, trimethylamine, ethylamine, triethylamine, ethanolamine or trimethylglycine. Basic groups contained in the compounds of the formula I, for example amino groups, amidino groups or guanidino groups, form acid addition salts, for example with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid, or with organic carboxylic acids and sulfonic acids such as formic acid, acetic acid, oxalic acid, citric acid, lactic acid, malic acid, succinic acid, malonic acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, methanesulfonic acid or p-toluenesulfonic acid.

[0036] Salts of compounds of the formula I can also be obtained by customary methods known to those skilled in the art, for example by combining a compound of the formula I with an inorganic or organic acid or base in a solvent or dispersant, or from other salts by cation exchange or anion exchange. The present invention also includes all salts of the compounds of the formula I which, because of low physiologically tolerability, are not directly suitable for use in phar-
maceuticals but are suitable, for example, as intermediates for carrying out further chemical modifications of the compounds of the formula I or as starting materials for the preparation of physiologically tolerable salts.

The present invention furthermore includes all solvates of compounds of the formula I, for example hydrates or adducts with alcohols. The invention also includes derivatives and modifications of the compounds of the formula I, for example prodrugs, protected forms and other physiologically tolerable derivatives including esters and amides, as well as active metabolites of the compounds of the formula I. Such esters and amides are, for example, \((C_1-C_2)-\)alkyl esters, unsubstituted amides or \((C_1-C_2)-\)alkylamides. The invention relates in particular to prodrugs and protected forms of the compounds of the formula I which can be converted into compounds of the formula I under physiological conditions. Suitable prodrugs for the compounds of the formula I, i.e. chemically modified derivatives of the compounds of the formula I having properties which are improved in a desired manner, for example with respect to solubility, bioavailability or duration of action, are known to those skilled in the art. More detailed information relating to prodrugs is found in standard literature like, for example, Design of Prodrugs, H. Bundgaard (ed.), Elsevier, 1985, Fleisher et al., Advanced Drug Delivery Reviews 19 (1996) 115-130; or H. Bundgaard, Drugs of the Future 16 (1991) 443. Suitable prodrugs for the compounds of the formula I are especially ester prodrugs and amide prodrugs of carboxylic add groups, and also acyl prodrugs and carbamate prodrugs of acylatable nitrogen-containing groups such as amino groups, amidino groups and guanidino groups. In the acyl prodrugs and carbamate prodrugs one or more, for example one or two, hydrogen atoms on nitrogen atoms in such groups are replaced with an acyl group or a carbamate group. Suitable acyl groups and carbamate groups for acyl prodrugs and carbamate prodrugs are, for example, the groups \(R^{p1}-CO-\) and \(R^{p2}-CO-\), in which \(R^{p1}\) is hydrogen, \((C_1-C_18)-\)alkyl, \((C_3-C_8)-\)cycloalkyl, \((C_3-C_8)-\)cycloalkyl-(\(C_1-C_4)-\)alkyl-, \((C_6-C_14)-\)aryl, Het-, \((C_6-C_14)-\)aryl-(\(C_1-C_4)-\)alkyl- or Het-(\(C_1-C_4)-\)alkyl- and in which \(R^{p2}\) has the meanings indicated for \(R^{p1}\) with the exception of hydrogen.

From another point of view the concept of converting a compound of the formula I into a derivative or a prodrug can also be regarded as protecting or masking functional groups like amino groups, amidino groups, guanidino groups, carboxy groups etc. that are present in the compound of the formula I. As already mentioned, the present invention also relates to all such protected forms for which some details are exemplarily given in the following.

For example, the compounds of the invention can be chemically modified or protected at any amino group such that the amino group carries as a substituent, for example, an acetyl, cyclopentylcarbonyl, allyloxy carbonyl, propenyl oxycarbonyl, benzoyl or other such group, in which groups further substituents can optionally be present as described above. The term amino group is used broadly herein to refer to any acylatable amino group, including a primary or secondary amino group. Such amino groups can occur, for example, at the N-terminus of the compound of the formula I, or as substituents in alkyl groups or aryl groups or in the side chain of an amino acid building block, for example in the group \(R^2\). The term N-terminus refers to the \(\alpha\)-amino group of the first amino acid unit present in a compound of the formula I written in the conventional manner of representing a peptide, i.e. to the group \(R^1(\text{R}^{p1})\)N. Specifically the N-terminus of a compound of the invention can be protected by linking thereto an amino-protecting group.

The term protecting group (or blocking group) is used broadly herein to refer to a conventional chemical group that can replace a hydrogen atom present in an amino group and that is introduced by reacting the amino group with an amino-protecting agent, including, for example, the \(\alpha\)-amino group present at the N-terminus of a compound of the invention. An amino-protecting group protects the otherwise reactive amino group against undesirable reactions as can occur, for example, due to exopeptidase activity on a final compound of the formula I but also, for example, during a synthetic procedure or during storage of a compound. As already mentioned, the modification of an amino group can also provide additional advantages including, for example, increasing the solubility or the bioactivity of the compound. Various amino-protecting groups are known in the art and include, for example, acyl groups such as formyl, acetyl, picoloyl, tert-butylacetyl, tert-butyl oxy carbonyl, allyloxy carbonyl, benzylcarbonyl, benzoyl groups, as well as aminalo groups which themselves can be modified by an amino-protecting group. Other amino-protecting groups are described, for example, in Gross and Meienhofer (eds.), The Peptides, vol. 3, Academic Press, 1981, or in Greene and Wuts, Protective Groups in Organic Synthesis, 2nd ed., pages 309-405, John Wiley & Sons, 1991. The product of any such modification of the N-terminus amino group of a compound of the formula I is referred to as an N-terminal derivative.

The above explanations relating to protecting groups on amino groups in the compounds of formula I correspondingly apply to protecting groups on amidino groups and guanidino groups. Like in an amino group, in these latter groups which may for example represent the residue \(R^{p5}\), a hydrogen atom may be replaced with an acyl group like, for example, formyl, \((C_1-C_4)-\)alkylcarbonyl, \((C_1-C_4)-\)alkoxycarbonyl, \((C_6-C_{14})\)-arylcarbonyl, \((C_6-C_{14})\)-aryl-(\(C_1-C_4)-\)alkyloxycarbonyl etc. in order to improve the property profile of a compound of the formula I in a desired manner.

Similarly, the compounds of the invention can be chemically modified at any carboxy group by introducing a carboxy-protecting group. The term protecting group (or blocking group) is also used broadly herein to refer to a conventional chemical group that can replace the hydrogen atom or the hydroxy group or the oxo group of a carboxy group (COOH) or the total carboxy group. Carboxy groups that may advantageously be present in protected form or modified
form can occur, for example, as substituents in alkyl groups or aryl group or in the side chain of an amino acid building block, for example in the groups R₉⁶, R₉⁷ and R₂. A carboxy group can be protected or modified, for example by a conventional reduction of the carboxy group or of a derivative thereof like an ester which leads to an alcohol group CH₂OH or an aldehyde group CHO that replaces the group COOH. A carboxy group can also be protected by converting the group COOH into an ester group, for example by formation of an oral ester. Oral esters are well known in the art (see, for example, Greene and Wuts, loc. cit., pages 224-276) and protect a carboxy group against undesirable reactions as explained above with respect to amino-protecting groups.

The number n, i.e. the number of CH₂ groups in the polymethylene chain connecting the phenyl group depicted in formula I and the carbon atom which carries the amino group R¹₁(R¹¹)N, preferably is 0, 1 or 2, more preferably 0 or 1, particularly preferably 1. Thus, preferably the group -(CH₂)ₚ- is a direct bond or one of the groups -CH₂- or -CH₂CH₂-, more preferably a direct bond or the group -CH₂-. More preferably the group -(CH₂)ₚ- is a direct bond, i.e. the group R¹₁ is directly linked to the phenyl group.

The structural elements in the compounds of formula I have the following preferred denotations which they can have independently of the denotations of other elements.

The number r, i.e. the number of CH₂ groups in the polymethylene chain connecting the phenyl group depicted in formula I and the carbon atom which carries the amino group R¹₁(R¹¹)N, preferably is 0, 1 or 2, more preferably 0 or 1, particularly preferably 1. Thus, preferably the group -(CH₂)ₚ- is a direct bond or one of the groups -CH₂- or -CH₂CH₂-, more preferably a direct bond or the group -CH₂-. More preferably the group -(CH₂)ₚ- is a direct bond or the group -CH₂-. Particularly preferably the group -(CH₂)ₚ- is a direct bond.

The number s, i.e. the number of substituents R₉⁴ present on the phenyl group depicted in formula I, preferably is 0, 1 or 2, more preferably 0 or 1, particularly preferably 0. In case all substituents R₉⁴ present on the phenyl group depicted in formula I and the group R₉₅, preferably is 0 or 1, more preferably 0. Thus, preferably the group -(CH₂)ₚ- is a direct bond or the group -CH₂-. Particularly preferably the group -(CH₂)ₚ- is a direct bond or the group -CH₂-.

The number t, i.e. the number of CH₃ groups in the polymethylene chain connecting the phenyl group depicted in formula I and the carbon atom which carries the amino group R¹₁(R¹¹)N, preferably is 0 or 1, more preferably 0. Thus, preferably the group -(CH₂)ₚ- is a direct bond or the group -CH₂-.

The number s, i.e. the number of CH₃ groups in the polymethylene chain connecting the phenyl group depicted in formula I and the carbon atom which carries the amino group R¹₁(R¹¹)N, preferably is 0 or 1, more preferably 0. Thus, preferably the group -(CH₂)ₚ- is a direct bond or the group -CH₂-.
or different substituents R40. A (C2-C8)-alkyl group representing R11 or present in a group representing R11 preferably is a (C2-C8)-alkyl group, more preferably a (C2-C8)-alkyl group, for example an alkyl group or a cyclopropyl-methyl-group. A (C6-C14)-aryl group representing R11 or present in a group representing R11 preferably is a (C6-C10)-aryl group, more preferably a phenyl group. Thus, among particularly preferred groups representing R11 are, for example, (C2-C8)-alkyl- and phenyl which groups can be unsubstituted or substituted by one or more identical or different substituents R40. As explained above with respect to alkyl groups in general, an alkyl group representing R11 or present in a group representing R11 can be saturated or unsaturated and can be acyclic or cyclic. Preferably an alkyl group representing R11 or present in a group representing R11 is an unsaturated acyclic alkyl group or a saturated alkyl group containing a cyclic group like a cycloalkyl group or a cycloalkyl-alkyl- group. More preferably such an alkyl group is an unsaturated acyclic alkyl group, for example an alkyl group containing one or two double bonds and/or triple bonds, preferably one or two double bonds or one triple bond, particularly preferably one double bond, or a cycloalkyl-alkyl-group. Particularly preferably such an alkyl group is an unsaturated acyclic alkyl group. Examples of such preferred alkyl groups representing R11 or present, for example, in an alkoxy-group representing R11 are ethenyl (= vinyl) CH2=CH-, 1-propenyl CH3-CH=CH-, 2-propenyl (= allyl) CH2=CH-CH2-, E- and Z-2-but enyl CH3-CH=CH-CH2-, 3-methyl-2-but enyl (CH3)2C=CH-CH2-, 1,3-pentadienyl CH3-CH=CH-CH=CH-, cyclopropyl, cyclopropyl-methyl-, 2-cyclopropyl-ethyl-, cyclopentyl, cyclopentyl-methyl-, cyclohexyl or cyclohexyl-methyl-. Thus, in a preferred embodiment of the present invention R11 is unsaturated (C2-C6)-alkyl-, in particular unsaturated (C2-C6)-alkyloxy-, especially unsaturated (C3-C6)-alkyloxy-, containing one or two double bonds, in particular one double bond, or is saturated (C3-C6)-cycloalkyl-(C1-C8)-alkyloxy-, in particular saturated (C3-C6)-cycloalkyl-alkyloxy-, especially alkyl-substituted (C3-C6)-cycloalkyl-alkyloxy-, or is phenyl, where the alkyloxy-, cycloalkyl-alkyloxy- and phenyl groups can be unsubstituted or substituted by one or more identical or different substituents R40. In a more preferred embodiment of the present invention R11 is unsaturated (C2-C6)-alkyloxy-, containing one double bond, in particular unsaturated (C3-C6)-alkyloxy-, especially alkyl-substituted (C3-C6)-alkyloxy-, or cycloalkyl-methyl-substituted (C2-C6)-alkyloxy-, where the alkyloxy-, the alkoxy- and cycloalkyl-methyl- groups can be unsubstituted or substituted by one or more or different or identical substituents R40. In an especially preferred embodiment of the present invention R11 is unsaturated (C2-C6)-alkyloxy-, containing one double bond, in particular unsaturated (C3-C6)-alkyloxy-, especially alkyl-substituted (C3-C6)-alkyloxy-, or cycloalkyl-methyl-substituted (C2-C6)-alkyloxy-, where the alkoxy- and the alkoxy-groups can be unsubstituted or substituted by one or more or different or identical substituents R40.

If a group R11 is substituted by one or more substituents R40 it preferably is substituted by one, two or three identical or different substituents R40, particularly preferably by one or two substituents R40. Substituents R40 present on the group R11 preferably are identical or different groups selected from the series consisting of halogen, (C1-C8)-alkyl and trifluoromethyl wherein halogen preferably is fluorine, chlorine or bromine, in particular bromine or chlorine. Substituents R40 can be present in any desired position of the group R11.

R12 preferably is (C1-C8)-alkyl, (C6-C14)-aryl, particularly preferably (C1-C8)-alkyl or (C6-C10)-aryl, where all these groups can be unsubstituted or substituted by one or more identical or different substituents R40. If a group R12 is substituted by one or more substituents R40 it preferably is substituted by one, two or three identical or different substituents R40, particularly preferably by one or two substituents R40. Substituents R40 present on the group R12 preferably are identical or different groups selected from the series consisting of halogen, (C1-C8)-alkyl, acetylamino, nitro and trifluoromethyl wherein halogen preferably is fluorine, chlorine or bromine, in particular bromine or chlorine. Substituents R40 can be present in any desired position of the group R12.

R2 preferably is R21(R22)CH-, R23-Het-(CH2)x, R24(R24)N-(CH2)m-D-(CH2) n, or R25(R26)N-CO-(CH2)p-D-(CH2)q, particularly preferably R21(R22)CH-, R23-Het-(CH2)x, R24(R24)N-(CH2)m-D-(CH2) n, or R25(R26)N-CO-(CH2)p-D-(CH2)q.

A group Het which is present in the group R23-Het-(CH2)x preferably is a 5- or 6-membered monocyclic or 9- or 10-membered bicyclic saturated or aromatic heterocyclic group containing 1 or 2, in particular 1, identical or different heteroatoms which are selected from the series consisting of nitrogen, oxygen and sulfur and which preferably are nitrogen atoms. More preferably such a group Het is a 5- or 6-membered monocyclic saturated or aromatic heterocyclic group. The group Het in the group R23-Het-(CH2)x can be bonded to the group -(CH2)y via a carbon atom or a suitable nitrogen atom. Preferably it is bonded via a carbon atom. The group Het in the group R23-Het-(CH2)x can be unsubstituted, i.e. carry only the group R23 and no further substituents, or it can be substituted, i.e. carry further substituents in addition to R23 as described above with respect to heterocyclic groups in general. If a group Het carries further substituents in addition to R23 it preferably carries one, two or three identical or different substituents selected from the series consisting of (C1-C4)-alkyl, (C1-C4)-alkyloxy, halogen, amino, (C1-C4)-alkylaminoo-, di-(C1-C4)-alkyl- amino, trifluoromethyl, hydroxy and oxo.

The group R23 present in the group R23-Het-(CH2)x can be bonded to any desired and suitable position in the group Het. In case the group R23 in the group R23-Het-(CH2)x is R27-SO2- or R28-CO- the group Het preferably is a partially unsaturated or saturated group, in particular a saturated group, and contains a ring nitrogen atom which is not bonded to the group (CH2)k and to which ring nitrogen atom the group R23 is bonded. In case R23 in the group R23, Het-(CH2)x is R27-SO2- or R28-CO- the group Het in the group R23-Het-(CH2)x is particularly preferably a saturated 5-membered or 6-membered ring which contains one nitrogen atom as ring heteroatom, i.e. a pyrroldine or a piperidine
group, and which is bonded to the group (CH$_3$)$_k$ via the 3-position in the case of a pyrrolidine group or via the 3-position or the 4-position, in particular via the 4-position, in the case of a piperidine group, and the nitrogen atom of which carries the group R23. In case the group Het in the group R23-Het-(CH$_3$)$_k$ is an aromatic heterocyclic group the group R23 in the group R23-Het-(CH$_3$)$_k$ preferably is hydrogen.

[0055] D preferably is a divalent residue $-$(C31)(C32)$_{1-2}$, a divalent (C6-C10)-arylene residue or a divalent residue derived from an aromatic monocyclic or bicyclic group Het containing 5 to 10 ring atoms of which 1 or 2 are identical or different ring heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur. More preferably D is a divalent residue $-$(C31)(C32)$_{1-2}$, a divalent phenylene residue, in particular 1,3-phenylene or 1,4-phenylene, or a divalent residue derived from an aromatic monocyclic group Het containing 5 or 6 ring atoms of which 1 or 2 are identical or different ring heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur. D particularly preferably is a divalent residue $-$(C31)(C32)$_{1-2}$ or a divalent phenylene residue. In an aromatic group Het representing D preferably 1 or 2 nitrogen atoms are present as ring heteroatoms. Arylene groups and groups Het representing D can be substituted as described above with respect to such groups in general.

[0056] The numbers k, m, n, p and q preferably are independently of each other 0, 1, 2 or 3, more preferably 0, 1 or 2, particularly preferably 0 or 1, with the proviso that in case D is $-$(C31)(C32)$_{1-2}$ the sum m+n cannot be 0 and the sum p+q cannot be 0. The number k especially preferably is 0. In compounds of the formula I in which D is $-$(C31)(C32)$_{1-2}$ and both R31 and R32 are hydrogen the sum m+n preferably is 2.

[0057] A (C1-C12)-alkyl group representing the groups R21 or R22 preferably is an acyclic (C1-C6)-alkyl group, a (C3-C8)-cycloalkyl group or a (C6-C10)-cycloalkyl-(C1-C4)-alkyl group wherein the (C1-C6)-alkyl group is acyclic, R21 and R22 preferably independently of each other are hydrogen, acyclic (C1-C6)-alkyl, (C6-C10)-cycloalkyl, (C6-C10)-cycloalkyl-(C1-C4)-alkyl, Het- or Het-(C1-C6)-alkyl-, where all these groups are unsubstituted or substituted as indicated above, and wherein a (C1-C6)-alkyl group is acyclic, or R21 and R22 together with the carbon atom to which they are bonded form a ring as indicated above. More preferably one of the groups R21 and R22 is hydrogen (or (C1-C6)-alkyl) and the other of groups R21 and R22 is hydrogen, acyclic (C1-C6)-alkyl, (C6-C10)-cycloalkyl, (C6-C10)-cycloalkyl-(C1-C4)-alkyl-, (C6-C10)-ary-(C1-C6)-alkyl-, Het- or Het-(C1-C6)-alkyl-, where all these groups are unsubstituted or substituted as indicated above, and wherein a (C1-C6)-alkyl group is acyclic, or R21 and R22 together with the carbon atom to which they are bonded form a ring as indicated above. Particularly preferably one of the groups R21 and R22 is hydrogen or acyclic (C1-C6)-alkyl and the other of the groups R21 and R22 is hydrogen, acyclic (C1-C6)-alkyl, (C6-C10)-cycloalkyl, (C6-C10)-cycloalkyl-(C1-C4)-alkyl-, Het- or Het-(C1-C6)-alkyl-, where all these groups are unsubstituted or substituted as indicated above, or R21 and R22 together with the carbon atom to which they are bonded form a ring as indicated above.

[0058] A group Het present in R21 or R22 preferably is a monocyclic or bicyclic saturated or aromatic heterocyclic group containing 5 to 10 ring atoms, preferably a monocyclic saturated or aromatic group containing 5 or 6 ring atoms, of which 1 or 2, preferably 1, are heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur and preferably are nitrogen. A group R21 or R22 which is substituted by one or more substituents preferably is substituted by 1, 2 or 3 identical or different substituents. Substituents present in R21 or R22 preferably are selected from the series consisting of halogen, hydroxy, (C1-C4)-alkyloxy-, (C1-C6)-alkyl, (C6-C10)-alkylsulfonyl-, trifluoromethyl, acetylamino-, amino, amidino, guanidino, oxo, nitro, cyano, (C1-C6)-alkylamino-, di-((C1-C4)-alkyl)-amino-, aminocarbonyl- and aminocarbonyl-(C1-C4)-alkyl-

[0059] The saturated or unsaturated carbocyclic ring that may be formed by R21 and R22 together with the carbon atom to which they are bonded can contain 3, 4, 5, 6, 7 or 8 ring atoms. Preferably such a ring is a saturated or unsaturated cyclopentane ring or cyclohexane ring. To one or two bonds in a ring formed by R21 and R22 together with the carbon atom to which they are bonded, identical or different aromatic rings may be condensed (or fused) which are preferably selected from the series consisting of benzene, naphthalene, 5- or 6-membered monocyclic heteroaromatic rings and 9- or 10-membered bicyclic heteroaromatic rings, where the heteroaromatic rings preferably contain 1 or 2 identical or different heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur. More preferably aromatic rings condensed to a carbon carbon bond in a ring formed by R21 and R22 together with the carbon atom to which they are bonded, are selected from the series consisting of benzene and 5- or 6-membered monocyclic heteroaromatic rings containing 1 or 2 identical or different heteroatoms, in particular 1 heteroatom, selected from the series consisting of nitrogen, oxygen and sulfur. A particularly preferred aromatic ring that may be condensed to a bond in a ring formed by R21 and R22 together with the carbon atom to which they are bonded, is the benzene ring.

[0060] The resulting group R21(R22)CH$_{1-2}$ in which R21 and R22 together with the carbon atom to which they are bonded form a ring and which optionally contains condensed aromatic rings, can be unsubstituted or substituted in any desired position in the ring formed by R21 and R22 together with the carbon atom to which they are bonded and/or in the optionally condensed aromatic rings. If the resulting cyclic group R21(R22)CH$_{1-2}$ is substituted it is preferably substituted by one or more, for example 1, 2 or 3, identical or different substituents as indicated above. Preferably substituents present in the resulting cyclic group R21(R22)CH$_{1-2}$ are selected from the group consisting of halogen, hydroxy, (C1-C6)-alkyloxy-, (C1-C6)-alkyl, (C6-C10)-alkylsulfonyl-, trifluoromethyl, acetylamino-, amino, amidino, guanidino, oxo, nitro, cy-
ano, (C₃₋C₄)-alkylamino-, di-((C₃₋C₄)-alkyl)-amino-, aminocarbonyl- and aminocarbonyl-(C₃₋C₄)-alkyl-, in particular from the group consisting of acetylamino-, amino, (C₃₋C₄)-alkylamino- and di-((C₃₋C₄)-alkyl)-amino-.

[0061] R²⁴ preferably is hydrogen, (C₁₋C₅)-alkyl or (C₆₋C₁₄)-aryl-(C₁₋C₅)-alkyl-, more preferably hydrogen, (C₁₋C₅)-alkyl or phenyl-(C₁₋C₅)-alkyl-, particularly hydrogen or (C₁₋C₅)-alkyl, wherein the alkyl groups preferably are acyclic. Especially preferably R²⁴ is hydrogen.

[0062] R²⁵ and R²⁶ preferably are independently of each other hydrogen, (C₁₋C₅)-alkyl or (C₆₋C₁₄)-aryl-(C₁₋C₅)-alkyl-, more preferably hydrogen, (C₁₋C₅)-alkyl or phenyl-(C₁₋C₅)-alkyl-, particularly preferably hydrogen or (C₁₋C₅)-alkyl, where all these groups are unsubstituted or substituted by one or more, for example one, two or three, identical or different substituents R⁴₀, and wherein the alkyl groups preferably are acyclic. Especially preferably one of the two groups R²⁵ and R²⁶ is hydrogen and the other is hydrogen or is different from hydrogen. Moreover preferably both groups R²⁵ and R²⁶ are hydrogen.

[0063] R²⁷ preferably is (C₁₋C₅)-alkyl, (C₆₋C₁₄)-aryl, (C₆₋C₁₄)-aryl-(C₁₋C₅)-alkyl-, Het- or di-((C₁₋C₅)-alkyl)amino-, more preferably (C₁₋C₅)-alkyl, (C₂₋C₁₀)-aryl, Het- or di-((C₁₋C₅)-alkyl)amino-, more preferably (C₁₋C₅)-alkyl or (C₆₋C₁₀)-aryl, especially preferably (C₆₋C₁₀)-aryl, where all these groups are unsubstituted or substituted by one or more identical or different substituents R⁴₀, and wherein the alkyl groups preferably are acyclic. A group Het representing R²⁷ preferably is a monocyclic or bicyclic aromatic heterocyclic group containing 5 to 10 ring atoms, preferably a monocyclic group containing 5 or 6 ring atoms, of which 1 or 2 are heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur, preferably from the series consisting of nitrogen and sulfur. A group R²⁷ which is substituted by substituents R⁴₀ preferably is substituted by 1, 2 or 3, in particular 1 or 2, identical or different substituents R⁴₀. Substituents R⁴₀ present in a group R²⁷ preferably are selected from the series consisting of halogen, in particular bromine, chlorine and fluoride, (C₁₋C₅)-alkyl, (C₆₋C₁₄)-aryl, (C₆₋C₁₄)-aryl-(C₁₋C₅)-alkyl-, (C₁₋C₅)-alkyloxy- or (C₁₋C₅)-alkyl, (C₁₋C₅)-alkyloxy- or phenyl-(C₁₋C₅)-alkyloxy-, where all these groups are unsubstituted or substituted by one or more identical or different substituents R⁴₀, and wherein the alkyl groups preferably are acyclic. A group Het representing R²⁷ preferably is a monocyclic or bicyclic aromatic heterocyclic group containing 5 to 10 ring atoms, preferably a monocyclic group containing 5 or 6 ring atoms, of which 1 or 2 are heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur. A group R²⁷ which is substituted by substituents R⁴₀ preferably is substituted by 1, 2 or 3, in particular 1 or 2, identical or different substituents R⁴₀. Substituents R⁴₀ present in a group R²⁷ preferably are selected from the series consisting of halogen, in particular bromine, chlorine and fluoride, (C₁₋C₅)-alkyl, (C₁₋C₅)-alkyloxy-, (C₁₋C₅)-alkyl, trifluoromethyl, acetylamino-, nitro and cyano.

[0064] R²⁸ preferably is (C₁₋C₅)-alkyl, (C₂₋C₁₀)-aryl, (C₂₋C₁₀)-aryl-(C₁₋C₅)-alkyl-, Het- or (C₁₋C₅)-alkyloxy-, more preferably (C₁₋C₅)-alkyl, (C₂₋C₁₀)-aryl, Het-, (C₁₋C₅)-alkyloxy- or (C₂₋C₁₀)-aryl-(C₁₋C₅)-alkyloxy-, more preferably (C₁₋C₅)-alkyl, (C₂₋C₁₀)-aryl, (C₁₋C₅)-alkyloxy- or (C₂₋C₁₀)-aryl-(C₁₋C₅)-alkyloxy-, especially preferably (C₁₋C₅)-alkyl, (C₂₋C₁₀)-aryl, (C₁₋C₅)-alkyloxy- or (C₂₋C₁₀)-aryl-(C₁₋C₅)-alkyloxy-, especially preferably (C₁₋C₅)-alkyl, (C₁₋C₅)-alkyloxy- or phenyl-(C₁₋C₅)-alkyloxy-, where all these groups are unsubstituted or substituted by one or more identical or different substituents R⁴₀, and wherein the alkyl groups preferably are acyclic. A group Het representing R²⁸ preferably is a monocyclic or bicyclic aromatic heterocyclic group containing 5 to 10 ring atoms, preferably a monocyclic group containing 5 or 6 ring atoms, of which 1 or 2 are heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur. A group R²⁸ which is substituted by substituents R⁴₀ preferably is substituted by 1, 2 or 3, in particular 1 or 2, identical or different substituents R⁴₀. Substituents R⁴₀ present in a group R²⁸ preferably are selected from the series consisting of halogen, in particular bromine, chlorine and fluoride, (C₁₋C₅)-alkyl, (C₁₋C₅)-alkyloxy-, (C₁₋C₅)-alkyl, trifluoromethyl, acetylamino-, nitro and cyano.

[0065] A (C₁₋C₁₂)-alkyl group representing the groups R₃¹ or R₃² preferably is an acyclic (C₁₋C₅)-alkyl group, a (C₃₋C₅)-cycloalkyl group or a (C₃₋C₅)-cycloalkyl-(C₃₋C₅)-alkyl- group wherein the (C₁₋C₅)-alkyl group is acyclic. R₃¹ and R₃² preferably are independently of each other hydrogen, acyclic (C₁₋C₅)-alkyl, (C₂₋C₁₀)-aryl-(C₁₋C₅)-alkyl-, (C₃₋C₅)-cycloalkyl-(C₁₋C₅)-alkyl- and Het-(C₁₋C₅)-alkyl- where all these groups are unsubstituted or substituted by one or more, for example one, two or three, identical or different substituents R⁴₀, and where (C₁₋C₅)-alkyl groups are acyclic. Preferably one of the two groups R₃¹ and R₃² is hydrogen and the other is hydrogen or different from hydrogen. An acyclic (C₁₋C₅)-alkyl group present in a group R₃¹ or R₃² preferably is an acyclic (C₁₋C₅)-alkyl group, and a (C₂₋C₁₀)-aryl group in a group R₃¹ or a group R₃² preferably is a (C₂₋C₁₀)-aryl group, preferably a phenyl group, where all these groups are unsubstituted or substituted by one or more identical or different substituents R⁴₀. A group Het present in a group R₃¹ or R₃² preferably is a monocyclic or bicyclic saturated or aromatic heterocyclic group containing one or two identical or different ring heteroatoms from the series consisting of nitrogen, oxygen and sulfur, in particular containing one or two nitrogen atoms as ring heteroatoms. Substituents R⁴₀ present in a group R₃¹ or R₃² preferably are selected from the series consisting of halogen, in particular bromine, chlorine and fluoride, (C₁₋C₅)-alkyl, (C₁₋C₅)-alkyloxy-, (C₁₋C₅)-alkyl, trifluoromethyl, acetylamino-, nitro and cyano.

[0066] R⁹₁, R⁹² and R⁹₃ preferably are independently of each other hydrogen or (C₁₋C₅)-alkyl, more preferably independently of each other hydrogen or methyl, particularly preferably hydrogen.

[0067] R⁹₄ is preferably selected from the series consisting of (C₁₋C₅)-alkyl and halogen, where the groups R⁹₄ are independent of each other and can be identical or different. More preferably the substituents R⁹₄ are identical or different halogen atoms. Halogen atoms representing groups R⁹₄ preferably are chlorine and/or fluorine.

[0068] R⁹⁵ preferably is amidino or a derivative thereof like ((C₁₋C₅)-alkyl)oxycarbonylamidino, hydroxymidino- or another protected form or derivatized form of an amidino group as described above. More preferably R⁹⁵ is amidino, ((C₁₋C₅)-alkyl)oxycarbonylamidino or hydroxymidino-. Particularly preferably R⁹⁵ is amidino, i. e. the group H₂N-C (=-NH)- also designated as amino-imino-methyl- group or carbamimidoyl group.

[0069] As explained above with respect to alkyl groups in general, (C₁₋C₅)-alkyl present in the group R⁹⁷ can be saturated or unsaturated and can be acyclic or cyclic. Preferably such an alkyl group is a saturated acyclic alkyl group or a saturated cyclic alkyl group (= cycloalkyl group) or a saturated group of the type cycloalkyl-alkyl-, more preferably
a saturated acyclic alkyl group or saturated cycloalkyl group, particularly preferably a saturated acyclic alkyl group. In case the (C\textsubscript{1} - C\textsubscript{8})-alkyl present in the group R\textsubscript{97} is a saturated acyclic alkyl group the group R\textsubscript{97} preferably is the group R\textsubscript{99}-(C\textsubscript{1} - C\textsubscript{4})-alkyl-, wherein (C\textsubscript{1} - C\textsubscript{4})-alkyl is saturated acyclic alkyl, more preferably one of the groups R\textsubscript{99}-CH\textsubscript{2} -, R\textsubscript{99}-CH\textsubscript{2} -CH\textsubscript{2} -, R\textsubscript{99}-CH\textsubscript{2} -CH\textsubscript{2} -CH\textsubscript{2} -CH\textsubscript{2} -, particularly preferably the group R\textsubscript{99}-CH\textsubscript{2} -CH\textsubscript{2} -. In case the (C\textsubscript{1} - C\textsubscript{8})-alkyl present in the group R\textsubscript{97} is a saturated cyclic alkyl group the group R\textsubscript{97} preferably is the group R\textsubscript{99}-(C\textsubscript{3} - C\textsubscript{7})-cycloalkyl-, more preferably the group R\textsubscript{99}-(C\textsubscript{3} - C\textsubscript{6})-cycloalkyl-, wherein the cycloalkyl group is saturated, particularly preferably the group R\textsubscript{99}-cyclopropyl-, R\textsubscript{99}-cyclopentyl- or R\textsubscript{99}-cyclohexyl-. In a group like R\textsubscript{99}-(C\textsubscript{3} - C\textsubscript{7})-cycloalkyl-, for example R\textsubscript{99}-cyclopropyl-, R\textsubscript{99}-cyclopentyl- or R\textsubscript{99}-cyclohexyl-, the group R\textsubscript{99} can be present in any desired position of the cycloalkyl group, in the case of a cyclopropyl group for example in the 2-position, in the case of a cyclopentyl group for example in the 2-position or 3-position, in the case of a cyclohexyl group for example in the 2-position, the 3-position or the 4-position where the 4-position is preferred. Particularly preferred groups R\textsubscript{97} are the groups R\textsubscript{99}-CH\textsubscript{2} -CH\textsubscript{2} - and 2-(R\textsubscript{99})-cyclopropyl, especially preferred is the group R\textsubscript{99}-CH\textsubscript{2} -CH\textsubscript{2} -.

Preferred compounds of the formula I are those compounds in which one or more of the residues have preferred denotations or have one or more specific denotations of the denotations listed in their respective definitions and in the general explanations on the respective residues, all combinations of such preferred meanings and specific denotations being a subject of the present invention. Also all preferred compounds of the formula I are a subject of the present invention in all their stereoisomeric forms and mixtures thereof in any ratio, and in the form of their physiologically tolerable salts. Further, also all preferred compounds of the formula I are a subject of the present invention in the form of their prodrugs and other derivatives as explained above, for example in the form of their esters such as (C\textsubscript{1} - C\textsubscript{4})-alkyl and other esters and their amides such as unsubstituted amides, (C\textsubscript{1} - C\textsubscript{4})-alkyl amides and other amides.

For example, preferred compounds of the formula I are compounds in which

\[R^1 \text{ is } R^{11}\text{CO}^-; \]
\[R^{91} \text{ is hydrogen; } \]
\[r \text{ is } 0 \text{ or } 1; \]
\[s \text{ is } 0,1 \text{ or } 2; \]
\[t \text{ is } 0; \]
\[R^{94} \text{ is selected from the series consisting of chlorine and fluorine; } \]
\[R^{95} \text{ is amidino or } (C_1-C_4)\text{-alkyl}oxy carbonylamidino- and the group } R^{95} \text{ is bonded in the 4-position of the phenyl ring in formula I; } \]
\[\text{in all their stereoisomeric forms and mixtures thereof in any ratio, and their physiologically tolerable salts. Compounds of this type contain a structural unit which is derived from 4-amidinophenylglycine or 4-amidinophenylalanine which is optionally substituted in the amidino group with a } ((C_1-C_4)\text{-alkyl})\text{oxycarbonyl- group, and optionally substituted in the phenyl group with chlorine and/or fluorine, and substituted in the N-terminal amino group with a group } R^{11}\text{CO}^-; \]
\[\text{In a particularly preferred group of these compounds } s \text{ is } 0 \text{ and the amidino group is not substituted, i.e. particularly preferred compounds of this type are derived from 4-amidinophenylglycine or 4-amidinophenylalanine, especially preferred compounds from 4-amidinophenylalanine, which are substituted in the N-terminal amino group with a group } R^{11}\text{CO}^-; \]

Preferred compounds of the formula I are also compounds in which

\[R^{92} \text{ is hydrogen; } \]
\[R^{87} \text{ is } R^{99}\text{-CH}_{2}\text{-CH}_{2}^-; \]
\[R^{99} \text{ is hydroxycarbonyl- or } ((C_1-C_4)\text{-alkyl})\text{oxycarbonyl-; } \]

in all their stereoisomeric forms and mixtures thereof in any ratio, and their physiologically tolerable salts. Compounds of this type contain a structural unit which is a glutamic acid residue or derivative thereof wherein the carboxylic acid group in the side chain is converted into a (C\textsubscript{1} - C\textsubscript{4})-alkyl ester.

Particularly preferred compounds of the formula I are compounds in which

\[r \text{ is } 1; \]
\[s \text{ is } 0; \]
\[t \text{ is } 0; \]
\[R^1 \text{ is } \text{allyloxy carbonyl-; } \]
\[R^{95} \text{ is amidino which is bonded in the 4-position of the phenyl ring in formula I; } \]
R^{91}, R^{92}, R^{93} and R^{96} are hydrogen;
R^{97} is R^{99}-CH_{2}-CH_{2}-;
R^{99} is hydroxycarbonyl- or ((C_{1}-C_{4})-alkyl)oxycarbonyl-; in all their stereoisomeric forms and mixtures thereof in any ratio, and their physiologically tolerable salts.

[0075] Particularly preferred compounds of the formula I are also compounds in which

r is 1;
s is 0 or 1;
t is 0;
R^{1} is allyloxycarbonyl-;
R^{2} is R^{21}(R^{22})CH-, R^{23}-Het-(CH_{2})_{k}- or R^{23}(R^{24})N-(CH_{2})_{m}-D-(CH_{2})_{n}-;
D is a divalent residue -C(R^{31})(R^{32})-, a divalent phenylene residue or a divalent residue derived from an aromatic monocyclic group Het;
R^{84} is halogen;
R^{95} is amidino or ((C_{1}-C_{4})-alkyl)oxycarbonylamidino- and is bonded in the 4-position of the phenyl ring in formula I;
R^{91}, R^{92}, R^{93} and R^{96} are hydrogen;
R^{97} is R^{99}-CH_{2}-CH_{2}-;
R^{99} is hydroxycarbonyl- or ((C_{1}-C_{4})-alkyl)oxycarbonyl-;
in all their stereoisomeric forms and mixtures thereof in any ratio, and their physiologically tolerable salts.

[0076] Further, preferred compounds of the formula I are compounds in which chiral centers are present in substantially uniform configuration. Particularly preferably the chiral carbon atom to which the groups R^{1}(R^{91})N- and -(CH_{2})_{r}- are bonded has S configuration, i.e., the structural unit R^{1}(R^{91})N-CH(-(CH_{2})_{r}-(substituted phenyl))-CO- is preferably derived from an L-amino acid derivative. Preferably the chiral carbon atom to which the groups R^{96} and R^{97} are bonded has S configuration, i.e., the structural unit -(R^{92})N-CH(R^{97})-CO- is preferably derived from an L-amino acid derivative.

[0077] The present invention also relates to processes of preparation by which the compounds of the formula I are obtainable. The compounds of the formula I can generally be prepared by linkage of two or more fragments (or building blocks) which can be derived retrosynthetically from the formula I. In the preparation of the compounds of the formula I it can generally be advantageous or necessary in the course of the synthesis to introduce functional groups which could lead to undesired reactions or side reactions in a synthesis step in the form of precursors which are later converted into the desired functional groups, or to temporarily block functional groups by a protective group strategy suited to the synthesis problem. Such strategies are well known to those skilled in the art (see, for example, Greene and Wuts, Protective Groups in Organic Synthesis, 2nd ed., John Wiley and Sons, 1991). As examples of precursor groups nitro groups may be mentioned which can later be converted by reduction, for example by catalytic hydrogenation, into amino groups, or cyano groups may be mentioned which may later be converted into amidino groups or, by reduction, into aminomethyl groups. Protecting groups (or blocking groups) that may be present on functional groups include allyl, tert-butyl, benzyl, tert-butylxycarbonyl (Boc), benzylxycarbonyl (Z) and 9-fluorenylmethyloxycarbonyl (Fmoc) as protecting groups for hydroxy, carboxylic acid, amino, guanidino and amidino groups.

[0078] In particular, in the preparation of the compounds of the formula I building blocks are connected by performing one or more amide couplings (or condensations), i.e., by forming amide bonds between a carboxylic acid group (or a similar group like a sulfonic acid group) of one building block and an amino group (or a similar group) of another building block. For example, compounds of the formula I can be prepared by linking the building blocks of the formulae II, III and IV by means of forming in a manner known per se an amide bond between the carboxylic acid derivative group CO-Y^{1} depicted in formula II and the nitrogen atom depicted in formula III and by forming a further amide bond between the carboxylic acid derivative CO-Y^{2} depicted in formula III and the nitrogen atom depicted in formula IV.
In the compounds of formulae II, III and IV the groups R_1, R_2, R_91, R_92, R_93, R_94, R_95, R_96, R_97 and r, s and t are defined as above, but functional groups in these compounds can also be present in the form of precursor groups which are later converted into the groups present in the compounds of the formula I, or functional groups can be present in protected form. Y_1 and Y_2 which can be identical or different are hydroxy or other nucleophilically substitutable leaving groups, i.e. the groups COY_1 and COY_2 in the compounds of the formulae II and III are carboxylic acid groups COOH or activated derivatives of carboxylic acids such as, for example, acid chlorides, esters like (C$_1$-C$_4$)-alkyl esters or activated esters, or mixed anhydrides.

The starting compounds of the formulae II, III and IV and other compounds which are employed in the synthesis of the compounds of formula I for introducing certain structural units, are commercially available or can be readily prepared from commercially available compounds by or analogously to procedures described below or in the literature which is readily available to one skilled in the art.

For the preparation of the compounds of formula I first the compounds of the formulae II and III may be condensed and the resulting intermediate product is then condensed with a compound of the formula IV to give a compound of the formula I, or first the compounds of the formulae III and IV may be condensed and the resulting intermediate product is then condensed with a compound of the formula II to give a compound of the formula I. After any such step in the course of such syntheses protecting and deprotecting steps and conversions of precursor groups into the desired final groups may be carried out and further modifications may be made. For example, a group like R_1 that is different from hydrogen may already be present in the compound of formula II which is employed into the coupling reaction with the compound of formula III or with the intermediate obtained from the compounds of formula III and IV, but the group R_1 may also be introduced only after performing one coupling reaction or both coupling reactions. The synthetic strategy for the preparation of a compound of the formula I can thus be varied broadly, and it depends on the individual case which synthetic procedures is preferred.

Various general methods for the formation of an amide bond that can be employed in the synthesis of the compounds of formula I are known to those skilled in the art, for example from peptide chemistry. The coupling step can be carried out by employing a free carboxylic acid, i.e. a compound of the formula II or III or an intermediate coupling product in which a group COY_1 or COY_2 reacting in that step is a COOH group, activating that carboxylic acid group, preferably in situ, by means of a customary coupling reagent such as a carbodiimide like dicyclohexylcarbodiimide (DCC) or diisopropylcarbodiimide (DIC), or a carbonyldiazole like carbonyldiimidazole, or a uronium salt like 1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), or a chloroformic acid ester like ethyl chloroformate or isobutyl chloroformate, or p-toluenesulfonyl chloride, or propylphosphonic acid anhydride, or others, and then reacting the activated carboxylic acid derivative with an amino compound. An amide bond can also be formed by reacting an amino compound with a carboxylic acid halide, in particular a carboxylic acid chloride, which can be prepared in a separate step or in situ from a carboxylic acid and, for example, thionyl chloride, or an carboxylic acid ester or thioester, for example a methyl ester, ethyl ester, phenyl ester, nitrophenyl ester, pentfluorophenyl ester, methylthio ester, phenylthio ester or 2-pyridylthio ester, i.e. with a compound of the formula II or III or with an intermediate coupling product in which Y_1 or Y_2 is Cl, methoxy, ethoxy, optionally substituted phenyloxy, methylthio, phenylthio or 2-pyridylthio.

The activation reactions and coupling reactions are usually performed in the presence of an inert solvent (or diluent), for example in the presence of an aprotic solvent like dimethylformamide (DMF), tetrahydrofuran (THF),
dimethylsulfoxide (DMSO), hexamethyl phosphoric triamide (HMPT), 1,2-dimethoxyethane (DME), dioxane, or others, or in a mixture of such solvents. Depending on the specific process, the reaction temperature may be varied over a wide range and may be, for example, from about -20 °C to the boiling temperature of the solvent or diluent. Also depending on the specific process, it may be necessary or advantageous to add in a suitable amount one or more auxiliary agents, for example a base like a tertiary amine, such as triethylamine or diisopropylethylamine, or an alkali metal hydroxide, such as sodium methoxide or potassium tert-butoxide, for adjusting the pH or for neutralizing an acid that is formed or for liberating the free base of an amino compound that is employed in the form of an acid addition salt, or an N-hydroxycarbazole like 1-hydroxybenzotriazole, or a catalyst like 4-dimethylaminoypyridine. Details on methods for the preparation of activated carboxylic acid derivatives and the formation of amide bonds as well as source literature are given in various standard references like, for example, J. March, Advanced Organic Chemistry, 4th ed., John Wiley & Sons, 1992; or Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg Thieme Verlag.

[0084] Protective groups that may still be present in the products obtained in the coupling reaction are then removed by standard procedures. For example, tert-butyl protecting groups, in particular a tert-butyl ester group which is a protected form of a COOH group, can be deprotected, i.e. converted into the carboxylic acid group in the case of an ester, by treatment with trifluoroacetic acid. Benzyl groups can be removed by hydrogenation. Fluorenylmethoxycarbonyl groups can be removed by secondary amines like piperidine. As already explained, after the coupling reaction also functional groups can be generated from suitable precursor groups or, if desired, further reactions can be carried out on the coupling products by standard procedures, for example acylation reactions or esterification reactions. In addition, a conversion into a physiologically tolerable salt or a prodrug of a compound of the formula I can then be carried out by known processes.

[0085] As examples of the introduction of specific functional groups procedures for the introduction of amidino groups and guanidino groups may be explained which groups represent, for example, the group R96. Amidines can be prepared from cyano compounds by addition of an alcohol under acidic anhydrous conditions, for example in methanol or ethanol saturated with hydrogen chloride, and subsequent ammonolysis. A further method of preparing amidines is the addition of hydrogen sulfide to the cyano group, followed by methylation of the resulting thioamide and subsequent reaction with ammonia. Another method is the addition of hydroxylamine to the cyano group which leads to a hydroxyamidine. If desired the N-O bond in the hydroxyamidine can be cleaved, for example by catalytic hydrogenation, to give the amidine.

[0086] An amino group which may be obtained from a nitro precursor group can be converted into a guanidino or nitroguanidino group in which latter group the nitro group is a protecting group. For the guanylation or nitroguanylation of an amino group the following reagents can be used which are well known to one skilled in the art and which are all described in the literature: O-methylisourea, S-methylisothioureia, nitro-S-methylisothioureia, formamidinesulfonic acid, 3,5-dimethyl-1-pyrazolylformamidinium nitrate, N,N'-di-tert-butyloxycarbonyl-S-methylisothioureia, or N-alkyloxycarbonyl- and N,N'-dialkyloxycarbonyl-S-methylisothioureia.

[0087] In general, a reaction mixture containing a final compound of the formula I or an intermediate is worked up and, if desired, the product is then purified by customary processes known to those skilled in the art. For example, a synthesized compound can be purified using well known methods such as crystallization, chromatography or reverse phase-high performance liquid chromatography (RP-HPLC) or other methods of separation based, for example, on the size, charge or hydrophobicity of the compound. Similarly, well known methods such as amino acid sequence analysis, NMR, IR and mass spectrometry (MS) can be used for characterizing a compound of the invention.

[0088] The reactions described above and below that are carried out in the syntheses of the compounds of the formula I can generally be carried out according to the methods of conventional solution phase chemistry as well as according to the methods of solid phase chemistry which both are customarily applied in peptide synthesis. Among the various strategies that may be employed if compounds of the formula I are to be prepared on solid phase the following strategy for the preparation of compounds in which a hydroxycarbonyl group is present in the group R96 or in a derivative of a carboxy group which group can, for example, be amidated. A compound of the invention may also be synthesized by combining steps performed according to the methods of solution phase organic chemistry and steps
performed according to the methods of solid phase organic chemistry. A compound of the invention can also be synthesized using an automated synthesizer. The compounds of the present invention inhibit the activity of the blood coagulation enzyme factor VIIa. In particular, they are specific inhibitors of factor VIIa. As used herein, the term specific when used in reference to the inhibition of factor VIIa activity means that a compound of the formula I can inhibit factor VIIa activity without substantially inhibiting the activity of other specified proteases involved in the blood coagulation and/or the fibrinolysis pathway including, for example, factor Xa, plasmin and thrombin (using the same concentration of the inhibitor). The activity of the compounds of the formula I can be determined, for example, in the assays described below or in other assays known to those skilled in the art. Preferred compounds of the present invention are those compounds which have a \(K_i \leq 10 \mu M \), particularly preferably \(\leq 1 \mu M \), for factor VIIa inhibition as determined in the assay described below, and which preferably do not substantially inhibit the activity of other proteases involved in coagulation and fibrinolysis relative to the inhibition of factor VIIa (using the same concentration of the inhibitor). The compounds of the invention inhibit factor VIIa catalytic activity either directly, within the prothrombinase complex or as a soluble subunit, or indirectly, by inhibiting the assembly of factor VIIa into the prothrombinase complex.

[0089] Because of their factor VIIa inhibitory activity the compounds of the formula I are useful pharmacologically active compounds which are suitable, for example, for influencing blood coagulation (or clotting) and fibrinolysis and for the therapy and prophylaxis of, for example, cardiovascular disorders, thromboembolic diseases or restenoses. The compounds of the formula I and their physiologically tolerable salts and their prodrugs can be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals for therapy or prophylaxis. They can be administered on their own, or in mixtures with one another or in the form of pharmaceutical preparations which permit enteral or parenteral administration and which contain, as active constituent, an effective amount of at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs in addition to a pharmaceutically acceptable carrier.

[0090] The present invention therefore also relates to the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for use as pharmaceuticals (or medicaments), to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the production of pharmaceuticals for the inhibition of factor VIIa or for influencing blood coagulation or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for the production of pharmaceuticals for the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses. The invention also relates to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the inhibition of factor VIIa or for influencing blood coagulation or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for use in the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses, and to methods of treatment aiming at such purposes including methods for said therapies and prophylaxes. The present invention furthermore relates to pharmaceutical preparations (or pharmaceutical compositions) which contain an effective amount of at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs in addition to a pharmaceutically acceptable carrier, i.e. one or more pharmaceutically acceptable carrier substances (or vehicles) and/or additives (or excipients).

[0091] The pharmaceuticals can be administered orally, for example in the form of pills, tablets, lacquered tablets, coated tablets, granules, hard and soft gelatin capsules, solutions, syrups, emulsions, suspensions or aerosol mixtures. Administration, however, can also be carried out rectally, for example in the form of suppositories, or parenterally, for example intravenously, intramuscularly or subcutaneously, in the form of injection solutions or infusion solutions, microcapsules, implants or rods, or percutaneously or topically, for example in the form of ointments, solutions or tinctures, or in other ways, for example in the form of aerosols or nasal sprays.

[0092] The pharmaceutical preparations according to the invention are prepared in a manner known per se and familiar to one skilled in the art, pharmaceutically acceptable inert inorganic and/or organic carrier substances being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs. For the production of pills, tablets, coated tablets and hard gelatin capsules it is possible to use, for example, lactose, corn starch or derivatives thereof, talc, stearic acid or its salts, etc. Carrier substances for soft gelatin capsules and suppositories are, for example, fats, waxes, semisolid and liquid polyols, natural or hardened oils, etc. Suitable carrier substances for the production of solutions, for example injection solutions, or of emulsions or syrups are, for example, water, saline, alcohols, glycerol, polyols, sucrose, invert sugar, glucose, vegetable oils, etc. Suitable carrier substances for microcapsules, implants or rods are, for example, copolymers of glycolic acid and lactic acid. The pharmaceutical preparations normally contain about 0.5 to about 90 % by weight of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs. The amount of the active ingredient of the formula I and/or its physiologically tolerable salts and/or its prodrugs in the pharmaceutical preparations normally is from about 0.5 to about 1000 mg, preferably from about 1 to about 500 mg.

[0093] In addition to the active ingredients of the formula I and/or their physiologically acceptable salts and/or prodrugs and to carrier substances, the pharmaceutical preparations can contain additives such as, for example, fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavor-
ings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants. They can also contain two or more compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs. In case a pharmaceutical preparation contains two or more compounds of the formula I the selection of the individual compounds can aim at a specific overall pharmacological profile of the pharmaceutical preparation. For example, a highly potent compound with a shorter duration of action may be combined with a long-acting compound of lower potency. The flexibility permitted with respect to the choice of substituents in the compounds of the formula I allows a great deal of control over the biological and physico-chemical properties of the compounds and thus allows the selection of such desired compounds. Furthermore, in addition to at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs, the pharmaceutical preparations can also contain one or more other therapeutically or prophylactically active ingredients.

[0094] As inhibitors of factor VIIa the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for the therapy and prophylaxis of conditions in which the activity of factor VIIa plays a role or has an undesired extent, or which can favorably be influenced by inhibiting factor VIIa or by decreasing its activity, or for the prevention, alleviation or cure of which an inhibition of factor VIIa or a decrease in its activity is desired by the physician. As inhibition of factor VIIa influences blood coagulation and fibrinolysis the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for reducing blood clotting, or for the therapy and prophylaxis of conditions in which the activity of the blood coagulation system plays a role or has an undesired extent, or which can favorably be influenced by reducing blood clotting, or for the prevention, alleviation or cure of which a decreased activity of the blood coagulation system is desired by the physician. A specific subject of the present invention thus are the reduction or inhibition of unwanted blood clotting, in particular in an individual, by administering an effective amount of a compound I or a physiologically tolerable salt or a prodrug thereof, as well as pharmaceutical preparations thereof.

[0095] Conditions in which a compound of the formula I can be favorably used include, for example, cardiovascular disorders, thromboembolic diseases or complications associated, for example, with infection or surgery. The compounds of the present invention can also be used to reduce an inflammatory response. Examples of specific disorders for the treatment or prophylaxis of which the compounds of the formula I can be used are coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure, stroke and disseminated intravascular clotting disorder. Examples of related complications associated with surgery are thromboses like deep vein and proximal vein thrombosis which can occur following surgery. In view of their pharmacological activity the compounds of the invention can replace other anticoagulant agents such as heparin. The use of a compound of the invention can result, for example, in a cost saving as compared to other anticoagulants.

[0096] When using the compounds of the formula I the dose can vary within wide limits and, as is customary and is known to the physician, is to be suited to the individual conditions in each individual case. It depends, for example, on the specific compound employed, on the nature and severity of the disease to be treated, on the mode and the schedule of administration, or on whether an acute or chronic condition is treated or whether prophylaxis is carried out. An appropriate dosage can be established using clinical approaches well known in the medical art In general, the daily dose for achieving the desired results in an adult weighing about 75 kg is from about 0.01 to about 100 mg/kg, preferably from about 0.1 to about 50 mg/kg, in particular from about 0.1 to about 10 mg/kg, (in each case in mg per kg of body weight). The daily dose can be divided, in particular in the case of the administration of relatively large amounts, into several, for example 2, 3 or 4, part administrations. As usual, depending on individual behavior it may be necessary to deviate upwards or downwards from the daily dose indicated.

[0097] A compound of the formula I can also advantageously be used as an anticoagulant outside an individual. For example, an effective amount of a compound of the invention can be contacted with a freshly drawn blood sample to prevent coagulation of the blood sample. Further, a compound of the formula I and its salts can be used for diagnostic purposes, for example in in vitro diagnoses, and as an auxiliary in biochemical investigations. For example, a compound of the formula I can be used in an assay to identify the presence of factor VIIa or to isolate factor VIIa in a substantially purified form. A compound of the invention can be labeled, for example, with a radioisotope, and the labeled compound bound to factor VIIa is then detected using a routine method useful for detecting the particular label. Thus, a compound of the formula I or a salt thereof can be used advantageously as a probe to detect the location or amount of factor VIIa activity in vivo, in vitro or ex vivo.

[0098] Furthermore, the compounds of the formula I can be used as synthesis intermediates for the preparation of other compounds, in particular of other pharmaceutical active ingredients, which are obtainable from the compounds of the formula I, for example by introduction of substituents or modification of functional groups.

[0099] It is understood that modifications that do not substantially affect the activity of the various embodiments of this invention are included within the invention disclosed herein. Accordingly, the following examples are intended to illustrate but not limit the present invention.
Examples

Abbreviations

[0100]

Allyloxycarbonyl
L-4-Aminophenylalanine
L-Aspartyl
tert-Butyl
Dichloromethane
N,N'-Diisopropylcarbodiimide
N,N-Diisopropyl-N-ethylamine
N,N-Dimethylformamide
Dimethylsulfoxide
N-Ethylmorpholine
9-Fluorenlymethyloxycarbonyl
L-Glutamyl
N-Hydroxybenzotriazole
Pentafluorophenyl
Tetrahydrofuran
Trifluoroacetic acid
O-((cyan(ethoxycarbonyl)methylene)amino)-1,1,3,3-tetramethyluronium tetrafluoroborate
O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

[0101] The compounds of the formula I are named according to the rules of peptide chemistry. Thus, for example, a name like Alloc-pAph-Glu-(4-aminobenzyl)amide means that in the respective compound an L-4-amidinophenylalanyl unit is bonded via a peptide bond to an L-glutamyl unit and that the α-amino group of the L-4-amidinophenylalanyl unit carries an allyloxycarbonyl group, and that in the 1-position of the glutamyl unit instead of a free carboxylic acid group an N-(4-aminobenzyl)carboxamide group is present, i.e. that the respective compound has the following structural formula.

[0102] When in the final step of the synthesis of a compound an acid such as trifluoroacetic acid or acetic acid was used, for example when trifluoroacetic acid was employed to remove a tert-butyl group or when a compound was purified by chromatography using an eluent which contained such an acid, in some cases, depending on the work-up procedure, for example the details of a freeze-drying process, the compound was obtained partially or completely in the form of a salt of the acid used, for example in the form of the acetic acid salt or trifluoroacetic acid salt.

Example 1: Alloc-pAph-Glu-(4-aminobenzyl)amide

a) (S)-2-Allyloxycarbonylamino-3-(4-cyanophenyl)propionic acid

[0103] A suspension of 50 g (0.221 mol) of (S)-2-amino-3-(4-cyanophenyl)propionic acid in 150 ml of water was
adjusted to pH = 8 with 1N NaOH. 26.6 g (0.221 mol) of allylchloroformate in 225 ml of dioxane was slowly added at 0 to 5°C (pH kept at 8 by addition of 1N NaOH). After completion of the reaction (thin layer chromatography (TLC) control) the mixture was extracted with DCM and the aqueous layer was acidified to pH = 2 with KHSO₄. The precipitate was dissolved in DCM, dried (Na₂SO₄) and evaporated. The residue was recrystallized from ether/petroleum benzine to give 31 g (51%) of the title compound. MS 275.1 (M+1)*.

b) (S)-2-Allyloxycarbonylamino-3-(4-carbamimidoylphenyl)propionic acid ethyl ester hydrochloride (Alloc-pAph-OC₂H₅ hydrochloride)

Dried gaseous hydrochloric acid was passed through a solution of 15 g (0.055 mol) of (S)-2-allyloxycarbonylamino-3-(4-cyanophenyl)propionic acid in 200 ml of ethanol. After 5 h the mixture was kept overnight at 0°C. The solvent was evaporated and the residue was treated with 250 ml of a 3M solution of ammonia in ethanol for 12 h at room temperature. The solvent was evaporated and the residue was washed with DCM and crystallized with ether to give 17.5 g (90%) of the title compound. MS 292.2 (M+1)*.

c) (S)-2-Allyloxycarbonylamino-3-(4-carbamimidoylphenyl)propionic acid hydrochloride (Alloc-pAph-OH hydrochloride)

17 g (0.048 mol) of (S)-2-allyloxycarbonylamino-3-(4-carbamimidoylphenyl)propionic acid ethyl ester hydrochloride was treated with 400 ml of half-concentrated hydrochloric acid for 3 h at room temperature. The solvent was evaporated and the residue was washed with DCM and crystallized with ether to give 15 g (95%) of the title compound. MS 302.3 (M+1)*.

d) Alloc-pAph-Glu(OtBu)-OCH₃ hydrochloride

To a solution of 1.3 g (3.97 mmol) of Alloc-pAph-OH hydrochloride and 1.0 g (3.97 mmol) of H-Glu(OtBu)-OCH₃ hydrochloride in 15 ml of DMF were added 1.63 g (4.96 mmol) of TOTU and 1.14 g (9.9 mmol) of NEM. After 5 h at room temperature the solution was poured into 150 ml of brine and extracted with DCM. The organic layer was dried (Na₂SO₄) and evaporated to give 1.7 g (81%) of the title compound. MS 491.2 (M+1)+.

e) Alloc-pAph-Glu(OtBu)-OH

1.7 g (3.17 mmol) of Alloc-pAph-Glu(OtBu)-OCH₃ hydrochloride in 15 ml of THF and 50 ml of water were treated with 0.16 g (3.8 mmol) of lithium hydroxide monohydrate. After 3 h the solvent was removed and the residue freeze dried to give 1.25 g (82%) of the title compound. MS 477.5 (M+1)+.

f) Alloc-pAph-Glu(OtBu)-(4-aminobenzyl)amide

To a solution of 56 mg (0.12 mmol) of Alloc-pAph-Glu(OtBu)-OH and 13 µl (0.12 mmol) of p-aminobenzylamine in 10 ml of DMF were added 21 mg (0.12 mmol) of TOTU and 15 µl (0.12 mmol) of NEM at 3°C. After 12 h at room temperature the solvent was removed to give 0.15 g of the title compound which was used for the next step without further purification. MS 581.4 (M+1)+.

g) Alloc-pAph-Glu-(4-aminobenzyl)amide

150 mg of Alloc-pAph-Glu(OtBu)-4-aminobenzylamide was treated with 1 ml of 90% TFA. After 12 h ethyl acetate/DCM/methanol was added and the precipitate was filtered and dried to give 55 mg of the title compound. MS 525.3 (M+1)+.

Example 2: Alloc-pAph-Glu-(3-aminobenzyl)amide

To a solution of 30 mg (0.064 mmol) of Alloc-pAph-Glu(OtBu)-OH and 8 mg (0.064 mmol) of 3-aminobenzylamine in 5 ml of DMF were added 21 mg (0.064 mmol) of TOTU and 8 µl (0.064 mmol) of NEM at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml of 90% TFA. After 8 h at room temperature ethyl acetate was added and the precipitate was filtered and dried to give 30 mg of the title compound. MS 525.4 (M+1)+.
Example 3: Alloc-pAph-Glu-(2-(4-aminophenyl)ethyl)amide

To a solution of 30 mg (0.064 mmol) of Alloc-pAph-Glu(OtBu)-OH and 8.5 µl (0.064 mmol) of 2-(4-aminophenyl)ethylamine in 4 ml of DMF were added 21 mg (0.064 mmol) of TOTU and 8 µl (0.064 mmol) of NEM at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml of 90% TFA. After 8 h at room temperature ethyl acetate was added and the precipitate was filtered and dried to give 30 mg of the title compound. MS 539.4 (M+1)+.

Example 4: Alloc-pAph-Glu-(2,4-dihydroxybenzyl)amide

To a solution of 30 mg (0.064 mmol) of Alloc-pAph-Glu(OtBu)-OH and 14 mg (0.064 mmol) of 3,4-dihydroxybenzylamine in 5 ml of DMF were added 21 mg (0.064 mmol) of TOTU and 16 µl (0.128 mmol) of NEM at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml of 90% TFA. After 8 h at room temperature ethyl acetate was added and the precipitate was filtered and dried to give 45 mg of the title compound. MS 542.4 (M+1)+.

Example 5: Alloc-pAph-Glu-(2-aminobenzyl)amide

To a solution of 59 mg (0.124 mmol) of Alloc-pAph-Glu(OtBu)-OH and 15 mg (0.124 mmol) of 2-aminobenzylamine in 1.5 ml DMF were added 41 mg (0.124 mmol) of TOTU and 28 mg (0.248 mmol) of NEM at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml of 90% TFA. After 8 h at room temperature ethyl acetate was added and the precipitate was filtered and dried to give 1.5 mg of the title compound. MS 525.4 (M+1)+.

Example 6: Alloc-pAph-Glu-((RS)-2-amino-9H-fluorene-9-yl)amide

To a solution of 60 mg (0.126 mmol) of Alloc-pAph-Glu(OtBu)-OH and 34 mg (0.126 mmol) of (RS)-2,9-di-amino-9H-fluorene in 5 ml DMF were added 42 mg (0.126 mmol) of TOTU and 32 µl (0.252 mmol) of NEM at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml of 90% TFA. After 8 h at room temperature the solvent was evaporated and the residue purified by HPLC to give 50 mg of the title compound. MS 598.7 (M+1)+.

Example 7: Alloc-pAph-Glu-(3-ethoxycarbonylaminopropyl)amide

To a solution of 0.5 g (2.9 mmol) of 3-tert-butyloxycarbonylaminopropylamine in 8 ml of DCM and 0.37 g (2.9 mmol) of NEM was added a solution of 0.32 g (0.29 mmol) of ethyl chloroformate in 2 ml of DCM. After 24 h at room temperature the mixture was washed with water and dried. The solvent was evaporated and the residue was stirred with 5 ml of TFA (90%). After 1 h the solvent was evaporated to give 0.6 g of the title compound. MS 147.0 (M+1)+.

b) Alloc-pAph-Glu-(3-ethoxycarbonylaminopropyl)amide

To a solution of 59 mg (0.124 mmol) of Alloc-pAph-Glu(OtBu)-OH and 16 mg (0.124 mmol) of 3-ethoxycarbonylaminopropylamine in 1.5 ml of DMF were added 41 mg (0.124 mmol) of TOTU and 28 mg (0.248 mmol) of DIEA at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml of 90% TFA. After 8 h at room temperature the solvent was evaporated and the residue purified by HPLC to give 1.4 mg of the title compound. MS 549.2 (M+1)+.

Example 8: Alloc-pAph-Glu-((R)-1-(3-aminophenyl)ethyl)amide and Alloc-pAph-Glu-((S)-1-(3-aminophenyl)ethyl)amide

A mixture of 0.69 g (5.123 mmol) of 1-(3-aminophenyl)ethanone, 0.43 g (6.15 mmol) of hydroxylamine, 0.50 g (6.15 mmol) of sodium acetate and 15 ml of ethanol was heated at 80°C for 8 h. The solvent was removed and the residue was distributed between water and ethyl acetate. The organic phase was dried, filtered and the solvent was evaporated to give 0.53 g of the oxime (MS 151.2 (M+1)+). 0.53 g of the oxime was dissolved in 100 ml of methanol...
and hydrogenated in a Parr apparatus at room temperature. After 2 days the mixture was filtered through celite and the solvent was evaporated. The residue was stirred with ether saturated with hydrogen chloride. The solvent was evaporated to give 0.46 g of the title compound. MS 137.1 (M+1)+.

b) Alloc-pAph-Glu-((R)-1-(3-aminophenyl)ethyl)amide and Alloc-pAph-Glu-((S)-1-(3-aminophenyl)ethyl)amide

[0118] To a solution of 59 mg (0.124 mmol) of Alloc-pAph-Glu(OtBu)-OH and 18 mg (0.125 mmol) of (RS)-3-{1-aminethyl}phenylamine in 5 ml of DMF were added 41 mg (0.124 mmol) of TOTU and 28 mg (0.248 mmol) of DIEA at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml of 90% TFA. After 8 h at room temperature the solvent was evaporated and the residue purified by HPLC to give 0.7 mg of diastereomer I (MS 539.2 (M+1)+) and 0.9 mg of diastereomer II (MS 539.2 (M+1)+).

Example 9: Alloc-pAph-Glu-((R)-1-(4-aminophenyl)butyl)amide and Alloc-pAph-Glu-((S)-1-(4-aminophenyl)butyl)amide

[0119] (RS)-4-(1-Aminobutyl)phenylamine was synthesised analogously to the procedure described in example 8, starting from the corresponding ketone. To a solution of 60 mg (0.126 mmol) of Alloc-pAph-Glu(OtBu)-OH and 24 mg (0.121 mmol) of (RS)-4-(1-aminobutyl)phenylamine in 5 ml of DMF were added 42 mg (0.126 mmol) of TOTU and 32 µl (0.252 mmol) of NEM at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml of 90% TFA. After 8 h at room temperature the solvent was evaporated and the residue purified by HPLC to give 3 mg of diastereomer I (MS 567.3 (M+1)+) and 3 mg of diastereomer II (MS 567.3 (M+1)+).

Example 10: Alloc-pAph-Glu-(3-((3,5-dichlorobenzenesulfonylamino)propyl)amide

[0120] N-(3-Aminopropyl)-3,5-dichlorobenzenesulfonamide

[0121] The 3-Aminopropyl)-3,5-dichlorobenzenesulfonamide (7 mg, 23.4 µmol), Alloc-pAph-Glu(OtBu)-OH (10 mg, 19.5 µmol) and HOBt hydrate (9 mg, 58.5 µmol) were dissolved in 2 ml of a 1:3 mixture of DMF and DCM. Then DIC (6 µl, 39 µmol) was added. After stirring for 3 h and standing over the weekend at room temperature the solvent was removed and the residue purified by HPLC to yield 6.5 mg of the coupling product. This was stirred in 4 ml of a 1:1 mixture of TFA and DCM for 2 h. After standing overnight the solvent was evaporated and the residue was dissolved in DCM. After evaporation of the solvent the residue was purified by HPLC and lyophilized to yield 3.5 mg of the title compound. MS 685.4 (M+H)+.

Example 11: Alloc-pAph-Glu-(3-((naphthalene-2-sulfonylamino)methyl)benzyl)amide

[0122] Naphthalene-2-sulfonic acid (3-aminomethylbenzyl)amide

[0123] 1,3-Diaminopropane (6 g, 81.5 mmol) was dissolved in 45 ml of 1,4-dioxane, and at 15-20°C a solution of 3,5-dichlorobenzenesulfonyl chloride (2 g, 8.15 mmol) in 5 ml of 1,4-dioxane was slowly added over 3 hours under stirring. Stirring was continued at room temperature. After 30 hours the formed precipitate was filtered off and the filtrate concentrated in vacuo. The residue was distributed between ethyl acetate and water. The organic layer was separated, dried with magnesium sulfate, filtered and concentrated in vacuo to yield 2.0 g of crude material. 750 mg of this material was purified by HPLC to yield 675 mg of the title compound as TFA salt (MS 283.0 (M+H)+). 200 mg of this product was dissolved in ethyl acetate and treated with 5 ml of diluted potassium carbonate solution. The organic layer was separated, dried, filtered and concentrated in vacuo to yield the TFA free title amine.

b) Alloc-pAph-Glu-3-((3,5-dichlorobenzenesulfonylamino)propyl)amide

[0124] N-(3-Aminopropyl)-3,5-dichlorobenzenesulfonamide (7 mg, 23.4 µmol), Alloc-pAph-Glu(OtBu)-OH (10 mg, 19.5 µmol) and HOBt hydrate (9 mg, 58.5 µmol) were dissolved in 2 ml of a 1:3 mixture of DMF and DCM. Then DIC (6 µl, 39 µmol) was added. After stirring for 3 h and standing over the weekend at room temperature the solvent was removed and the residue purified by HPLC to yield 6.5 mg of the coupling product. This was stirred in 4 ml of a 1:1 mixture of TFA and DCM for 2 h. After standing overnight the solvent was evaporated and the residue was dissolved in DCM. After evaporation of the solvent the residue was purified by HPLC and lyophilized to yield 3.5 mg of the title compound. MS 685.4 (M+H)+.

Example 11: Alloc-pAph-Glu-(3-((naphthalene-2-sulfonylamino)methyl)benzyl)amide

a) Naphthalene-2-sulfonic acid (3-aminomethylbenzyl)amide

[0125] α,α'-Diamino-m-xylene (24 g, 176 mmol) was dissolved in 50 ml 1,4-dioxane, and at 15-20°C naphthalene-2-sulfonyl chloride (4 g, 17.6 mmol) dissolved in 50 ml of 1,4-dioxane was slowly added over 3 hours under stirring. Stirring was continued at room temperature. After standing overnight the formed precipitate was filtered off and the filtrate concentrated in vacuo. The residue was distributed between DCM and water. The organic layer was separated and washed with water and 1 N HCl. The oily layer formed between the organic and aqueous layer was separated. It solidified on standing. This solid material was treated with ethyl acetate, sucked off and washed with ethyl acetate. The residue was dissolved in water and treated with potassium carbonate solution. The aqueous solution was extracted three times with ethyl acetate, and the combined organic phases were dried over magnesium sulfate, filtered and concentrated to yield 3.2 g of the title compound. MS 327.3 (M+H)+.
Example 12: Alloc-pAph-Glu-(4-carbamoylmethylthiazol-2-yl)amide

a) Fmoc-Glu(OtBu)-(4-carbamoylmethylthiazol-2-yl)amide

[0124] To a solution of 1.24 g (2.1 mmol) of Fmoc-Glu(OtBu)-OPfp in 10 ml of DMF was added a solution of 0.33 g (2.1 mmol) of 2-(2-aminothiazol-4-yl)-acetamide in 10 ml of DMF over a period of 15 min. After 2 days at room temperature the solvent was evaporated and the residue was washed with ether to give 0.86 g of the title compound. MS 565.4 (M+H)+.

b) H-Glu(OtBu)-(4-carbamoylmethylthiazol-2-yl)amide

[0125] A solution of 0.86 g (1.52 mmol) of Fmoc-Glu(OtBu)-(4-carbamoylmethylthiazol-2-yl)amide in 5 ml of DMF/piperidine (1:1) was stirred for 3 h at room temperature. The solvent was evaporated and the residue was filtered through cellit to give 0.37 g of the title compound. MS 343.4 (M+H)+.

c) Alloc-pAph-Glu-(4-carbamoylmethylthiazol-2-yl)amide

[0126] To a solution of 50 mg (0.17 mmol) of Alloc-pAph-OH and 49.1 mg of TOTU in 10 ml of DMF was added 58.8 mg (0.17 mmol) of H-Glu(OtBu)-(4-carbamoylmethylthiazol-2-yl)amide and 21.8 µl of NEM, After 24 h at room temperature the solvent was removed and the residue was treated with an aqueous solution of NaHCO₃ and ethyl acetate. The organic phase was dried, filtered and evaporated. The residue was stirred for 16 h with 0.6 ml of TFA. 50 ml of ethyl acetate and 10 ml of ligroin were added and the precipitate was filtered to give 59 mg of the title compound. MS 560.4 (M+1)+.

Example 13: Alloc-pAph-Glu-(4-amino-2-methylpyrimidin-5-ylmethyl)amide

[0127] To a solution of 53 mg (0.11 mmol) of Alloc-pAph-Glu(OtBu)-OH and 15 mg (0.11 mmol) of 4-amino-5-aminomethyl-2-methylpyrimidine in 5 ml of DMF were added 37 mg (0.115 mmol) of TOTU and 14 µl of NEM at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml of 90% TFA. After 8 h at room temperature ethyl acetate, isopropanol and methanol were added and the precipitate was filtered to give 46 mg of the title compound. MS 541.3 (M+1)+.

Example 14: Alloc-pAph-Asp-(3-aminobenzyl)amide

[0128] To a solution of 50 mg (0.153 mmol) of Alloc-pAph-OH and 50.3 mg (0.153 mmol) of H-Asp(OtBu)-3-aminobenzylamide hydrochloride in 5 ml of DMF were added 50 mg (0.153 mmol) of TOTU and 60 µl of NEM at 3°C. After 12 h at room temperature the solvent was removed and the residue was treated with 1 ml 90% of TFA. After 8 h at room temperature ethyl acetate was added and the oily precipitate was separated and freeze-dried to give 82 mg of the title compound. MS 511.3 (M+1)+.
Example 15: Alloc-pAph-2-Aad-(3-aminobenzyl)amide

To a solution of 100 mg (0.305 mmol) of Alloc-pAph-OH hydrochloride and 139 mg (0.305 mmol) of H-2-Aad (OtBu)-(3-aminobenzyl)amide hydrochloride in 5 ml of DMF were added 128 mg (0.389 mmol) of TOTU and 150 µl of NEM at 3°C. After 16 h at room temperature the solvent was removed and the residue was treated with 1 ml 90% of TFA. After 8 h at room temperature ethyl acetate was added and the precipitate was filtered and purified by HPLC and lyophilized to give 43 mg of the title compound. MS 539.2 (M+1)^+.

Example 16: Alloc-pAph-Glu(OCH₃)-(3-aminobenzyl)amide

50 mg (0.153 mmol) of Alloc-pAph-OH hydrochloride and 75 mg (0.153 mmol) of H-Glu(OCH₃)-(3-aminobenzyl)amide hydrochloride were reacted according to the procedure described in example 15 to give 22 mg of the title compound. MS 539.3 (M+1)^+.

Analogously to the above examples the following example compounds were prepared.

Example compounds of formula la:

<table>
<thead>
<tr>
<th>Example</th>
<th>R^a in formula la</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>3,5-dichlorophenyl</td>
<td>685.4 (M+1)^+</td>
</tr>
<tr>
<td>18</td>
<td>1-naphthyl</td>
<td>729.4 (M+1)^+</td>
</tr>
</tbody>
</table>
Example compounds of formula Ib:

<table>
<thead>
<tr>
<th>Example</th>
<th>R<sup>a</sup> in formula la</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>4-methoxyphenyl</td>
<td>709.2 (M+1)<sup>+</sup></td>
</tr>
<tr>
<td>20</td>
<td>methyl</td>
<td>617.1 (M+1)<sup>+</sup></td>
</tr>
<tr>
<td>21</td>
<td>dimethylamino</td>
<td>644.1 (M-1)<sup>+</sup></td>
</tr>
<tr>
<td>22</td>
<td>2-phenylethenyl</td>
<td>705.2 (M+1)<sup>+</sup></td>
</tr>
<tr>
<td>23</td>
<td>2-acetylamino-1,3-thiazol-5-yl</td>
<td>685.4 (M+1)<sup>+</sup></td>
</tr>
<tr>
<td>24</td>
<td>5-chlorothiophen-2-yl</td>
<td>720.1 (M+1)<sup>+</sup></td>
</tr>
<tr>
<td>25</td>
<td>4-fluorophenyl</td>
<td>697.2 (M+1)<sup>+</sup></td>
</tr>
</tbody>
</table>

Example compounds of formula Ib:

![Formula Ib](image)

<table>
<thead>
<tr>
<th>Example</th>
<th>R<sup>b</sup> in formula Ib</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>3-bromophenyl</td>
<td>697.1 (M+1)<sup>+</sup></td>
</tr>
<tr>
<td>27</td>
<td>4-acetylaminoophenyl</td>
<td>730.3 (M+1)<sup>+</sup></td>
</tr>
<tr>
<td>28</td>
<td>4-methoxyphenyl</td>
<td>647.2 (M+1)<sup>+</sup></td>
</tr>
<tr>
<td>29</td>
<td>4-fluorophenyl</td>
<td>691.3 (M+1)<sup>+</sup></td>
</tr>
</tbody>
</table>

Example compounds of formula Ic:

![Formula Ic](image)

<table>
<thead>
<tr>
<th>Example</th>
<th>R<sup>c</sup> in formula Ic</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 35: ((S)-2-Allyloxycarbonylamino-3-(4-carbamimidoylphenyl)propionyl)-Glu-(3-(pyridin-3-ylsulfonylamino)phenyl)amide (Alloc-pAph-Glu-(3-(pyridin-3-ylsulfonylamino)phenyl)amide)

[0136] MS 652.4 (M+1) +.

Example 36: ((R)-2-Allyloxycarbonylamino-3-(4-carbamimidoylphenyl)propionyl)-Glu-(3-(pyridin-3-ylsulfonylamino)phenyl)amide (Alloc-D-pAph-Glu-(3-(pyridin-3-ylsulfonylamino)phenyl)amide)

[0137] MS 652.4 (M+1) +.

Example compounds of formula Ic:

<table>
<thead>
<tr>
<th>Example</th>
<th>R<sup>c</sup> in formula Ic</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3-bromophenyl</td>
<td>723.3 (M+1)</td>
</tr>
<tr>
<td>31</td>
<td>3-trifluoromethylphenyl</td>
<td>711.1 (M+1)</td>
</tr>
<tr>
<td>32</td>
<td>3-chlorophenyl</td>
<td>677.1 M</td>
</tr>
<tr>
<td>33</td>
<td>2,5-dichlorophenyl</td>
<td>711.1 M</td>
</tr>
<tr>
<td>34</td>
<td>5-chloro-3-methoxyphenyl</td>
<td>682.2 (M+1)</td>
</tr>
</tbody>
</table>

Example compounds of formula Id:

<table>
<thead>
<tr>
<th>Example</th>
<th>R<sup>d</sup> in formula Id</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>3-aminomethylbenzyl</td>
<td>539.2 (M+1)</td>
</tr>
<tr>
<td>38</td>
<td>3-aminopropyl</td>
<td>477.4 (M+1)</td>
</tr>
<tr>
<td>39</td>
<td>3,4-dichlorophenyl (a)</td>
<td>578.2 (M+1)</td>
</tr>
<tr>
<td>40</td>
<td>3-carbamimidobenzyl (a)</td>
<td>552.2 (M+1)</td>
</tr>
<tr>
<td>41</td>
<td>1-(1-naphthyl)ethyl</td>
<td>574.3 (M+1)</td>
</tr>
<tr>
<td>42</td>
<td>1-(6-amino-pyridin-3-yl)methyl</td>
<td>526.3 (M+1)</td>
</tr>
<tr>
<td>43</td>
<td>2,4-dihydroxy-pyrimidin-5-yl (a)</td>
<td>530.3 (M+1)</td>
</tr>
<tr>
<td>44</td>
<td>1-phenyl-1-(4-pyridyl)methyl</td>
<td>587.4 (M+1)</td>
</tr>
<tr>
<td>45</td>
<td>1-(6-chloro-2-naphthyl)-1-(1-methylpiperidin-4-yl)-methyl (a)</td>
<td>691.3 (M+1)</td>
</tr>
<tr>
<td>46</td>
<td>1,1-diphenylmethyl</td>
<td>586.2 (M+1)</td>
</tr>
<tr>
<td>47</td>
<td>4-cyanobenzyl</td>
<td>535.4 (M+1)</td>
</tr>
<tr>
<td>48</td>
<td>4-dimethylaminobenzyl</td>
<td>553.1 (M+1)</td>
</tr>
<tr>
<td>49</td>
<td>4-aminophenyl</td>
<td>511.4 (M+1)</td>
</tr>
<tr>
<td>50</td>
<td>2-(2,5-dioxo-imidazolidin-1-yl)ethyl</td>
<td>546.4 (M+1)</td>
</tr>
</tbody>
</table>

(a) isolated as hydrochloride salt
Example compounds of formula le:

\[(\text{S})\text{-2-(3-Bromobenzenesulfonylamino)-3-(4-carbamimidoylphenyl)propionyl)}-\text{Glu-(3-aminobenzyl)amide}\]

<table>
<thead>
<tr>
<th>Example</th>
<th>(R^d) in formula (le)</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>4-carbamoylbenzyl</td>
<td>553.4 (M+1)</td>
</tr>
<tr>
<td>52</td>
<td>1-(piperidin-4-yl)methyl</td>
<td>517.5 (M+1)</td>
</tr>
<tr>
<td>53</td>
<td>1-(1-hydroxy cyclohexyl)methyl</td>
<td>532.2 (M+1)</td>
</tr>
<tr>
<td>54</td>
<td>2-(pyridin-3-yl)ethyl</td>
<td>525.4 (M+1)</td>
</tr>
<tr>
<td>55</td>
<td>2-carbamoyl-1-methyl-ethyl</td>
<td>505.5 (M+1)</td>
</tr>
<tr>
<td>56</td>
<td>4-guanidinobenzyl</td>
<td>567.5 (M+1)</td>
</tr>
<tr>
<td>57</td>
<td>2-carbamoyl-1-(4-chlorophenyl)-ethyl</td>
<td>601.4 (M+1)</td>
</tr>
<tr>
<td>58</td>
<td>1-(1-carbamimidoyl)piperidin-4-yl)methyl (a)</td>
<td>459.6 (M+1)</td>
</tr>
<tr>
<td>59</td>
<td>3-methylbenzyl</td>
<td>524.5 (M+1)</td>
</tr>
<tr>
<td>60</td>
<td>3-ureidobenzyl</td>
<td>568.5 (M+1)</td>
</tr>
<tr>
<td>61</td>
<td>(R)-1-(3-nitrophenyl)propyl</td>
<td>583.2 (M+1)</td>
</tr>
<tr>
<td>62</td>
<td>(S)-1-(3-nitrophenyl)propyl</td>
<td>583.2 (M+1)</td>
</tr>
<tr>
<td>63</td>
<td>6-hydroxy-2,2-dimethylchroman-4-yl</td>
<td>596.3 (M+1)</td>
</tr>
<tr>
<td>64</td>
<td>4-amino-9H-fluorene-9-yl</td>
<td>599.2 (M+1)</td>
</tr>
<tr>
<td>65</td>
<td>3-acetylaminopropyl</td>
<td>519.2 (M+1)</td>
</tr>
<tr>
<td>66</td>
<td>2-(4-aminophenyl)-1-(4-methylsulfonylphenyl)-ethyl</td>
<td>693.3 (M+1)</td>
</tr>
</tbody>
</table>

\(a\) isolated as hydrochloride salt

Example 70:

\[((\text{S})\text{-2-(3-Bromobenzenesulfonylamino)-3-(4-carbamimidoylphenyl)propionyl)}-\text{Glu-(3-aminobenzyl)amide}\]

MS 659.1 (M+1)
Example 71:

((S)-2-(3-Chlorobenzoylamino)-3-(4-carbamimidoylphenyl)propionyl)-Glu-(3-aminobenzyl)amide

MS 579.2 (M+1)

Pharmacological testing

[0142] The ability of the compounds of the formula I to inhibit factor VIIa or other enzymes like factor Xa, thrombin, plasmin, or trypsin can be assessed by determining the concentration of the compound of the formula I that inhibits enzyme activity by 50 %, i. e. the IC\textsubscript{50} value, which is related to the inhibition constant K\textsubscript{i}. Purified enzymes are used in chromogenic assays. The concentration of inhibitor that causes a 50 % decrease in the rate of substrate hydrolysis is determined by linear regression after plotting the relative rates of hydrolysis (compared to the uninhibited control) versus the log of the concentration of the compound of formula I. For calculating the inhibition constant K\textsubscript{i}, the IC\textsubscript{50} value is corrected for competition with substrate using the formula K\textsubscript{i} = IC\textsubscript{50} / {1 + (substrate concentration / Km)} where Km is the Michaelis-Menten constant (Chen and Prusoff, Biochem. Pharmacol. 22 (1973), 3099-3108; I. H. Segal, Enzyme Kinetics, 1975, John Wiley & Sons, New York, 100-125).

a) Factor VIIa Assay

[0143] The inhibitory activity (expressed as inhibition constant K\textsubscript{i} (FVIIa)) of the compounds of formula I towards factor VIIa/tissue factor activity was determined using a chromogenic assay essentially as described previously (J. A. Ostrem et al., Biochemistry 37 (1998) 1053-1059). Kinetic assays were conducted at 25 °C in half-area microtiter plates (Costar Corp., Cambridge, Massachusetts) using a kinetic plate reader (Molecular Devices Spectramax 250). A typical assay consisted of 25 µl human factor VIIa and TF (5 nM and 10 nM, respective final concentration) combined with 40 µl of inhibitor dilutions in 10% DMSO/TBS-PEG buffer (50 mM Tris, 15 mM NaCl, 5 mM CaCl\textsubscript{2}, 0.05 % PEG 8000, pH 8.15). Following a 15 minute preincubation period, the assay was initiated by the addition of 35 µl of the chromogenic substrate S-2288 (D-Ile-Pro-Arg-p-nitroanilide, Pharmacia Hepar Inc., 500 µM final concentration).

[0144] The following test results (inhibition constants K\textsubscript{i} (FVIIa)) were obtained.

<table>
<thead>
<tr>
<th>Example Compound</th>
<th>K\textsubscript{i} (FVIIa) (µM)</th>
<th>Example Compound</th>
<th>K\textsubscript{i} (FVIIa) (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>0.4</td>
<td>Example 2</td>
<td>0.2</td>
</tr>
<tr>
<td>Example 3</td>
<td>0.8</td>
<td>Example 4</td>
<td>0.7</td>
</tr>
<tr>
<td>Example 5</td>
<td>0.6</td>
<td>Example 6</td>
<td>0.4</td>
</tr>
<tr>
<td>Example 7</td>
<td>0.8</td>
<td>Example 10</td>
<td>0.68</td>
</tr>
<tr>
<td>Example 11</td>
<td>0.8</td>
<td>Example 12</td>
<td>44.1</td>
</tr>
<tr>
<td>Example 13</td>
<td>1.9</td>
<td>Example 14</td>
<td>3.4</td>
</tr>
<tr>
<td>Example 15</td>
<td>75.7</td>
<td>Example 17</td>
<td>6.49</td>
</tr>
<tr>
<td>Example 18</td>
<td>1.8</td>
<td>Example 19</td>
<td>0.68</td>
</tr>
<tr>
<td>Example 20</td>
<td>2.03</td>
<td>Example 21</td>
<td>0.62</td>
</tr>
<tr>
<td>Example 22</td>
<td>1.46</td>
<td>Example 23</td>
<td>1.38</td>
</tr>
<tr>
<td>Example 24</td>
<td>0.89</td>
<td>Example 25</td>
<td>1.88</td>
</tr>
<tr>
<td>Example 26</td>
<td>0.30</td>
<td>Example 27</td>
<td>0.73</td>
</tr>
<tr>
<td>Example 28</td>
<td>0.28</td>
<td>Example 29</td>
<td>0.59</td>
</tr>
<tr>
<td>Example 30</td>
<td>0.43</td>
<td>Example 31</td>
<td>0.64</td>
</tr>
<tr>
<td>Example 32</td>
<td>0.56</td>
<td>Example 33</td>
<td>0.67</td>
</tr>
<tr>
<td>Example 34</td>
<td>1.05</td>
<td>Example 37</td>
<td>3.7</td>
</tr>
<tr>
<td>Example 38</td>
<td>3.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0145] The following tests can serve to investigate the inhibition of selected other coagulation enzymes and other serine proteases by the compounds of formula I and thus to determine their specificity.

b) Factor Xa Assay

[0146] TBS-PEG buffer (50 mM Tris-Cl, pH 7.8, 200 mM NaCl, 0.05 % (w/v) PEG-8000, 0.02 % (w/v) NaN\textsubscript{3}) is used for this assay. The IC\textsubscript{50} is determined by combining in appropriate wells of a Costar half-area microtiter plate 25 µl
human factor Xa (Enzyme Research Laboratories, Inc.; South Bend, Indiana) in TBS-PEG; 40 µl 10 % (v/v) DMSO in
TBS-PEG (uninhibited control) or various concentrations of the compound to be tested diluted in 10 % (v/v) DMSO in
TBS-PEG; and substrate S-2765 (N(α)-benzyloxycarbonyl-D-Arg-Gly-L-Arg-p-nitroanilide; Kabi Pharmacia, Inc.; Fran-
klin, Ohio) in TBS-PEG.

The assay is performed by pre-incubating the compound of formula I plus enzyme for 10 min. Then the assay
is initiated by adding substrate to obtain a final volume of 100 µl. The initial velocity of chromogenic substrate hydrolysis
is measured by the change in absorbance at 405 nm using a Bio-tek Instruments kinetic plate reader (Ceres UV900HDi)
at 25 °C during the linear portion of the time course (usually 1.5 min after addition of substrate). The enzyme concen-
tration is 0.5 nM and substrate concentration is 140 µM.

c) Thrombin Assay

TBS-PEG buffer is used for this assay. The IC₅₀ is determined as above for the factor Xa assay, except that
the substrate is S-2366 (L-PyroGlu-L-Pro-L-Arg-p-nitroanilide; Kabi) and the enzyme is human thrombin (Enzyme Re-
search Laboratories, Inc.; South Bend, Indiana). The enzyme concentration is 175 µM.

d) Plasmin Assay

TBS-PEG buffer is used for this assay. The IC₅₀ is determined as described above for the factor Xa assay,
except that the substrate is S-2251 (D-Val-L-Leu-L-Lys-p-nitroanilide; Kabi) and the enzyme is human plasmin (Kabi).
The enzyme concentration is 5 nM and the substrate concentration is 300 µM.

e) Trypsin Assay

TBS-PEG buffer containing 10 mM CaCl₂ is used for this assay. The IC₅₀ is determined as described above
in the factor Xa assay, except that the substrate is BAPNA (benzoyl-L-Arg-p-nitroanilide; Sigma Chemical Co.; St.
Louis, Missouri) and the enzyme is bovine pancreatic trypsin (Type XIII, TPCK treated; Sigma). The enzyme concen-
tration is 50 nM and the substrate concentration is 300 µM.

Rat Arteriovenous Shunt Model of Thrombosis

The antithrombotic efficacy of the compounds of the invention can be assessed using rat extracorporeal ar-
teriovenous (AV) shunt. The AV shunt circuit consists of a 20 cm length of polyethylene (PE) 60 tubing inserted into
the right carotid artery, a 6 cm length of PE 160 tubing containing a 6.5 cm length of mercerized cotton thread (5 cm
exposed to blood flow), and a second length of PE 60 tubing (20 cm) completing the circuit into the left jugular vein.
The entire circuit is filled with normal saline prior to insertion.

The test compound is administered by continuous infusion into the tail vein using a syringe pump and butterfly
catheter. The compound is administered for 30 min, then the shunt is opened and blood allowed to flow for a period
of 15 min (total of 45 min infusion). At the end of the 15 min period, the shunt is clamped and the thread is carefully
removed and weighed on an analytical balance. Percent inhibition of thrombus formation is calculated using the throm-
bus weight obtained from control rats, which are infused with saline.

Claims

1. A compound of the formula I,
wherein

\[r \text{ is } 0, 1, 2 \text{ or } 3; \]
\[s \text{ is } 0, 1, 2, 3 \text{ or } 4; \]
\[t \text{ is } 0, 1 \text{ or } 2; \]

\[R^1 \text{ is selected from the series consisting of hydrogen, } R^{11}\text{-CO- and } R^{12}\text{-SO}_2^-; \]

\[R^{11} \text{ is selected from the series consisting of hydrogen, } (C_1-C_8)\text{-alkyl, } (C_6-C_{14})\text{-aryl, } (C_6-C_{14})\text{-aryl-(C}_1-C_4\text{-alkyl)-, Het-, Het-(C}_1-C_4\text{-alkyl)-, (C}_6-C_{14}\text{-aryl-(C}_1-C_4\text{-alkyl)-alkyloxy-, (C}_6-C_{14}\text{-aryl-(C}_1-C_4\text{-alkyl)-alkyloxy-, amino,}\right. \]
\[(C_1-C_8)\text{-alkylamino-, (C}_6-C_{14}\text{-arylalkylamino- and (C}_6-C_{14}\text{-aryl-(C}_1-C_4\text{-alkyl)alkylamino-, where all these groups are unsubstituted or substituted by one or more identical or different substituents } R^{40}; \]

\[R^{12} \text{ is selected from the series consisting of } (C_1-C_8)\text{-alkyl, } (C_6-C_{14})\text{-aryl, } (C_6-C_{14})\text{-aryl-(C}_1-C_4\text{-alkyl)-, Het-,}\right. \]
\[ext{Het-(C}_1-C_4\text{-alkyl)-, di((C}_1-C_8)\text{-alkyl)(C}_1-C_4\text{-alkyl)amino- and di((C}_6-C_{14})\text{-aryl-(C}_1-C_4\text{-alkyl)alkylamino-, where all these groups are unsubstituted or substituted by one or more identical or different substituents } R^{40}; \]

\[R^2 \text{ is hydrogen, } R^{21}(R^{22})\text{-CH-, } R^{23}\text{-Het-(CH}_2)_k\text{-, } R^{23}(R^{24})\text{N-(CH}_2)_m\text{-, or } R^{25}(R^{26})\text{N-CO-(CH}_2)_p\text{-D-(CH}_2)_q\text{-, wherein } D \text{ is a divalent residue } \text{-C(R}^{31})(R^{32})\text {-, a divalent } (C_6-C_{14})\text{-arylene residue or a divalent residue derived from an aromatic group Het containing 5 to 10 ring atoms of which 1, 2, 3 or 4 are identical or different ring heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur, and the numbers } k, m, n, p \text{ and } q \text{ which are independent of each other and can be identical or different are 0, 1, 2, 3, 4 or 5, with the proviso that in case } D \text{ is } \text{-C(R}^{31})(R^{32})\text{ the sum } m+n \text{ cannot be 0 and the sum } p+q \text{ cannot be 0; } \]

\[R^{21} \text{ and } R^{22} \text{ which are independent of each other and can be identical or different are selected from the series consisting of hydrogen, } (C_1-C_{12})\text{-alkyl, } (C_6-C_{14})\text{-aryl, } (C_6-C_{14})\text{-aryl-(C}_1-C_4\text{-alkyl)-, Het- and Het-(C}_1-C_4\text{-alkyl)-, all where these groups are unsubstituted or substituted by one or more identical or different substituents from the series consisting of } R^{40}, (C_1-C_8)\text{-alkylamino- and di((C}_1-C_8)\text{-alkyl)(C}_1-C_4\text{-alkyl)amino-}, (C_6-C_{14})\text{-aryl-(C}_1-C_4\text{-alkyl)amino-, (C}_6-C_{14}\text{-arylamino- and aminocarbonyl- and aminocarbonyl-(C}_1-C_4\text{-alkyl), or } R^{21} \text{ and } R^{22} \text{ together with the carbon atom to which they are bonded form a saturated or unsaturated 3-membered to 8-membered carbocyclic ring which can be condensed to one or two ring systems which are heteroaromatic rings containing 5 to 10 ring atoms of which 1, 2 or 3 are identical or different heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur, and/or } (C_6-C_{10})\text{ carbocyclic aromatic rings, where the resulting group } R^{21}(R^{22})\text{-CH- is unsubstituted or substituted by one or more identical or different substituents from the series consisting of } R^{40}, (C_1-C_8)\text{-alkylamino- and di((C}_1-C_8)\text{-alkyl)(C}_1-C_4\text{-alkyl)amino-}, (C_6-C_{14})\text{-aryl-(C}_1-C_4\text{-alkyl)alkylamino- and aminocarbonyl- and aminocarbonyl-(C}_1-C_4\text{-alkyl); } \]

\[R^{23} \text{ is hydrogen, } R^{27}\text{-SO}_2^- \text{ or } R^{28}\text{-CO-;} \]

\[R^{24} \text{ is selected from the series consisting of hydrogen, } (C_1-C_8)\text{-alkyl, } (C_6-C_{14})\text{-aryl and } (C_6-C_{14})\text{-aryl-(C}_1-C_4\text{-alkyl-; } \]
R^{25} and R^{26} which are independent of each other and can be identical or different are selected from the series consisting of hydrogen, (C_{1}-C_{9})-alkyl, (C_{6}-C_{14})-aryl, (C_{6}-C_{14})-aryl-(C_{1}-C_{4})-alkyl-, Het- and Het-(C_{1}-C_{4})-alkyl-, where all these groups are unsubstituted or one or more identical or different substituents R^{40};

R^{27} is selected from the series consisting of (C_{1}-C_{9})-alkyl, (C_{6}-C_{14})-aryl, (C_{6}-C_{14})-aryl-(C_{1}-C_{4})-alkyl-, Het-, Het-(C_{1}-C_{4})-alkyl-, amino, (C_{1}-C_{9})-alkylamino-, di-(C_{1}-C_{9})-alkylamino-, (C_{6}-C_{14})-arylamino- and (C_{6}-C_{14})-aryl-(C_{1}-C_{4})-alkylamino-, where all these groups are unsubstituted or substituted by one or more identical or different substituents R^{40};

R^{28} is selected from the series consisting of R^{27}, (C_{1}-C_{9})-alkyloxy-, (C_{6}-C_{14})-aryloxy- and (C_{6}-C_{14})-aryl-(C_{1}-C_{4})-alkyloxy-, where all these groups are unsubstituted or substituted by one or more identical or different substituents R^{40};

R^{31} and R^{32} which are independent of each other and can be identical or different are selected from the series consisting of hydrogen, (C_{1}-C_{12})-alkyl, (C_{6}-C_{14})-aryl, (C_{6}-C_{14})-aryl-(C_{1}-C_{4})-alkyl-, Het- and Het-(C_{1}-C_{4})-alkyl-, where all these groups are unsubstituted or substituted by one or more identical or different substituents R^{40};

R^{40} is selected from the series consisting of halogen, hydroxy, (C_{1}-C_{9})-alkyloxy-, (C_{6}-C_{14})-aryl-(C_{1}-C_{9})-alkyloxy-, (C_{6}-C_{14})-aryl-(C_{1}-C_{9})-alkyl-, (C_{6}-C_{14})-aryl-(C_{1}-C_{9})-alkyl-, trifluoromethyl, acetylamino-, amino, amidino, guanidino, oxo, nitro and cyano, where the groups R^{40} are independent of each other and can be identical or different;

R^{91}, R^{92} and R^{93} which are independent of each other and can be identical or different are selected from the series consisting of hydrogen, (C_{1}-C_{9})-alkyl, (C_{6}-C_{14})-aryl, (C_{6}-C_{14})-aryl-(C_{1}-C_{4})-alkyl-, Het- and Het-(C_{1}-C_{4})-alkyl-;

R^{94} is selected from the series consisting of (C_{1}-C_{4})-alkyl, (C_{6}-C_{14})-aryl, amino, nitro, halogen, trifluoromethyl, hydroxy, (C_{1}-C_{4})-alkyloxy-, where the groups R^{94} are independent of each other and can be identical or different;

R^{95} is selected from the series consisting of amidino, guanidino, ((C_{1}-C_{4})-alkyl)oxycarbonylamidino-, ((C_{1}-C_{4})-alkyl)oxycarbonylguanidino- and hydroxyamidino-;

R^{96} is hydrogen;

R^{97} is (C_{1}-C_{9})-alkyl-;

R^{99} is selected from the series consisting of hydroxycarbonyl-, (C_{1}-C_{9})-alkyloxycarbonyl-, (C_{6}-C_{14})-aryl-(C_{1}-C_{9})-alkyloxycarbonyl-, aminocarbonyl- and (C_{1}-C_{9})-alkylaminocarbonyl-;

Het is a saturated, partially unsaturated or aromatic monocyclic or bicyclic heterocyclic ring system containing 3 to 10 ring atoms of which 1, 2, 3 or 4 are identical or different heteroatoms selected from the series consisting of nitrogen, oxygen and sulfur;

in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.

2. A compound of the formula I as claimed in claim 1, in which R^{11} is (C_{1}-C_{9})-alkyl, (C_{6}-C_{10})-aryl or (C_{1}-C_{9})-alkyloxy-, in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.

3. A compound of the formula I as claimed in claims 1 and/or 2, in which r is 0 or 1, t is 0 or 1, s is 0, 1 or 2 and R^{95} is amidino, (C_{1}-C_{9})-alkyl)oxycarbonylamidino or hydroxyamidino, in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.

4. A compound of the formula I as claimed in one or more of claims 1 to 3, in which R^{2} is R^{21}(R^{22})CH-, R^{23}-Het-(CH_{2})_{n}- or R^{23}(R^{24})N-(CH_{2})_{n}D-(CH_{2})_{n}-, and D is a divalent residue -C(R^{31})(R^{32})-, a divalent phenylene residue or a divalent residue derived from an aromatic monocyclic group Het, in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.
5. A compound of the formula I as claimed in one or more of claims 1 to 4, in which

- r is 1;
- s is 0 or 1;
- t is 0;
- R^1 is allyloxy carbonyl-;
- R^2 is $R^{21}(R^{22})\text{CH}_2$ or $R^{23}\text{Het}(\text{CH}_2)_k$ or $R^{23}(R^{24})\text{N}(\text{CH}_2)_m\text{D}(\text{CH}_2)_n$;
- D is a divalent residue $-\text{C}(R^{31})(R^{32})-$, a divalent phenylene residue or a divalent residue derived from an aromatic monocyclic group Het;
- R^{94} is halogen;
- R^{95} is amidino or $((\text{C}_1-\text{C}_4)-\text{alkyl})\text{oxycarbonylamidino}$ and is bonded in the 4-position of the phenyl ring in formula I;
- R^{91}, R^{92}, R^{93} and R^{96} are hydrogen;
- R^{97} is $R^{99}\text{CH}_2\text{CH}_2$;
- R^{99} is hydroxycarbonyl- or $((\text{C}_1-\text{C}_4)-\text{alkyl})\text{oxycarbonyl}$;

in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.

6. A process for the preparation of a compound as claimed in one or more of claims 1 to 5, comprising coupling compounds of the formulae II, III and IV

in which the groups $R^1, R^2, R^{91}, R^{92}, R^{93}, R^{94}, R^{95}, R^{96}, R^{97}$ and r, s and t are defined as in claims 1 to 5 or functional groups are present in the form of precursor groups or in protected form and Y^1 and Y^2 are hydroxy or nucleophilically substitutable leaving groups.

7. A pharmaceutical preparation, comprising at least one compound of the formula I as claimed in one or more of claims 1 to 5 and/or its physiologically tolerable salts and a pharmaceutically acceptable carrier.

8. A compound of the formula I as claimed in one or more of claims 1 to 5 and/or its physiologically tolerable salts for use as an inhibitor of factor VIIa.

9. A compound of the formula I as claimed in one or more of claims 1 to 5 and/or its physiologically tolerable salts for inhibiting or reducing blood clotting or inflammatory response or for use in the therapy or prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses.
Patentansprüche

1. Verbindung der Formel I

in welcher

- r für 0, 1, 2 oder 3 steht;
- s für 0, 1, 2, 3 oder 4 steht;
- t für 0, 1 oder 2 steht;

R₁ ausgewählt ist aus der Reihe bestehend aus Wasserstoff, R₁¹-CO- und R₁²-SO₂-;

R₂² für Wasserstoff, R₂¹(R₂²)CH-, R₂³-Het-(CH₂)ₙ-, R₂³(R₂₄)N-(CH₂)m-D-(CH₂)n- oder R₂⁵(R₂⁵)N-CO-(CH₂)p-D-(CH₂)ₚ- steht, worin D ein zweiwertiger Rest -C(R₃¹)ₙ(ₚ)-, ein zweiwertiger (C₆-C₁₄)-Arylenrest oder ein zweiwertiger Rest ist, der abgeleitet ist von einer aromatischen Gruppe Het mit 5 bis 10 Ringatomen, von denen 1, 2, 3 oder 4 Atome identische oder unterschiedliche Ringheteroatome sind, die aus der Reihe bestehend aus Stickstoff, Sauerstoff und Schwefel ausgewählt sind, und worin die Zahlen k, m, n, p und q, die voneinander unabhängig sind und identisch oder unterschiedlich sein können, für 0, 1, 2, 3, 4 oder 5 stehen, wobei, wenn D für -C(R₃¹)(ₚ)- steht, die Summe m + n nicht 0 sein kann und die Summe p + q nicht 0 sein kann;

oder R₂¹ und R₂² zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten, 3-gliedrigen bis 8-gliedrigen carbocyclischen Ring bilden, der an ein oder zwei Ringsysteme
ankondensiert sein kann, die heteroaromatischen Ringe mit 5 bis 10 Ringatomen, von denen 1, 2 oder 3 Atome identische oder unterschiedliche Heteroatome sind, die ausgewählt sind aus der Reihe bestehend aus Stickstoff, Sauerstoff und Schwefel, und/oder \((C_6-C_{10})\)-carbocyclischen, aromatischen Ringe sind, wobei die entstehende Gruppe \(R^{21}(R^{22})CH\)-unsubstituiert oder durch einen oder mehrere identische oder unterschiedliche Substituenten aus einer Reihe bestehend aus \(R^{40}, (C_1-C_9)\)-Alkylamino-, \(Di-((C_1-C_9)\)-alkyl)-amino-, \((C_6-C_{14})\)-Aryl-(C\(_1\)-C\(_4\))alkylamino-, \((C_6-C_{14})\)-Arylamino-, Aminocarbonyl- und Aminocarbonyl-(C\(_1\)-C\(_9\))-alkyl substituiert ist;

\(R^{23}\) für Wasserstoff, \(R^{27}\)-SO\(_2\) oder \(R^{28}\)-CO- steht;

\(R^{24}\) ausgewählt ist aus der Reihe bestehend aus Wasserstoff, \((C_1\)-C\(_9\))-Alkyl, \((C_6\)-C\(_{14}\))-Aryl und \((C_6\)-C\(_{14}\))-Aryl-(C\(_1\)-C\(_4\))-alkyl-

\(R^{25}\) und \(R^{26}\), die voneinander unabhängig sind und identisch oder unterschiedlich sein können, ausgewählt sind aus der Reihe bestehend aus Wasserstoff, \((C_1\)-C\(_9\))-Alkyl, \((C_6\)-C\(_{14}\))-Aryl, \((C_6\)-C\(_{14}\))-Aryl-(C\(_1\)-C\(_4\))-alkyl-, Het- und Het-(C\(_1\)-C\(_4\))-alkyl-, wobei alle diese Gruppen unsubstituiert oder durch einen oder mehrere identische oder unterschiedliche Substituenten \(R^{40}\) substituiert sind;

\(R^{27}\) ausgewählt ist aus der Reihe bestehend aus \((C_1\)-C\(_9\))Alkyl, \((C_6\)-C\(_{14}\))-Aryl, \((C_6\)-C\(_{14}\))-Aryl-(C\(_1\)-C\(_4\))-alkyl-, Het-, Het-(C\(_1\)-C\(_4\))-alkyl-, Amino, \((C_1\)-C\(_9\))-Alkylamino-, \(Di-((C_1\)-C\(_9\))-alkyl)amino-, \((C_6\)-C\(_{14}\))-arylamino- und \((C_6\)-C\(_{14}\))-Aryl-(C\(_1\)-C\(_4\))-alkylamino-, wobei alle diese Gruppen unsubstituiert oder durch einen oder mehrere identische oder unterschiedliche Substituenten \(R^{40}\) substituiert sind;

\(R^{28}\) ausgewählt ist aus der Reihe bestehend aus \(R^{27}, (C_1\)-C\(_9\))-Alkyl-, \((C_6\)-C\(_{14}\))-Aryl-, \((C_6\)-C\(_{14}\))-Aryloxy- und \((C_6\)-C\(_{14}\))-Aryl-(C\(_1\)-C\(_4\))-alkyloxy-, wobei alle diese Gruppen unsubstituiert oder durch einen oder mehrere identische oder unterschiedliche Substituenten \(R^{40}\) substituiert sind;

\(R^{31}\) und \(R^{32}\), die voneinander unabhängig sind und identisch oder unterschiedlich sein können, ausgewählt sind aus der Reihe bestehend aus Wasserstoff, \((C_1\)-C\(_{12}\))-Alkyl, \((C_6\)-C\(_{14}\))-Aryl, \((C_6\)-C\(_{14}\))-Aryl-(C\(_1\)-C\(_4\))-alkyl-, Het- und Het-(C\(_1\)-C\(_4\))-alkyl-, wobei alle diese Gruppen unsubstituiert oder durch einen oder mehrere identische oder unterschiedliche Substituenten \(R^{40}\) substituiert sind;

\(R^{40}\) ausgewählt ist aus der Reihe bestehend aus Halogen, Hydroxy, \((C_1\)-C\(_9\))-alkyl-, \((C_6\)-C\(_{14}\))-Aryl-(C\(_1\)-C\(_9\))alkyl-, \((C_6\)-C\(_{14}\))-Aryloxy-, \((C_1\)-C\(_9\))-Alkyl, \((C_6\)-C\(_{14}\))-Aryl-(C\(_1\)-C\(_9\))-alkyl-, \((C_6\)-C\(_{14}\))-Alkylsulfonyl-, Trifluormethyl, Acetylaminoo-, Amino, Amidino, Guanidino, Oxo, Nitro und Cyan, wobei die Gruppen \(R^{40}\) voneinander unabhängig sind und identisch oder unterschiedlich sein können;

\(R^{91}, R^{92}\) und \(R^{93}\), die voneinander unabhängig sind und identisch oder unterschiedlich sein können, ausgewählt sind aus der Reihe bestehend aus Wasserstoff, \((C_1\)-C\(_9\))-Alkyl, \((C_6\)-C\(_{14}\))-Aryl, \((C_6\)-C\(_{14}\))-Aryl-(C\(_1\)-C\(_4\))-alkyl-, Het- und Het-(C\(_1\)-C\(_4\))-alkyl-, wobei alle diese Gruppen unsubstituiert oder durch einen oder mehrere identische oder unterschiedliche Substituenten \(R^{40}\) substituiert sind;

\(R^{94}\) ausgewählt ist aus der Reihe bestehend aus \((C_1\)-C\(_9\))-Alkyl, \((C_6\)-C\(_{14}\))-Aryl, Amino, Nitro, Halogen, Trifluormethyl, Hydroxy, \((C_1\)-C\(_2\))-alkyl-, wobei die Gruppen \(R^{94}\) voneinander unabhängig sind und identisch oder unterschiedlich sein können;

\(R^{95}\) ausgewählt ist aus der Reihe bestehend aus Amidino, Guanidino, \((C_1\)-C\(_9\))-Alkyl-oxycarbonylamidino-, \((C_1\)-C\(_9\))-Alkyl-oxycarbonylguanidino- und Hydroxyamidino-;

\(R^{96}\) für Wasserstoff steht;

\(R^{97}\) für \(R^{99}\)-(C\(_1\)-C\(_9\))-Alkyl- steht;

\(R^{99}\) ausgewählt ist aus der Reihe bestehend aus Hydroxycarbonyl-, \((C_1\)-C\(_9\))-alkyl-oxycarbonyl-, \((C_6\)-C\(_{14}\)) -Aryl-(C\(_1\)-C\(_9\))-alkyloxycarbonyl-, Aminocarbonyl- und \((C_1\)-C\(_9\))-Alkylaminocarbonyl-;

Het für ein gesättigtes, teilweise ungesättigtes oder aromatisches, monocyclisches oder bicyclisches, heterocyclisches Ringsystem steht, das 3 bis 10 Ringatome enthält, von denen 1, 2, 3 oder 4 Atome identische oder unterschiedliche Heteroatome sind, die aus der Reihe bestehend aus Stickstoff, Sauerstoff und Schwefel aus-
gewählt sind;

in allen ihren stereoisomeren Formen und Mischungen davon in jedem Verhältnis, und ihre physiologisch verträglichen Salze.

2. Verbindung der Formel I gemäß Anspruch 1, worin R₁¹ für (C₁₋C₈)-Alkyl, (C₆₋C₁₀)-Aryl oder (C₁₋C₈)-Alkylhydroxy- steht, in allen ihren stereoisomeren Formen und Mischungen davon in jedem Verhältnis, und ihre physiologisch verträglichen Salze.

3. Verbindung der Formel I gemäß Anspruch 1 und/oder 2, worin r für 0 oder 1 steht, t für 0 oder 1 steht, s für 0, 1 oder 2 steht und R₉⁵ für Amidino, ((C₁₋C₄)-Alkyl)oxycarbonylamidino oder Hydroxyamidino steht, in allen ihren stereoisomeren Formen und Mischungen davon in jedem Verhältnis, und ihre physiologisch verträglichen Salze.

4. Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 3, worin R² für R²₁(R²₂)CH-, R²₃, Het-(CH₂)ₖ- oder R²₃(R²₄)N-(CH₂)ₘ-D-(CH₂)ₙ- steht und D ein zweiwertiger Rest -C(R₃¹)(R₃₂)-, ein zweiwertiger Phenylrest oder ein zweiwertiger, von einer aromatischen, monocyclischen Gruppe Het abgeleiteter Rest ist, in allen ihren stereoisomeren Formen und Mischungen davon in jedem Verhältnis, und ihre physiologisch verträglichen Salze.

5. Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 4, worin

r für 1 steht;

s für 0 oder 1 steht;

t für 0 steht;

R¹ für Alkylhydroxy- steht;

R² für R²₁(R²₂)CH-, R²₃, Het-(CH₂)ₖ- oder R²₃(R²₄)N-(CH₂)ₘ-D-(CH₂)ₙ- steht;

D für einen zweiwertigen Rest -C(R₃¹)(R₃₂)-, einen zweiwertigen Phenylrest oder einen zweiwertigen, von einer aromatischen, monocyclischen Gruppe Het abgeleiteten Rest steht;

R₉⁴ für Halogen steht;

R₉⁵ für Amidino oder ((C₁₋C₄)-Alkyl)oxycarbonylamidino- steht und in der 4-Position des Phenylringes in der Formel I gebunden ist;

R₉¹, R₉², R₉³ und R₉⁶ für Wasserstoff stehen;

R₉⁷ für R₉₉-CH₂-CH₂- steht;

R₉⁹ für Hydroxy carboxyl- oder ((C₁₋C₄)-Alkyl)oxycarboxyl- steht;

in allen ihren stereoisomeren Formen und Mischungen davon in jedem Verhältnis, und ihre physiologisch verträglichen Salze.

6. Verfahren zur Herstellung einer Verbindung gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Verbindungen der Formeln II, III und IV gekoppelt werden,
in denen die Gruppen R₁, R², R₉¹, R₉², R₉³, R₉₄, R₉₅, R₉₆, R₉₇ sowie r, s und t wie in den Ansprüchen 1 bis 5 definiert sind oder funktionelle Gruppen in Form von Vorläufergruppen oder in geschützter Form vorliegen, und Y¹ und Y² für Hydroxy oder nucleophil substituierbare Abgangsgruppen stehen.

7. Pharmazeutische Zubereitung, **dadurch gekennzeichnet, daß** sie mindestens eine Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5 und/oder ihre physiologisch verträglichen Salze und einem pharmaceutisch akzeptablen Träger enthält.

8. Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5 und/oder ihre physiologisch verträglichen Salze zur Verwendung als Faktor Vila-Hemmstoff.

9. Verbindung der Formel I gemäß einem oder mehreren der Ansprüche 1 bis 5 und/oder ihre physiologisch verträglichen Salze zur Hemmung oder Verminderung der Blutgerinnung oder von Entzündungsreaktionen oder zur Verwendung in der Therapie oder Prophylaxe von Herz-Kreislauf-Krankheiten, thromboembolischen Erkrankungen oder Restenosen.

Revendications

1. **Composé de formule I,**

dans laquelle
R1 est choisi dans une série qui comprend de l'hydrogène, les groupements R1-CO et R1-SO2 : R1 est choisi dans la série qui comprend de l'hydrogène, les groupements (C1-C6)-alkyl, (C9-C14)-aryl, (C2-C14)-aryl-(C1-C6)-alkyl, Hét- Hét-(C1-C6)-alkyl, (C1-C6)-alkyloxy-, (C6-C14)-aryloxy-, (C6-C14)-aryl-(C1-C4)-alkyloxy-, amino, (C1-C6)-alkyl-, Hét-, Hét-(C1-C6)-alkyl-, (C6-C14)-aryloxy-, (C6-C14)-aryl-(C1-C4)-alkylamino-, (C6-C14)-arylamino-, aminocarbonyl- et aminocarbonyl-(C1-C8)-alkyl-, où tous ces groupements sont non substitués ou substitués par un ou plusieurs substituants R40 différents ou identiques : R12 est choisi dans la série qui comprend les groupements (C1-C6)-alkyl, (C9-C14)-aryl, (C2-C14)-aryl-(C1-C6)-alkyl, Hét- Hét-(C1-C6)-alkyl, di((C1-C6)-alkyl)amine- et di((C6-C14)-aryl-(C1-C6)-alkyl)amine, où tous ces groupements sont non substitués ou substitués par un ou plusieurs substituants R40 différents ou identiques ; R2 est de l'hydrogène, un groupement R21(R22)CH-, R23-R26Hét-(CH2)k-, R23(R24)N-(CH2)nD-(CH2)m- où R25 (R26)N-CO-(CH2)p-D-(CH2)q-, dans lequel D est un résidu divalent -C(R31)(R32)-, un résidu divalent (C6-C14)-arylène ou un résidu divalent provenant d'un groupement aromatique Hét contenant 5 à 10 atomes cycliques dont 1, 2, 3 ou 4 sont des hétéro-atomes cycliques différents ou identiques choisis dans la série qui comprend de l'azote, de l'oxygène et du soufre, et les nombres k, m, n, p et q qui sont indépendants les uns des autres et peuvent être identiques ou différents sont égaux à 0, 1, 2, 3, 4 ou 5, avec la condition que dans le cas où D est le groupement -C(R31)(R32)-, la somme m + n ne peut pas être égale à 0 et la somme p + q ne peut pas être égale à 0 ; R2 et R22 qui sont indépendants l'un de l'autre et peuvent être identiques ou différents sont choisis dans la série qui comprend de l'hydrogène, les groupements (C1-C6)-alkyl, (C9-C14)-aryl, (C2-C14)-aryl-(C1-C6)-alkyl, Hét- Hét-(C1-C6)-alkyl, où tous ces groupements sont non substitués ou substitués par un ou plusieurs substituants identiques ou différents provenant de la série qui comprend les groupements R40, (C1-C6)-alkylamino-, di((C1-C6)-alkyl)amino-, (C6-C14)-aryl-(C1-C6)-alkylamino-, (C6-C14)-arylamino-, aminocarbonyl- et aminocarbonyl-(C1-C6)-alkyl-, ou R21 et R26 ensemble avec l'atome de carbone sur lequel ils sont fixés forment un cycle carbocyclique saturé ou insaturé qui comprend de 3 à 8 membres qui peut être condensé en un ou deux systèmes cycliques qui sont des cycles hétéro-aromatiques contenant 5 à 10 atomes cycliques dont 1, 2 ou 3 sont des hétéro-atomes identiques ou différents choisis dans la série qui comprend de l'azote, de l'oxygène et du soufre, et/ou des cycles aromatiques carbocycliques en (C6-C10), où le groupement produit R21(R22)CH- est non substitué ou substitué par un ou plusieurs substituants identiques ou différents provenant de la série qui comprend les groupements R40, (C1-C6)-alkylamino-, di((C1-C6)-alkyl)amino-, (C6-C14)-aryl-(C1-C6)-alkylamino-, (C6-C14)-arylamino-, aminocarbonyl- et aminocarbonyl-(C1-C6)-alkyl- ; R23 est de l'hydrogène, un groupement R27-SO2- ou R28-CO- ; R24 est choisi dans la série qui comprend de l'hydrogène, les groupements (C1-C6)-alkyl, (C6-C14)-aryl et (C2-C14)-aryl-(C1-C6)-alkyl- ; R25 et R26 qui sont indépendants l'un de l'autre et peuvent être identiques ou différents sont choisis dans la série qui comprend de l'hydrogène, les groupements (C1-C6)-alkyl, (C9-C14)-aryl, (C2-C14)-aryl-(C1-C6)-alkyl, Hét- Hét-(C1-C6)-alkyl-, où tous ces groupements sont non substitués ou substitués par un ou plusieurs substituants R40 identiques ou différents : R27 est choisi dans la série qui comprend les groupements (C1-C6)-alkyl, (C6-C14)-aryl, (C6-C14)-aryl-(C1-C6)-alkyl-, Hét- Hét-(C1-C6)-alkyl-, amino, (C1-C6)-alkylamino-, di((C1-C6)-alkyl)amino-, (C6-C14)-aryl-(C1-C6)-alkylamino-, (C6-C14)-arylamino- et (C6-C14)-arylamino-, aminocarbonyl- et aminocarbonyl-(C1-C6)-alkyl-, où tous ces groupements sont non substitués ou substitués par un ou plusieurs substituants R40 identiques ou différents ; R28 est choisi dans la série qui comprend les groupements R27, (C1-C6)-alkoxy-, (C6-C14)-aryloxy- et (C6-C14)-aryl-(C1-C6)-alkoxy-, où tous ces groupements sont non substitués ou substitués par un ou plusieurs substituants R40 identiques ou différents ; R29 et R32 qui sont indépendants l'un de l'autre et peuvent être identiques ou différents sont choisis dans la série qui comprend de l'hydrogène, les groupements (C1-C12)-alkyl, (C9-C14)-aryl, (C6-C14)-aryl-(C1-C6)-alkyl-, Hét- Hét-(C1-C6)-alkyl-, où tous ces groupements sont non substitués ou substitués par un ou plusieurs substituants R40 identiques ou différents ; R30 est choisi dans la série qui comprend les groupements halogène, hydroxy, (C1-C6)-alkoxy-, (C6-C14)-aryl-(C1-C6)-alkoxy-, (C6-C14)-aryloxy-, (C1-C6)-alkyl, (C6-C14)-aryl-(C1-C6)-alkyl, (C1-C6)-arylsulfonyl-, trifluorométhyl, acétylamino-, amino, amidino, guanidino, oxo, nitro et cyano, où les groupements R40 sont indépendants les uns des autres et peuvent être identiques ou différents ; R31, R32 et R33 qui sont indépendants les uns des autres et peuvent être identiques ou différents sont choisis dans la série qui comprend de l'hydrogène, les groupements (C1-C9)-alkyl, (C6-C14)-aryl, (C6-C14)-aryl-(C1-C6)-alkyl, (C6-C14)-aryl-(C1-C6)-alkylamino-.
aryl-(C₁-C₄)-alkyl-, Hét- et Hét-(C₁-C₄)-alkyl- ;
R⁹⁴ est choisi dans la série qui comprend les groupements (C₁-C₄)-alkyl, (C₆-C₁₄)-aryl, amino, nitro, halogène, trifluorométhyl, hydroxy, (C₁-C₄)-alkoxy-, où les groupements R⁹⁴ sont indépendants les uns des autres et peuvent être identiques ou différents ;
R⁹⁵ est choisi dans la série qui comprend les groupements amidino, guanidino, ((C₁-C₄)-alkyl)oxycarbonylamidino-, ((C₁-C₄)-alkyl)oxycarbonylguanidino- et hydroxyamidino- ;
R⁹⁶ est de l'hydrogène ;
R⁹⁷ est un groupement R⁹⁹-(C₁-C₈)-alkyl- ;
R⁹⁹ est choisi dans la série qui comprend les groupements hydroxycarbonyl-, (C₁-C₆)-alkyloxycarbonyl-, (C₆-C₁₄)-aryl-(C₁-C₄)-alkyloxycarbonyl-, aminocarbonyl- et (C₁-C₈)-alkylaminocarbonyl- ;
Hét est un système cyclique hétérocyclique saturé, partiellement insaturé ou aromatique monocyclique ou bicyclique qui comprend 3 à 10 atomes cycliques dont 1, 2, 3 ou 4 sont des hétéro-atomes identiques ou différents choisis dans la série qui comprend de l'azote, de l'oxygène et du soufre ;
dans toutes ses formes stéréo-isomériques et des mélanges de celles-ci dans n'importe quelle proportion et ses sels physiologiquement tolérables.

2. Composé de formule I selon la revendication 1, dans lequel R¹¹ est un groupement (C₁-C₈)-alkyl, (C₆-C₁₀)-aryl ou (C₁-C₄)-alkoxy-, dans toutes ses formes stéréo-isomériques et des mélanges de celles-ci dans n'importe quelle proportion et ses sels physiologiquement tolérables.

3. Composé de formule I selon les revendications 1 et/ou 2, dans lequel r est égal à 0 ou 1, t est égal à 0 ou 1, s est égal à 0, 1 ou 2 et R⁹⁵ est un groupement amidino, ((C₁-C₄)-alkyl)oxycarbonylamidino ou hydroxyamidino, dans toutes ses formes stéréo-isomériques et des mélanges de celles-ci dans n'importe quelle proportion et ses sels physiologiquement tolérables.

4. Composé de formule I selon une ou plusieurs des revendications 1 à 3, dans lequel R² est un groupement R²¹ ((R²²)CH-, R²³-Hét-(CH₂)ₖ- ou R²³(R²⁴)N-(CH₂)ₘ-D-(CH₂)ₙ- et D est un résidu divalent -C(R³¹)(R³²)-, un résidu phénylène divalent ou un résidu divalent dérivé d'un groupement Hét aromatique monocyclique, dans toutes ses formes stéréo-isomériques et des mélanges de celles-ci dans n'importe quelle proportion et ses sels physiologiquement tolérables.

5. Composé de formule I selon une ou plusieurs des revendications 1 à 4, dans lequel
r est égal à 1 ;
s est égal à 0 ou 1 ;
t est égal à 0 ;
R¹ est un groupement allyloxycarbonyl- ;
R² est un groupement R²¹((R²²)CH-, R²³-Hét-(CH₂)ₖ- ou R²³(R²⁴)N-(CH₂)ₘ-D-(CH₂)ₙ- ;
D est un résidu divalent -C(R³¹)(R³²)-, un résidu phénylène divalent ou un résidu divalent dérivé d'un groupement Hét aromatique monocyclique ;
R⁹⁴ est un halogène ;
R⁹⁵ est un groupement amidino ou ((C₁-C₄)-alkyl)oxycarbonylamidino- et est fixé sur la position 4 du cycle phényl dans la formule I ;
R⁹¹, R⁹², R⁹³ et R⁹⁶ sont de l'hydrogène ;
R⁹⁷ est un groupement R⁹⁹-(C₂H₆)₂-C= ;
R⁹⁹ est un groupement hydroxycarbonyl- ou ((C₁-C₄)-alkyl)oxycarbonyl- ;
dans toutes ses formes stéréo-isomériques et des mélanges de celles-ci dans n'importe quelle proportion et ses sels physiologiquement tolérables.

6. Procédé pour la préparation d'un composé selon une ou plusieurs des revendications 1 à 5, qui comprend le couplage de composés des formules II, III et IV
dans lesquels les groupements $R_1, R_2, R_91, R_92, R_93, R_94, R_95, R_96, R_97$ et r, s et t sont définis comme dans les revendications 1 à 5 ou des groupements fonctionnels sont présents sous la forme de groupements précurseurs ou sous une forme protégée et Y^1 et Y^2 sont un groupement hydroxy ou un groupement libérable qui peut faire l'objet d'une substitution nucléophile.

7. Préparation pharmaceutique qui comprend au moins un composé de formule I selon une ou plusieurs des revendications 1 à 5 et/ou ses sels physiologiquement tolérables et un vecteur pharmaceutiquement acceptable.

8. Composé de formule I selon une ou plusieurs des revendications 1 à 5 et/ou ses sels physiologiquement tolérables pour une utilisation comme inhibiteur du facteur VIIa.

9. Composé de formule I selon une ou plusieurs des revendications 1 à 5 et/ou ses sels physiologiquement tolérables pour inhiber ou réduire la coagulation sanguine ou la réponse inflammatoire ou pour une utilisation dans le traitement ou la prophylaxie des affections cardiovasculaires, des pathologies thromboemboliques ou des resténoses.