WATER-IN-OIL HAIR CONDITIONER WITH LAMELLAR DISPERSION IN WATER PHASE

WASSE-R-IN-ÖL-HAARPFLEGMITTEL MIT LAMELLARER DISPERSION IN EINER WÄSSRIGEN PHASE

APRES-SHAMPOOING EAU DANS L’HUILE AVEC DISPERSION LAMELLAIRE DANS LA PHASE AQUEUSE

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Priority: 25.06.1999 US 344015

Date of publication of application: 27.03.2002 Bulletin 2002/13

Proprietors:
• Unilever PLC
 London
 EC4Y 0DY (GB)
 Designated Contracting States:
 CY GB IE
• Unilever N.V.
 3013 AL Rotterdam (NL)
 Designated Contracting States:
 AT BE CH DE DK ES FI FR GR IT LI LU MC NL PT SE

Inventors:
• CHEN, Liang Bin,
 Unilever Home & Personal Care USA
 Rolling Meadows,
 Chicago, IL 60008 (US)
• SUN, Wei Mei,
 Unilever Home & Personal Care USA
 Chicago, IL 60008 (US)

Representative: Newbould, Frazer Anthony et al
Unilever PLC
Unilever Patent Group
Colworth House
Sharnbrook
Bedford, Bedfordshire MK44 1LQ (GB)

References cited:
• EP-A- 0 331 833
• EP-A- 0 490 582
• EP-A- 0 715 842
• EP-A- 0 976 391
• US-A- 4 606 913

• PATENT ABSTRACTS OF JAPAN vol. 014, no. 250 (C-0723), 29 May 1990 (1990-05-29) & JP 02 068137 A (LION CORP), 7 March 1990 (1990-03-07) cited in the application

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

[0001] Traditionally hair conditioners have used a combination of cationic surfactants and long chain fatty alcohols to provide a desirable viscosity and an opaque appearance. It is generally believed that the conditioning benefit is mainly due to the deposition of lamellar gel phase formed by a mixture of alkyl cationic quaternary ammonium compound and fatty alcohol. In most U.S. conditioners dialkyl cationic quat is used, whereas monoalkyl quat is used in most European formulations. The difference between these two systems is that the dialkyl quat can form a lamellar gel phase by itself while the monoquat is too water soluble to do so alone and requires the addition of fatty alcohol to create the lamellar gel structure.

[0002] Recent results suggest that to achieve the best instrumental wet combing for conditioners, less fatty alcohol is preferred. However, it is also known that taking fatty alcohol out of the dialkyl-based conditioners results in a translucent and thin product. These attributes are considered negatives by consumers. Therefore a problem in the art has been to thicken and opacify the non-fatty alcohol containing lamellar system. In the present invention, the compositions have both high viscosity and opacity through the use of a high internal phase water-in-oil emulsion with the lamellar gel particles dispersed inside the internal water phase.

[0003] The following is a list of patents in this field.

US 4,057,622;
US 5,539,021;
US 5,534,246;
EP 0435483;
JP 10137576;
US 5,688,831;
USP 4,784,844;
EP 160430;
JP 7165529;
Japanese Patent Application Kokai 3-193718 (published August 23, 1991); and
JP 2068137

[0004] The present invention is directed to new opaque conditioning water in oil emulsion compositions that are esthetically acceptable to consumers, improve the wet combing and dry combing properties of hair, leave the dry hair with satisfactory cosmetic and physical properties. These compositions are easy to rinse, and leave the hair with a soft dry feel.

SUMMARY OF THE INVENTION

[0005] The invention relates to opaque hair conditioner compositions that have a lamellar dispersion in the internal aqueous phase.

[0006] The purpose of the invention is to provide a conditioner with improved performance, that is opaque and thick, and contains no fatty alcohol to thicken and opacify system.

[0007] More specifically, the present invention relates to opaque hair conditioner compositions which are water in oil emulsions in which lamellar gel particles are dispersed inside the internal water phase which comprise

a) 40 to 95% aqueous phase comprising (i) water and (ii) a cationic surfactant, capable of forming lamellar dispersion, typically 0.1 to 10 % of the aqueous phase

b) 0.5 to 30 % oil, selected from a volatile silicone compound, a nonvolatile silicone compound, a volatile hydrocarbon compound, a nonvolatile hydrocarbon compound, or a mixture thereof.

c) 0.1 to 20 % silicone surfactant.

d) optional compounds are those compounds that cannot form a lamellar phase alone, but can participate in the formation of a lamellar phase in the presence of cationic surfactants, in a amount of 0 to 10%, and preferably 0.1 to 5% by weight of the aqueous phase. Exemplary classes of such compounds includes di-long chain alkyl amines (i.e. C₁₀ to C₂₂), long chain fatty alcohols (i.e. C₁₀ to C₂₂), ethoxylated fatty alcohols.
The cationic surfactant is present at a most preferred range of 1 to 5% of the aqueous phase.

The aqueous phase is present in a range of 70 to 92%, most preferably at 75 to 90%.

Component b is present at 3 to 20% of the aqueous phase, most preferably at 5 to 15% of the aqueous phase.

The silicone surfactant is present preferably at 0.1-15% of the aqueous phase, most preferably at 0.1-10% of the aqueous phase.

The compositions of the invention have the following viscosity ranges measured at 26.7°C (80°F): using Brookfield at T-spindle (TA or TB) at 0.5 rpm 20,000 cps to 600,000 cps; RV 4 to 6 spindle, 20 rpm, 100 cps to 20,000 cps.

Most preferably, the present invention relates to opaque hair conditioner compositions which are water in oil emulsions which comprise:

- a) 1 to 6% cationic surfactant in the aqueous phase
- b) 0 to 10% silicone oil or 0 to 10% hydrocarbon oil with the proviso that the silicone oil and the hydrocarbon oil cannot both be 0.
- c) 0.4 to 7% silicone surfactant
 The oil phase of these compositions comprises ingredients b and c. The aqueous phase comprises ingredient a.

As noted above, in the present invention, the compositions have both high viscosity and opacity through the use of a high internal phase water-in-oil emulsion with the lamellar gel particles dispersed inside the internal water phase. These compositions deliver lamellar gel phase onto the hair.

Another aspect of the invention is to provide a method of treating the hair to yield well-conditioned hair having esthetically pleasing physical properties by contacting the hair with an opaque conditioner of the present invention.

Another aspect of the invention is to provide a conditioning composition which is easy to rinse from the hair. The compositions of the invention are easy to rinse from the hair due to the presence of the lamellar dispersion.

DETAILED DESCRIPTION OF THE INVENTION

Unless indicated otherwise, as used herein, % means weight %. The starting materials set forth herein are either known or can be prepared in accordance with known methods.

By the word lamellar is meant lyotropic lamellar phases. The lamellar phases including lamellar dispersion consist of stacks of surfactant bilayers separated by a solvent, usually water. The non-polar portions of the surfactant associate with each other and form a bilayer unit. Water is dispersed between the layers of surfactant polar groups. In this invention, the lamellar phase consists of a multilayered vesicle (or liposome)-like structure at ambient temperature. That is, the surfactant systems used in this invention have a Krafft temperature higher than 25°C. The Krafft temperature corresponds to the melting point of the hydrocarbon chains in the surfactant, and is the temperature below which the surfactant hydrocarbon chains are solid-like and ordered. For example, the Krafft temperature for the distearyldimethylammonium chloride is about 47°C. Below that temperature including room temperature the surfactants form lamellar dispersed phases with particle sizes in the ranges of sub-micron to ten microns.

More specifically, the present invention relates to opaque hair conditioner compositions which are water in oil emulsions which comprise

- a) about 40 to 95% aqueous phase comprising (i) water and (ii) a cationic surfactant, capable of forming lamellar dispersion, typically about 0.1 to about 10% of the aqueous phase
- b) about 0.5 to about 30 % oil, selected from a volatile silicone compound, a nonvolatile silicone compound, a volatile hydrocarbon compound, a nonvolatile hydrocarbon compound, or a mixture thereof.
- c) about 0.1 to about 20 % silicone surfactant.
- d) optional compounds are those compounds that cannot form a lamellar phase alone, but can participate in the formation of a lamellar phase in the presence of cationic surfactants, in a amount of 0 to about 10%, and preferably about 0.1 to 5% by weight of the aqueous phase. Exemplary classes of such compounds includes di-long chain alkyl amines (i.e. C10 to C22), long chain fatty alcohols (i.e. C10 to C22), ethoxylated fatty alcohols.

The cationic surfactant is present at a most preferred range of about 1 to about 5% of the aqueous phase.

The aqueous phase is present in a range of about 70 to about 92%, most preferably at about 75 to about 90%.

Component b is present at about 3 to about 20% of the aqueous phase, most preferably at about 5 to about
15% of the aqueous phase.

[0023] The silicone surfactant is present preferably at about 0.1-15% of the aqueous phase, most preferably at about 0.1-10% of the aqueous phase.

[0024] Most preferably, the present invention relates to opaque hair conditioner compositions which are water in oil emulsions which comprise:

a) about 1 to about 6% cationic surfactant in the aqueous phase

b) about 0 to about 10% silicone oil or about 0 to about 10% hydrocarbon oil with the proviso that the silicone oil and the hydrocarbon oil cannot both be 0.

c) about 0.4 to about 7% silicone surfactant

[0025] The oil phase of these compositions comprises ingredients b and c. The aqueous phase comprises ingredient a.

[0026] Most preferably, the present invention relates to opaque hair conditioner compositions which are water in oil emulsions which comprise:

- about 1 to about 6% cationic surfactant in the aqueous phase
- about 0 to about 10% silicone oil or about 0 to about 10% hydrocarbon oil with the proviso that the silicone oil and the hydrocarbon oil cannot both be 0.
- about 0.4 to about 7% silicone surfactant

[0027] As noted above, in the present invention, the compositions have both high viscosity and opacity through the use of a high internal phase water-in-oil emulsion with the lamellar gel particles dispersed inside the internal water phase. These compositions deliver lamellar gel phase onto the hair.

[0028] The compositions of the invention are easy to rinse from the hair due to the presence of the lamellar Cationic surfactants in the compositions of the invention can have the structure

\[
R_1 \quad N^{+} \quad R_3 \quad X^{-} \quad R_4
\]

wherein R₁ is an alkyl group including from 8 to 20 carbon atoms; R₂ is selected from the group consisting of an alkyl group including from 8 to 20 carbon atoms, a hydrogen atom, a methyl group, a hydroxymethyl group and a hydroxyethyl group; R₃ is selected from the group consisting of a benzyl group, a hydrogen group, a methyl group, an ethyl group, a hydroxymethyl group and a hydroxyethyl group; and X is an anion. The quaternary nitrogen of the water-soluble quaternary ammonium compound also can be a component of a heterocyclic nitrogen-containing moiety, such as morpholine or pyridine. The anion of the quaternary ammonium compound can be any common anion, such as chloride, methosulfate, ethosulfate, nitrate, bromide, tosylate, acetate, or phosphate.

[0029] The water-soluble quaternary ammonium compounds have one or two long chain alkyl groups containing from about 8 to about 18 carbon atoms. The long chain alkyl groups also can include, in addition to, or in replacement of, carbon and hydrogen atoms, ether linkages or similar water-solubilizing linkages. The remaining two or three substitutes of the quaternary nitrogen of the quaternary ammonium compound can be hydrogen; benzyl; or short chain alkyl or hydroxyalkyl groups, such as methyl, ethyl, hydroxymethyl or hydroxyethyl groups; or combinations thereof, either of the same or different identity.

[0030] Exemplary water-soluble quaternary ammonium compounds include, but are not limited to, laurtrimonium chloride; Quaternium-16; lauralkonium chloride; olealkonium chloride; dilauryldimonium chloride; cetalkonium chloride; dicetylmonium chloride; laurylpyridinium chloride; cetpyridinium chloride; soyatrimonium chloride; Polyoquaternium-6; Polyoquaternium-7; guarhydroxypropyltrimonium chloride; polyquaternium-11; polyquaternium-5; polyquaternium-10; polyquaternium-24; cettrimonium chloride; Quaternium-24; mytrimonium chloride; PEG-2 coconium chloride; PEG-2 cocoql quaternium 4; PEG-15 cocoql quaternium 4; PEG-2 stearyl quaternium 4; PEG-15 stearyl quaternium 4; PEG-2 oleyl quaternium 4; PEG-15 oleyl quaternium 4, and mixtures thereof, wherein the compound designation is provided by the Cosmetic, toiletry and Fragrance Association, Inc. in the CTFA Cosmetic Ingredient Dictionary, 4th Ed., 1991, hereinafter referred to as the CTFA Dictionary. Other water-soluble quaternary ammonium compounds are listed in the CTFA Cosmetic Ingredient Handbook, 1st Ed., 1988 (hereinafter the CTFA Handbook) at page 40-42, incorporated herein by reference.
Exemplary of the silicone surfactants or emulsifiers that are used in compositions of the invention is a dimethicone, which is a dimethylsiloxane polymer having polyoxyethylene and/or polyoxypropylene side chains, such as DOW CORNING 3225C and 5225C FORMULATION AID, available from Dow Corning Co., Midland, MI, ABIL EM 97, available from Goldschmidt Chemical Corporation, Hopewell, VA and SILWET™ series, available from OSI Specialties, Inc., Danbury, CT. The dimethicone copolyol has about 15 or fewer ethylene oxide and/or propylene oxide monomer units, in total, in the side chains. Dimethicone copolyols conventionally are used in conjunction with silicones because the oil-soluble, silicon-based surfactants are extremely soluble in a volatile or a nonvolatile silicone compound, and are extremely insoluble in water.

These dimethicone copolyols which are employed in compositions of the invention, can be dimethicone copolyols with HLB values of less than 10, more preferably about 2 to about 8. These dimethicone copolyols can have a molecular weight of about 600 to about 20,000. These dimethicone copolyols can be from the SILWET series such as DC 5225C and DC 3225C. Also alkyl dimethicones such as cetyl dimethicone can be used in compositions of the invention.

Dimethicone copolyols can have the following formula:

\[
\text{Me}_3\text{SiO} \left(\text{Me}_2\text{SiO}\right)_x \left(\text{MeSiO}\right)_y \text{SiMe}_3 \frac{\text{PE}}{}
\]

Wherein

\[
\text{PE} = \text{-CH}_2\text{CH}_2\text{O} \left(\text{EO}\right)_m \left(\text{PO}\right)_n \text{Z}
\]

Wherein Me is methyl, EO is ethyleneoxy, PO is 1,2-propyleneoxy, x and y are 1 or greater, m and n are 0 or greater, provided that the molecular weight of the PE moiety must be greater than 1,000 and Z is hydrogen or lower alkyl (like a C_1-C_5 alkyl).

Another exemplary, but non-limiting, oil-soluble, silicon-based surfactant is an alkyl dimethicone copolyol, such as cetyl dimethicone copolyol available commercially as ABILEM 90 from Goldschmidt Chemical Corporation, Hopewell, VA. the alkyl dimethicone copolyols have the structure:

\[
\begin{align*}
\text{CH}_3 & \text{-Si-O} & & & & & & & & \text{CH}_3 \\
\text{CH}_3 & & & & & & & & & \text{-Si-O} \\
\text{CH}_3 & & & & & & \text{(CH}_2\text{)}_p & & & \text{CH}_3 \\
\text{CH}_3 & & & & & & & & & \text{O} \\
\text{PE} & & & & & & & & & \text{m} \\
\end{align*}
\]

wherein

\[
\begin{align*}
p & \text{ is numeral from 7 through 17;} \\
q & \text{ is a numeral from 1 through 100;} \\
m & \text{ is a numeral from 1 through 40;} \\
n & \text{ is a numeral from 0 through 200; and} \\
\text{PE} & \text{ is } (\text{C}_2\text{H}_4\text{O})_a (\text{C}_3\text{H}_6\text{O})_b \text{H having a molecular weight of about 250 to about 2000, wherein } a \text{ and } b \text{ are selected such that the weight ratio of } \text{C}_2\text{H}_4\text{O/C}_3\text{H}_6\text{O is from 100/0 to 20/80.}
\end{align*}
\]
Structure of Volatile Silicone Oils which can be included in compositions of the invention

[0035] The silicone oil phase of the compositions of the invention comprises a volatile silicone oil, a nonvolatile silicone oil phase or a mixture thereof preferably, the volatile silicone compound. Exemplary volatile silicone compounds include, but are not limited to, volatile, low molecular weight polydimethylsiloxane compounds. They can be either a linear or a cyclic polydimethylsiloxane compound having a viscosity of about 0.5 to 10 cst (centistokes). The preferred volatile polydimethylsiloxanes have a viscosity in the range of about 0.5 to about 6 cst.

[0036] The cyclic, volatile, low molecular weight polydimethylsiloxanes, designated in the CTFA Dictionary as cyclomethicones, are the preferred siloxanes used in a composition of the present invention. These volatile compounds have an average of about 3 to about 6 - [O-Si (CH₃)₂] - repeating group units per molecule (hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and mixtures thereof); boil at atmosphere pressure at about 150 °C to about 250 °C. The polydimethyl cyclosiloxanes having an average of about 4 to about 5 repeating units per molecule are especially preferred. Suitable cyclomethicones are available commercially under the trade names DOW CORNING 245 Fluid, DOW CORNING 344 Fluid and DOW CORNING 345 Fluid from DOW CORNING Corporation, Midland, MI., and SILICONE SF-1173 and SILICONE SF-1202 from General Electric, Waterford, NY.

[0037] An example of a linear, low molecular weight, volatile polydimethylsiloxane compound is designated in the CTFA Dictionary as decamethyltetrasiloxane, available commercially under the trade names DOW CORNING 200 Fluid having a viscosity of 1.5 cst and a boiling point of 195 °C. Other linear polydimethylsiloxanes includes octamethyltrisiloxane, and decamethylpentasiloxane also be useful in the composition of the present invention.

Structure of Volatile Hydrocarbon Oils which can be included in compositions of the invention

[0038] The volatile hydrocarbon oil phase comprises about 6 to 20 carbon atoms. A preferred volatile hydrocarbon compound is an aliphatic hydrocarbon having about 8 to 16 carbon atoms, and having a boiling point of about 100 to 250 °C. Exemplary volatile hydrocarbon compound include, isododecane and isohexadecane, i.e., PERMETHYL 99A, PERMETHYL 101A, available from Presperse, Inc., South Plainfield, NJ. Other examples are depicted in general structure formula (I), wherein n ranges from 2 to 3.

\[
\text{H}_3\text{C} - (\text{C} - \text{CH}_2)_n - \text{CH}_2 - \text{CH}_3
\]

[0039] Another exemplary volatile hydrocarbon compound is ISOPAR M (a C₁₂ - C₁₄ isoparaffin available From EXXON Chemical Co., Baytown, TX).

Structure of Non-volatile Silicone Compounds which can be included in compositions of the invention

[0040] Exemplary nonvolatile silicone compounds include a polydimethylsiloxane, polyalkyl siloxane, a polyaryl siloxane or a polyalkylaryl siloxane. The nonvolatile silicones are nonfunctional siloxanes or siloxane mixtures having a viscosity of about 10 to about 10,000 cst, and most preferred viscosity about 10 to 500 cst at 25°C. A nonvolatile silicone compound having a boiling point at atmospheric pressure of greater than about 250°C. A phenyltrimethicone also is useful as a nonvolatile silicone compound. Example include DC 556 fluid, which is available from Dow Corning.

Structure of Non-volatile Hydrocarbon Compounds which can be included in compositions of the invention

[0041] The nonvolatile oil phase also can comprise a nonvolatile hydrocarbon compound, such as mineral oil, isoeicosane. Other exemplary compounds includes water insoluble emollient, such as, for example, an ester having at least about 10 carbon atoms, and preferably about 10 to about 32 carbon atoms. Suitable esters include but not limited to, for example, aliphatic monohydric alcohol esters including isopropyl myristate and aliphatic di- or tri-esters of polycarboxylic acids including dioctyl adipate.
Polymeric Resins Which Can Be Included in Compositions of the Invention

Compositions of the invention also can comprise polymeric compound can be a hair fixative or film former that imparts style-retention properties to hair, i.e. sets the hair. The hair fixative typically is a homopolymer, a copolymer, or a terpolymer. The polymer can be nonionic, amphoteric or cationic. Examples of hair fixatives include, but not limited to, an acrylamide copolymer; a polyethylene copolymer; an water-dispersible polyester; a cationic cellulose; a polyacrylamide; Polyquaternium-1; Polyquaternium-2; Polyquaternium-4; Polyquaternium-5; Polyquaternium-6; Polyquaternium-7; Polyquaternium-8; Polyquaternium-10; Polyquaternium-11; Polyquaternium-12; Polyquaternium-13; Polyquaternium-14; Polyquaternium-15; Polyquaternium-16; Polyquaternium-28; a PVP (polyvinylpyrrolidone), a PVP/dimethylaminoethylmethacrylate copolymer; a vinylpyrrolidone/vinyl acetate copolymer; copolymers of vinylpyrrolidone and long-chain α-olefins; a vinylcaprolactam/vinylpyrrolidone/dimethylaminolethyl methacrylate terpolymer; a N-alkylpyrrolidone; and mixtures thereof.

Examples of Optional Compounds Which can be Included in Compositions of the Invention

Exemplary classes of such compounds includes di-long chain alkyl amines (i.e. C_{10} to C_{22}), long chain fatty amine (i.e. C_{10} to C_{22}), long chain fatty alcohols (i.e. C_{10} to C_{22}), ethoxylated fatty alcohols, and double-tailed phospholipids. Specific compounds capable of participating in the formation of a lamellar dispersed phase, include dipalmitylamine, stearamidopropyl dimethylamine, cetly alcohol, stearyl alcohol, steareth-2, steareth-21, phosphatidylserine, phosphatidylylcholine and mixtures thereof.

Other optional ingredients included in compositions of the invention may be paraffin, vaseline solid paraffin, squalene, oligomer olefins and the like; amidoamines such as stearamidopropyl dimethylamine, isostearamidoethyl morpholine, behenamidopropyl dimethyamine and the like; humectants such as glycerine, propylene glycol, glycerol, sorbitol and the like; esters, such as isopropyl palmitate, isopropyl myristate, and stearyl stearate and the like; emulsifiers such as glyceryl monostearate, sorbitan monopalmitate, polyoxyethylene stearate and the like; cellulose derivatives such as hydroxypropylcellulose; cationic cellulose, hydroxyethyl cellulose and the like; thickening agents such as natural polymers and the like; and other ingredients such as solvents, bacteriocides, colors, and fragrances.

Compositions of the invention can take the form of leave-in or rinse out conditioners

Compositions of the invention may be prepared by methods which are known to those skilled in the art. Ingredients used in the preparation of compositions of the invention are either known or may be prepared by known methods. To use the rinse out compositions of the invention to condition hair, one first wets the hair, then applies the composition of the invention, then lathers the hair, and then rinses the hair. Alternatively, water and conditioner may be applied to the hair simultaneously. Conditioning with compositions may be done right after shampooing when the hair is still wet. Alternatively, conditioning the hair may be done separately from shampooing.

Compositions of the invention may be leave-in conditioners as mentioned above. In such cases, the compositions of the invention are simply worked into the hair usually by using the fingers.

Compositions of the invention provide unexpectedly superior conditioning without the use of fatty alcohols.

Compositions of the invention can be prepared as follows:

1) Prepare lamellar phase dispersion with cationic surfactant and water. Heating can accompany this step.
2) Premix the oil phase with the silicone surfactants.
3) Emulsify 1 and 2.

To demonstrate the new and unexpected results achieved by the present invention, the compositions of the invention as shown below were prepared. These compositions were prepared using known starting materials or starting materials which may be obtained by known methods. These compositions were prepared by methods which are known in the art or which are analogous to those known in the art.

Compositions of the invention are as follows:

<table>
<thead>
<tr>
<th>Formulation</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abil EM 90’</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abil EM 97’</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following are examples of high internal phase emulsions using different types of non-volatile external oils.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abil EM 90</td>
<td>3</td>
<td>4.5</td>
<td>3.2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>DC556 Silicone Fluid<sup>6</sup></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Mineral Oil</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopropylpalmitate</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioctyl adipate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexyl trimethicone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>81</td>
<td>80.5</td>
<td>88</td>
<td>84</td>
<td>86.1</td>
</tr>
<tr>
<td>Varisoft TA-100<sup>5</sup></td>
<td>2</td>
<td>1.5</td>
<td>1.7</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

⁶ Polyphenylmethylsioxane, nonvolatile silicone oil, 100% active, from Dow Corning.

The following are examples of wet-combing force data for different formulations.

Generally, the lower the wet combing force the better the wet conditioning. Conventional conditioners have a wet combing force that ranges from about 10 to about 20 gm.

Wet combing experiments were carried out on the Instron 5500 series. All testing was carried out by applying 0.3 mL of product to bleached and waved 2 gm hair tresses.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC 3225C</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Compositions of the invention showed equal or better wet-combing force than a commercial composition.

A composition of the invention which includes a styling resin, and which has styling properties, was made, and

<table>
<thead>
<tr>
<th>Formulation</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC200, 5 cst</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fragrance</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

Aqueous Phase

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>92.6</td>
<td>85.45</td>
<td>83.45</td>
</tr>
<tr>
<td>Varisoft 432 PPG (30% Dicetyldimonium Chloride)</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preservative</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Combing force (gm force)

<table>
<thead>
<tr>
<th>Formulation</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9</td>
<td>21.6</td>
<td>7.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formulation</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC 5225C</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>DC 200, 5 cst</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC 200, 1.5 cst</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC 245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Permethyl 101A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Fragrance</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Aqueous Phase

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>soft water</td>
<td>83.45</td>
<td>85.25</td>
<td>84.45</td>
<td>84.45</td>
<td>85.25</td>
<td>85.25</td>
</tr>
<tr>
<td>Varisoft 432 PG (30% dicetyldimonium chloride)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distearyldimonium chloride</td>
<td>0</td>
<td>4.2</td>
<td>5</td>
<td>5</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Preservative</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Combing force (gm force)

<table>
<thead>
<tr>
<th>Formulation</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7</td>
<td>8.9</td>
<td>8.0</td>
<td>7.9</td>
<td>9.0</td>
<td>10.3</td>
<td></td>
</tr>
</tbody>
</table>
is set forth just below.

Formulation S

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Actual wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water, Deionized</td>
<td>86.2</td>
</tr>
<tr>
<td>PVP K-90a</td>
<td>1.0</td>
</tr>
<tr>
<td>Polyquaterium-4, 96% active</td>
<td>1.0</td>
</tr>
<tr>
<td>Distearyldimonium chloride, 95% active</td>
<td>0.5</td>
</tr>
<tr>
<td>Brij 58b</td>
<td>0.3</td>
</tr>
<tr>
<td>Dow Corning 2-1391 emulsionc</td>
<td>1.0</td>
</tr>
<tr>
<td>Cyclopentasiloxane</td>
<td>3.0</td>
</tr>
<tr>
<td>Dow Corning 5225Cd</td>
<td>7.0</td>
</tr>
</tbody>
</table>

a. PVP K-90, polyvinylpyrrolidone, 100% powder, ISP Van Dyk, Belleville, NJ
b. Brij 58, polyoxyethylene (20) cetyl ether; ICI Surfactants, Wilmington, DE
c. Dow Corning 2-1391 emulsion, Branched Dimethiconol and TEA Dodecybenzenesulfonate and Laureth-23, 26% active; Dow Corning, Midland, MI.
d. Cyclomethicone and Dimethicone copolyol, 10% active, Dow Corning, Midland, MI.

Claims

1. An opaque water in oil hair conditioning composition comprising:

 a) 40 to 95% aqueous phase comprising (i) water and (ii) a cationic surfactant, capable of forming lamellar dispersion, said cationic surfactant being present at 0.1 to 10% of the aqueous phase;
 b) 0.5 to 30% oil, selected from the group consisting of a volatile silicone compound, a nonvolatile silicone compound a volatile hydrocarbon compound, a nonvolatile hydrocarbon compound, or a mixture thereof;
 c) 0.1 to 20% silicone surfactant; and
 d) optionally di-long chain alkyl amines having C₁₀ to C₂₂ carbon chains, long chain fatty alcohols having C₁₀ to C₂₂ carbon chains, or ethoxylated fatty alcohols; in which lamellar gel particles are dispersed inside the internal water phase.

2. A composition in accordance with claim 1 wherein the cationic surfactant is present at a range of 1 to 5% of the aqueous phase.

3. A composition in accordance with claim 1 wherein the aqueous phase is present in a range of 70 to 92%.

4. A composition in accordance with claim 1 wherein the aqueous phase is present in a range of 75 to 90%.

5. A composition in accordance with claim 1 wherein component b is present at 3 to 20% of the aqueous phase.

6. A composition in accordance with claim 1 wherein component b is present at 5 to 15% of the aqueous phase.

7. A composition in accordance with claim 1 wherein the silicone surfactant is present at 0.1-15% of the aqueous phase.

8. A composition in accordance with claim 1 wherein the silicone surfactant is present at 0.1-10% of the aqueous phase.

9. A composition in accordance with claim 1 which comprises:
a) 1 to 6% cationic surfactant in the aqueous phase,
b) 0 to 10% silicone oil or 0 to 10% hydrocarbon oil with the proviso that the silicone oil and the hydrocarbon oil cannot both be 0, and
c) 0.4 to 7% silicone surfactant.

10. A composition according to claim 1 which is a rinse out conditioner or a leave-in conditioner.

11. A composition according to claim 1 wherein the cationic surfactant is a compound of the formula

\[
\begin{align*}
R_1 & \quad \text{N} \quad R_3^+ \\
\text{R}_4
\end{align*}
\]

wherein \(R_1 \) is an alkyl group including from 8 to 20 carbon atoms; \(R_2 \) is selected from the group consisting of an alkyl group including from 8 to 20 carbon atoms, a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group and a hydroxyethyl group; \(R_3 \) is selected from the group consisting of a benzyl group, a hydrogen group, a methyl group, an ethyl group, a hydroxymethyl group and a hydroxyethyl group; \(R_4 \) is selected from the group consisting of a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group and a hydroxyethyl group; or the quaternary nitrogen of the water-soluble quaternary ammonium compound also can be a component of a heterocyclic nitrogen-containing moiety, such as morpholine or pyridine and the anion of the quaternary ammonium compound is chloride, methosulfate, ethosulfate, nitrate, bromide, tosylate, acetate, or phosphate.

12. A composition according to claim 1 wherein the silicone surfactant is a dimethicone copolyol with an HLB value of less than 10, and a molecular weight of 600 to 20,000.

13. A composition according to claim 1 wherein the silicone surfactant has the formula

\[
\begin{align*}
\text{CH}_3 & \quad \text{Si} \quad \text{O} \\
\text{CH}_3
\end{align*}
\]

wherein

- \(p \) is a numeral from 7 through 17;
- \(q \) is a numeral from 1 through 100;
- \(m \) is a numeral from 1 through 40;
- \(n \) is a numeral from 0 through 200; and
- \(\text{PE} \) is \(\text{C}_2\text{H}_4\text{O})_a(\text{C}_3\text{H}_6\text{O})_b \) having a molecular weight of 250 to 2000, wherein \(a \) and \(b \) are selected such that the weight ratio of \(\text{C}_2\text{H}_4\text{O} / \text{C}_3\text{H}_6\text{O} \) is from 100/0 to 20/80.
14. A composition according to claim 1 wherein said volatile hydrocarbon compound is 6 to 20 carbon atoms.

15. A composition according to claim 1, which comprises a nonvolatile silicone compound selected from the group consisting of a polydimethylsiloxane, polyalkyl siloxane, a polyaryl siloxane and a polyalkylaryl siloxane.

16. A composition in accordance with claim 1 which comprises isoeicosane, isopropyl myristate, or dioctyl adipate.

17. A composition in accordance with claim 1, which further comprises a polymeric resin.

18. A method for conditioning hair which comprises contacting said hair with a composition according to claim 1.

Patentansprüche

1. Opake Wasser-in-Öl-Haarkonditionier-Zusammensetzung, umfassend:
 a) 40 bis 95 % wässrige Phase, umfassend (i) Wasser und (ii) ein kationisches oberflächenaktives Mittel, das fähig ist, eine lamellare Dispersion zu bilden, wobei das kationische oberflächenaktive Mittel mit 0,1 bis 10 % der wässrigen Phase vorliegt;
 b) 0,5 bis 30 % Öl, ausgewählt aus der Gruppe, bestehend aus einer flüchtigen Silikonverbindung, einer nicht-flüchtigen Silikonverbindung, einer flüchtigen Kohlenwasserstoffverbindung, einer nicht-flüchtigen Kohlenwasserstoffverbindung oder einem Gemisch davon;
 c) 0,1 bis 20 % oberflächenaktives Silikon-Mittel und
d) gegebenenfalls di-langkettige Alkyl-Amine, die C10- bis C22-Kohlenstoffketten haben, langkettige Fettalkohole, die C10- bis C22-Kohlenstoffketten haben oder ethoxylierte Fettalkohole; wobei lamellare Gelpartikel im Inneren der inneren Wasserphase dispergiert sind.

2. Zusammensetzung gemäß Anspruch 1, wobei das kationische oberflächenaktive Mittel in einem Bereich von 1 bis 5 % der wässrigen Phase vorliegt.

3. Zusammensetzung gemäß Anspruch 1, wobei die wässrige Phase in einem Bereich von 70 bis 92 % vorliegt.

4. Zusammensetzung gemäß Anspruch 1, wobei die wässrige Phase in einem Bereich von 75 bis 90 % vorliegt.

5. Zusammensetzung gemäß Anspruch 1, wobei Komponente b) mit 3 bis 20 % der wässrigen Phase vorliegt.

6. Zusammensetzung gemäß Anspruch 1, wobei Komponente b) mit 5 bis 15 % der wässrigen Phase vorliegt.

7. Zusammensetzung gemäß Anspruch 1, wobei das Silikon-oberflächenaktive Mittel mit 0,1 bis 15 % der wässrigen Phase vorliegt.

8. Zusammensetzung gemäß Anspruch 1, wobei das oberflächenaktive Silikon-Mittel mit 0,1 bis 10 % der wässrigen Phase vorliegt.

9. Zusammensetzung gemäß Anspruch 1, welche umfasst:
 a) 1 bis 6 % kationisches oberflächenaktives Mittel in der wässrigen Phase,
 b) 0 bis 10 % Silikonöl oder 0 bis 10 % Kohlenwasserstofföl mit der Maßgabe, dass das Silikonöl und das Kohlenwasserstofföl nicht beide 0 sein können und
 c) 0,4 bis 7 % oberflächenaktives Silikon-Mittel.

10. Zusammensetzung gemäß Anspruch 1, die einen Konditioner zum Ausspülen oder ein "Leave-in"-Konditioner ist.

11. Zusammensetzung gemäß Anspruch 1, wobei das kationische oberflächenaktive Mittel eine Verbindung der Formel
ist, worin R_1 eine Alkylgruppe, die 8 bis 20 Kohlenstoffatome umfasst, ist; R_2 ausgewählt ist aus der Gruppe, bestehend aus einer Alkylgruppe, die 8 bis 20 Kohlenstoffatome umfasst, einem Wasserstoffatom, einer Methylgruppe, einer Ethylgruppe, einer Hydroxymethylgruppe und einer Hydroxyethylgruppe; R_3 ausgewählt ist aus der Gruppe, bestehend aus einer Benzylgruppe, einer Wasserstoffgruppe, einer Methylgruppe, einer Ethylgruppe, einer Hydroxymethylgruppe und einer Hydroxyethylgruppe; R_4 ausgewählt ist aus der Gruppe, bestehend aus einem Wasserstoffatom, einer Methylgruppe, einer Ethylgruppe, einer Hydroxymethylgruppe und einer Hydroxyethylgruppe;
or der quaternäre Stickstoff der wasserlöslichen quaternären Ammoniumverbindung auch eine Komponente einer heterocyclischen Stickstoff enthaltenden Gruppierung, zum Beispiel Morpholin oder Pyridin, sein kann und das Anion der quaternären Ammoniumverbindung Chlorid, Methosulfat, Ethosulfat, Nitrat, Bromid, Tosylat, Acetat oder Phosphat ist.

12. Zusammensetzung gemäß Anspruch 1, wobei das oberflächenaktive Silikon-Mittel ein Dimethicon-Copolyol mit einem HLB-Wert von kleiner als 10 und einem Molekulargewicht von 600 bis 20 000 ist.

13. Zusammensetzung gemäß Anspruch 1, wobei das oberflächenaktive Silikon-Mittel die Formel

\[
\begin{align*}
\text{CH}_3 & \quad \text{Si} - \text{O} \\
\text{CH}_3 & \quad \text{Si} - \text{O} \\
\text{CH}_3 & \quad [\text{CH}_2]_p \\
\text{CH}_3 & \quad [\text{CH}_2]_q \\
\text{CH}_3 & \quad \text{O} \\
\text{PE} & \quad \text{m} \\
\end{align*}
\]

hat, worin
- p eine Zahl von 7 bis 17 ist;
- q eine Zahl von 1 bis 100 ist;
- m eine Zahl von 1 bis 40 ist;
- n eine Zahl von 0 bis 200 ist und
- PE $(\text{C}_2\text{H}_4\text{O})_a(\text{C}_3\text{H}_6\text{O})_b$-H mit einem Molekulargewicht von 250 bis 2000 ist, wobei a und b so gewählt sind, dass das Gewichtsverhältnis von $\text{C}_2\text{H}_4\text{O}/\text{C}_3\text{H}_6\text{O}$ von 100/0 bis 20/80 ist.

14. Zusammensetzung gemäß Anspruch 1, wobei die flüchtige Kohlenwasserstoffverbindung 6 bis 20 Kohlenstoffatome hat.

15. Zusammensetzung gemäß Anspruch 1, welche eine nicht-flüchtige Silikonverbindung umfasst, die ausgewählt ist aus der Gruppe, bestehend aus einem Polydimethylsiloxan, Polyalkylsiloxan, einem Polyarylsiloxan und einem Polyalkylarylsiloxan.

17. Zusammensetzung gemäß Anspruch 1, welche außerdem ein polymeres Harz umfasst.
Revendications

1. Composition opaque eau dans huile d’après-shampooing comprenant :
 a) 40 % à 95 % de phase aqueuse comprenant (i) de l’eau et (ii) un tensioactif cationique capable de former une dispersion lamellaire, ledit tensioactif cationique étant présent en une proportion de 0,1 % à 10 % de la phase aqueuse ;
 b) 0,5 % à 30 % d’une huile choisie dans le groupe constitué par un composé volatile de silicone, un composé non volatile de silicone, un composé hydrocarboné volatile, un composé hydrocarboné non volatile, ou un de leurs mélanges ;
 c) 0,1 % à 20 % d’un tensioactif à base de silicone ; et
 d) facultativement des di-(alkyl à longue chaîne)-amines possédant des chaînes de carbone en C_{10} à C_{22}, des alcools gras à longue chaîne possédant des chaînes de carbone en C_{10} à C_{22}, ou des alcools gras éthoxylés;

dans laquelle les particules de gel lamellaire sont dispersées à l’intérieur de la phase aqueuse interne.

2. Composition selon la revendication 1, dans laquelle le tensioactif cationique est présent dans une plage allant de 1 % à 5 % de la phase aqueuse.

3. Composition selon la revendication 1, dans laquelle la phase aqueuse est présente dans une plage allant de 70 % à 92 %.

4. Composition selon la revendication 1, dans laquelle la phase aqueuse est présente dans une plage allant de 75 % à 90 %.

5. Composition selon la revendication 1, dans laquelle le composant b est présent en une proportion de 3 % à 20 % de la phase aqueuse.

6. Composition selon la revendication 1, dans laquelle le composant b est présent en une proportion de 5 % à 15 % de la phase aqueuse.

7. Composition selon la revendication 1, dans laquelle le tensioactif à base de silicone est présent en une proportion de 0,1 % à 15 % de la phase aqueuse.

8. Composition selon la revendication 1, dans laquelle le tensioactif à base de silicone est présent en une proportion de 0,1 % à 10 % de la phase aqueuse.

9. Composition selon la revendication 1, comprenant :
 a) 1 % à 6 % de tensioactif cationique dans la phase aqueuse,
 b) 0 % à 10 % d’huile de silicone ou 0 % à 10 % d’huile d’hydrocarbure, à condition que l’huile de silicone et l’huile d’hydrocarbure ne soient pas 0 toutes les deux, et
 c) 0,4 % à 7 % de tensioactif à base de silicone.

10. Composition selon la revendication 1, qui est un après-shampooing à rincer ou un après-shampooing sans rinçage.

11. Composition selon la revendication 1, dans laquelle le tensioactif cationique est un composé de formule :
dans laquelle R_1 est un groupe alkyle contenant 8 à 20 atomes de carbone ; R_2 est choisi dans le groupe constitué par un groupe alkyle contenant 8 à 20 atomes de carbone, un atome d’hydrogène, un groupe méthyle, un groupe éthyle, un groupe hydroxyméthyle et un groupe hydroxyéthyle ; R_3 est choisi dans le groupe constitué par un atome d’hydrogène, un groupe méthyle, un groupe éthyle, un groupe hydroxyméthyle et un groupe hydroxyéthyle ; R_4 est choisi dans le groupe constitué par un atome d’hydrogène, un groupe méthyle, un groupe éthyle, un groupe hydroxyméthyle et un groupe hydroxyéthyle ;
ou l’azote quaternaire du composé d’ammonium quaternaire hydrosoluble peut également être un composant d’un motif contenant un azote hétérocyclique, comme la morpholine ou la pyridine, et l’anion du composé d’ammonium quaternaire est le chlorure, le méthosulfate, l’éthosulfate, le nitrate, le bromure, le tosylate, l’acétate ou le phosphate.

12. Composition selon la revendication 1, dans laquelle le tensioactif à base de silicone est un diméthicone copolyol ayant une valeur HLB inférieure à 10 et un poids moléculaire de 600 à 20 000.

13. Composition selon la revendication 1, dans laquelle le tensioactif à base de silicone possède la formule :

\[
\begin{align*}
\text{CH}_3 & - \text{Si} - \text{O} \\
\text{CH}_3 & - \text{Si} - \text{O} \\
\text{CH}_3 & - \{\text{CH}_2\}_p \\
\text{CH}_3 & - \{\text{CH}_2\}_q \\
\text{CH}_3 & - \text{O} \\
\text{CH}_3 & - \text{PE} \\
\end{align*}
\]

dans laquelle

- p est un chiffre de 7 à 17 ;
- q est un chiffre de 1 à 100 ;
- m est un chiffre de 1 à 40 ;
- n est un chiffre de 0 à 200 ; et
- PE est (C$_2$H$_4$O)$_a$(C$_3$H$_6$O)$_b$-H possédant un poids moléculaire de 250 à 2 000, dans lequel a et b sont choisis de manière à ce que le rapport en poids de C$_2$H$_4$O/C$_3$H$_6$O soit 100/0 à 20/80.

14. Composition selon la revendication 1, dans laquelle ledit composé hydrocarboné volatil contient 6 à 20 atomes de carbone.

15. Composition selon la revendication 1, comprenant un composé non volatil de silicone choisi dans le groupe constitué par un polydiméthyl-siloxane, un polyalkyl siloxane, un polyaryl siloxane et un polyalkylaryl siloxane.

17. Composition selon la revendication 1, comprenant en outre une résine polymérique.

18. Méthode de conditionnement des cheveux qui comprend le contact desdits cheveux avec une composition selon
la revendication 1.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 10137576 B [0003]

• JP 7165529 B [0003]

Non-patent literature cited in the description

• CTFA Cosmetic Ingredient Handbook. 1988, 40-42 [0030]