European Patent Office

EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 11.10.2006 Bulletin 2006/41

Application number: 01121006.9

Date of filing: 31.08.2001

Sub-frame structure of motor vehicle

Hilfsrahmen für Kraftfahrzeuge

Châssis auxiliaire pour véhicule automobile

Designated Contracting States: DE ES FR GB IT

Date of publication of application: 20.03.2002 Bulletin 2002/12

Proprietor: Mazda Motor Corporation
Aki-gun, Hiroshima-ken (JP)

Inventors:
• Yamamoto, Tadanobu, c/o Mazda Motor Corporation
 Aki-gun, Hiroshima-Ken (JP)
• Sano, Susumu, c/o Mazda Motor Corporation
 Aki-gun, Hiroshima-Ken (JP)
• Yoshimura, Tadashi, c/o Mazda Motor Corporation
 Aki-gun, Hiroshima-Ken (JP)

Representative: Laufhütte, Dieter et al
Lorenz-Seidler-Gossel
Widenmayerstrasse 23
80538 München (DE)

References cited:
EP-A- 0 491 465
EP-A- 0 760 265
EP-A- 0 926 048

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a sub-frame structure of a motor vehicle according to the first part of claim 1.

[0002] Side frames and other motor vehicle sub-frame structures for connecting parts, such as a suspension system, engine or the like, to the vehicle body are known.

[0003] A sub-frame structure using upper and lower members joined together to form a closed section has been proposed. However, it is difficult for this type of sub-frame structure to establish great strength with a small cross sectional area. In addition, since flange portions necessary for joining the upper and lower members extend outward from the sub-frame, it is difficult to efficiently utilize the space around the sub-frame.

[0004] Japanese Patent Unexamined Publication No. 9-86435 discloses a sub-frame structure made of tube members as a whole. Although this sub-frame does not encounter the above problem, the tube members are difficult to deform, especially into a complex configuration including consecutive small bends or curves with small radii of curvature and small corners. This is a serious problem for a sub-frame whose structure should be adjustable over a wide range depending on the positional relationship with the parts around it.

[0005] More specifically, in the case of a front sub-frame for a front engine front wheel drive (FF) type motor vehicle for example, a pair of longitudinally extending frame members are required to be widely spaced apart on the front side so as to provide a space for an engine and a transmission therebetween, and to be closely spaced on the rear side so as to improve the characteristics of a suspension system to be mounted on the rear side. Making this type of sub-frame structure entirely of tube members is difficult because it is hard to deform the tube blanks so as to have bends for making the transition from the widely spaced portion to the closely spaced portion.

[0006] Further, it is difficult to directly mount parts on a sub-frame structure made of tube members. Therefore, the parts must be mounted by the brackets and this increases the number of parts required.

[0007] A sub-frame structure according to the first part of claim 1 is already described in EP-A-0926048.

[0008] It is the object of the present invention to provide a sub-frame structure of a motor vehicle that is easily adjustable into a desired configuration and that facilitates the mounting of parts.

[0009] The present invention achieves this object by providing a sub-frame structure of a motor vehicle with the features of claim 1.

[0010] Preferred embodiments of the invention are described in the sub claims which refer to claim 1.

[0011] In a preferred embodiment of the present invention, the reinforcing members are positioned at upper regions of the side frame sections.

[0012] In another preferred embodiment of the present invention, the sub-frame structure comprises reinforcing brackets that join one end portions of the side frame sections to end portions of the cross member section.

[0013] The above and other objects and features of the present invention will be apparent from the following description of preferred embodiments of made with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] In the accompanying drawings:

Fig. 1 is a plan view of a suspension structure of a motor vehicle according to an embodiment of the present invention;
Fig. 2 is a perspective view of the suspension structure shown in Fig. 1;
Fig. 3 is a side view showing the structure of a front part of a second frame;
Fig. 4 is an explanatory perspective view showing a mount for a suspension arm;
Fig. 5 is a partial cross sectional view showing the structure of a rear part of the second frame.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0015] An embodiment of the present invention will be explained with reference to Figs. 1 through 5.

[0016] Figs. 1 and 2 show a vehicle suspension structure according to the second embodiment of the present invention. The suspension comprises a suspension frame 201 constituted as a perimeter frame; a pair of left and right front wheel supporting members 205 connected to the rear part of the suspension frame 201 by means of suspension arms including a pair of lower arms 202, 203 and an upper arm 204; a pair of suspension dampers 206 whose bottom ends are supported by the front lower arm 202; and a stabilizer 207 connecting the left and right suspension dampers 6 to each other.

[0017] The suspension frame 201 comprises a front-side first frame 208 that is substantially U-shaped in plan view and a rear-side second frame 209 that is substantially U-shaped in plan view. The rear ends of the first frame 208 are inserted into and joined to front ends of the second frame 209, for example by welding, to form a rectangular configuration.

[0018] The first frame 208 is fabricated from a tube such a hollow tube member deformed for example by a tube hydraulic forming process. The left and right front ends of the first frame 208 are provided with reinforcing brackets 210, connecting brackets 211 for connecting the left and right front ends of the suspension frame 201 to a front-side frame of the vehicle (not shown), and insulators 212.

[0019] The second frame 209 comprises a pair of upper and lower press-formed steel members welded to each other. The front part of the second frame 209 in-
includes bends 213 for defining a mounting space for parts such as the lower arms 202, 203. The right and left rear ends of the second frame 208 are provided with supporting brackets 214 for supporting the rear lower arms 203, which are arranged so that their distal ends extend in an obliquely forward direction of the vehicle, and connecting brackets 215 for connecting the right and left rear ends of the suspension frame 201 to the vehicle body. As shown in Fig. 5, a first bolt 216 passes through a rear end portion of each connecting bracket 215. As described hereinafter, the first bolt 216 is fixed to the dash panel of the vehicle body via a mounting bracket 230. A second bolt 217 fixed to a side sill passes through an outer portion of the connecting bracket 215.

[0020] A suspension arm mounting member 218 for the front lower arm 202 is provided in each bend 213 at the front part of the second frame 209 to extend in the lateral direction of the vehicle. As shown in Fig. 3, the mounting member 218 for the front lower arm 202 has an inverted U-shaped cross section formed by a pair of front and rear side walls 219, 220 and a top wall 221. The proximal end of the lower arm 202 is pivotably mounted between the side walls 219, 220. The mounting members 218 installed in the bends 213 reinforcement nodes in the front part of the second frame 209.

[0021] A reinforcing member 222 extends forward from each mounting member 218. The reinforcing member 222 comprises a base plate 223 extending horizontally and having a predetermined width, and a pair of left and right flanges 224 extending downward from the opposite sides of the base plate 223. The reinforcing members 222 in the front portion of the second frame 209 make the front portion stronger than the first frame 208. As shown in Fig. 4, since the reinforcing member 222 is positioned in the upper region of the second frame 209, the upper portion at the front portion of the second frame 209 is especially reinforced.

[0022] As described above, the suspension structure includes the suspension frame 201 formed of the perimeter frame of rectangular configuration in plan view. The front half of the suspension frame 201 is formed by the first frame 208 made of the deformed hollow tube member and the rear half of the suspension frame 201 is formed by the second frame 209 made of the press-formed member. The second frame member 209 includes the bends 213 bending inwardly with respect to the width direction of the vehicle. The mounting members 218 for the lower arms 202 are provided in the bends 218 and reinforce the front part of the second frame 209. According to the so-configured suspension structure, since the second frame 209 is not easily deformed at the bends 213 by impact load received at the time of vehicle collision, the suspension structure can sufficiently absorb the collision energy.

[0023] When the second frame 209 that forms the rear half of the suspension frame 201 is made by the press-forming member, which is light but easy to deform, the rigidity of the second frame 209 tends to be lower than that of the first frame 208 made of the hollow tube member. Therefore, the front part of the second frame 209 to which the rear end of the first frame 208 is connected collapses easily, especially at the bends 213, and the collision energy cannot be sufficiently absorbed. In the second embodiment, however, since the mounting members 218 are provided in the bends 213, deformation at the bends is effectively prevented.

[0024] Therefore, although the rear half of the suspension frame 201, where the mounting members for the lower arms 2, 3 are provided, consists of the second frame 209 made of a press-formed member, the collision energy can be effectively absorbed by gradual deformation of the first frame 208 made of the hollow tube member. In addition, this arrangement makes the suspension frame 201 light and easy to manufacture. Further, since the mounting members 218 for the lower arms are provided in the bends 213 to reinforce the front part of the second frame 209, deformation of the bends 213 is effectively prevented with a simple arrangement. Furthermore, since the mounting point for the lower arms 202 can be positioned more inwardly than in the case where the mounting member protrudes from the outer wall of the second frame 209, a space for the lower arm of predetermined length can be easily secured.

[0025] The reinforcing members 222 are provided forward of the mounting member 218 located in the bend 213 of the second frame 209, so that the strength of the second frame 209 where the reinforcing member 222 is provided is made stronger than that of the first frame 208. According to this construction, the first frame 208 made of the hollow tube member with relatively high rigidity can be deformed prior to the front part of the second frame 209 by an impact load received at the time of a vehicle collision, whereby rapid collapse of the suspension frame 201 can be reliably prevented and the first frame 208 and the second frame 209 are gradually deformed to effectively absorb the collision energy.

[0026] Since the reinforcing members 222 are positioned at upper regions of the second frame 209, the upper portion of the front portion of the second frame 209 is especially reinforced. Therefore, when a collision load is received from the front side of the vehicle body, in the front part of the second frame 209, deformation of the upper portion where the reinforcing members 222 are positioned is restrained and deformation of the lower part is allowed.

[0027] Therefore, when collision occurs, the second frame 209 is bent at the front position located at substantially the central region in the longitudinal direction of the vehicle, so that the first frame is rotated downward around the front part of the second frame by the impact load received during the vehicle collision. As a result, since the height of the rear end of the engine moving backward in the vehicle collision can be lowered, intrusion of the engine into the cabin can be prevented.

[0028] The connecting brackets 215 are provided at the left and right ends of the second frame 209 as shown...
in Fig. 5. The left and right rear ends of the suspension frame 201 are connected to the mounting brackets 230 provided on the dash panel and the side sill 31. Therefore, the left and right ends of the suspension frame 201 are stably supported on the vehicle body. As a result, in a vehicle collision, the moment tending to move the suspension frame 201 in the lateral direction and the moment tending to separate the left and right front ends of the second frame 209 are effectively restrained. Thus, rapid deformation of the suspension frame 201 is prevented.

Although the present invention has been explained with reference to specific, preferred embodiments, one of ordinary skill in the art will recognize that modifications and improvements can be made while remaining within the scope of the present invention. The scope of the present invention is determined solely by appended claims.

Claims

1. A sub-frame structure (201) of a motor vehicle comprising:

[a pair of side frame sections (208, 209) extending in a longitudinal direction of the vehicle at predetermined lateral spacing and including laterally inward bends (213) in each section, and a cross member section connecting one end of said frame sections, wherein said cross member section and the end portions (208) of the side frame sections connected to said cross member section are integrally formed of a deformed tube member characterized in that remaining portions of said side frame sections including said bends (213) are formed of a closed section member fabricated by joining a plurality of members at flanges, and said structure further including mounts for suspension provided in said bends (213) in said closed section member, each of said mounts comprises a mounting member (218) having an inverted U-shaped member oriented to open laterally, and said structure further comprising reinforcing members (222) extending forwardly from said mounting members (218) into said side frame sections (209).

2. A sub-frame structure of a motor vehicle according to claim 1, wherein said reinforcing members (222) are positioned at upper regions of said side frame sections (209).

3. A sub-frame structure of a motor vehicle according to claim 1, further comprising reinforcing brackets (210) that join one end portion of said side frame sections (208) to end portions of the cross member section.

Patentansprüche

1. Hilfsrahmenstruktur (201) eines Kraftfahrzeugs, mit:

[zwei Seitenrahmenprofilen (208, 209), die sich in Längsrichtung des Fahrzeugs in einem vorbestimmten Seitenabstand erstrecken und in jedem Profil seitlich nach innen gerichtete Biegungen (213) aufweisen; und einem Querträgerprofil, das mit einem Ende der Rahmenprofile verbunden ist; wobei das Querträgerprofil und die Endabschnitte (208) der mit dem Querträgerprofil verbundenen Seitenrahmenprofile aus einem umgeformten Rohrteil einstücksig ausgebildet sind, dadurch gekennzeichnet, dass die verbleibenden Abschnitte der Seitenrahmenprofile einschließlich der Biegungen (213) aus einem geschlossenen Profilteil gebildet sind, das durch Anflanschen mehrerer Teile hergestellt wurde; und wobei die Struktur ferner Befestigungspunkte für die Aufhängung aufweist, die in den Biegungen (213) in dem geschlossenen Profilteil vorgesehen sind, wobei jeder Befestigungspunkt ein Befestigungsteil (218) mit einem umgekehrt U-förmigen Teil umfasst, das so ausgerichtet ist, dass es sich zur Seite öffnet; und wobei die Struktur ferner Verstärkungsstöße (222) umfasst, die sich von den Befestigungsstählen (218) nach vorn in die Seitenrahmenprofile (209) erstrecken.

2. Hilfsrahmenstruktur eines Kraftfahrzeugs nach Anspruch 1, bei der die Verstärkungsstöße (222) in oberen Bereichen der Seitenrahmenprofile (209) positioniert sind.

3. Hilfsrahmenstruktur eines Kraftfahrzeugs nach Anspruch 1, die ferner Verstärkungsbügel (210) umfasst, die einen Endabschnitt der Seitenrahmenprofile (208) mit Endabschnitten des Querträgerprofils verbindet.

Revendications

1. Structure de faux-châssis (201) d’un véhicule à moteur comprenant :

[une paire de sections de châssis latérales (208, 209) s’étendant dans le sens de la longueur du véhicule à un espacement latéral prédéterminé et comprenant des courbes latérales vers l’intérieur (213) dans chaque section et]
une section de traverse reliant une extrémité desdites sections de châssis,
dans laquelle ladite section de traverse et lesdites parties terminales (208) des sections de châssis latérales reliées à ladite section de traverse sont façonnées d’une seule pièce par déformation d’un élément tubulaire,
caractérisée en ce que
le reste des parties desdites sections de châssis comprenant lesdites courbes (213) sont formées d’un élément de caisson fabriqué en assemblant une pluralité d’éléments par leurs rebords et, ladite structure comprenant en outre des coupelles pour la suspension disposées dans lesdites courbes (213) dans ledit élément de caisson, chacune desdites coupelles comprend un élément de montage (218) comportant un élément en forme de U inversé orienté pour avoir une ouverture latérale
et en ce que
ladite structure comprend en outre des éléments de renfort (222) s’étendant vers l’avant à partir desdits éléments de montage (218) et entrant dans lesdites sections de châssis latérales (209).

2. **Structure de faux-châssis d’un véhicule à moteur selon la revendication 1,** dans laquelle lesdits éléments de renfort (222) sont placés dans la zone supérieure desdites sections de châssis latérales (209) .

3. **Structure de faux-châssis d’un véhicule à moteur selon la revendication 1,** comprenant en outre des traverses de raidissement (210) qui unissent une partie terminale desdites sections de châssis latérales (208) aux parties terminales de la section de traverse.