EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 10.12.2003 Bulletin 2003/50

(21) Application number: 00940267.8

(22) Date of filing: 23.05.2000

(51) Int Cl. 7: C07D 405/12, C07D 417/12, A61K 31/4164, A61P 9/08

(86) International application number: PCT/EP00/04746

(54) AMINOALKYL SUBSTITUTED (BENZODIOXAN, BENZOFURAN OR BENZOPYRAN) DERIVATIVES

AMINOALKYL SUBSTITUIERTE (BENZODIOXANE, BENZOFURANE ODER BENZOPYRANE) DERIVATE

DERIVES AMINOALKYLE SUBSTITUES (BENZODIOXANE, BENZOFURANE OU BENZOPYRANE)

(84) Designated Contracting States: AT BE CH CY DE DK ES FR GB GR IE LI LU MC NL PT SE
Designated Extension States: AL LT LV MK RO SI

(30) Priority: 02.06.1999 EP 99201747

(43) Date of publication of application: 20.03.2002 Bulletin 2002/12

(73) Proprietor: Janssen Pharmaceutica N.V. 2340 Beerse (BE)

(72) Inventors:
- VAN EMELLEN, Kristof
 Janssen Pharmaceutica N.V.
 2340 Beerse (BE)
- DE BRUYN, Marcel Frans
 Janssen Pharmaceutica N.V.
 2340 Beerse (BE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention is concerned with novel aminoalkylchromane compounds having fundic relaxation properties. The invention further relates to methods for preparing such compounds, pharmaceutical compositions comprising said compounds as well as the use as a medicine of said compounds.

[0002] Structurally related aminomethylchromane derivatives are disclosed in US-5,541,199 as selective autoreceptor agonists useful as antipsychotic agents. Other structurally related aminomethylchromane derivatives having affinity for cerebral 5-hydroxytryptamine receptors of the 5-HT\(_1\) type and therefore suitable for the treatment of disorders of the central nervous system are disclosed in US-5,137,901.

[0004] DE-2,400,094, published on 18 July 1974, discloses 1-[1-[2-(1,4-benzodioxan-2-yl)-2-hydroxyethyl]-4-piperidyl]-2-benzimidazolines possessing blood pressure lowering activity.

[0008] WO-93/17017, published on 2 September 1993, discloses [(benzodioxane, benzofuran or benzopyran) alkylaminoalkyl]-substituted guanidine as selective vasoconstrictors useful to treat conditions related to vasodilatation such as, e.g., migraine, cluster headache and headache associated with vascular disorders.

[0010] Other structurally related aminomethylchromane derivatives are disclosed in WO-97/28157, published on 7 August 1997, as \(\alpha_2\)-adrenergic receptor antagonists useful in the treatment of degenerative neurological conditions.

[0012] The compounds of the present invention differ from the cited art-known compounds structurally, by the nature of the \(R^5\) substituent, and pharmacologically by the fact that, unexpectedly, these compounds have fundic relaxation properties. Furthermore, the compounds of the present invention have additional beneficial pharmacological properties in that they have little or no vasoconstrictor activity.

[0013] During the consumption of a meal the fundus, i.e. the proximal part of the stomach, relaxes and provides a "reservoir" function. Patients having an impaired adaptive relaxation of the fundus upon food ingestion have been shown to be hypersensitive to gastric distension and display dyspeptic symptoms. Therefore, it is believed that compounds which are able to normalize an impaired fundic relaxation are useful to relieve patients suffering from said dyspeptic symptoms.

[0014] The present invention concerns compounds of formula (I)

\[
\begin{align*}
R^1 & \quad \text{Alk}^1 \quad \text{Alk}^2 \quad R^5 \\
R^2 & \quad \text{N} \quad \text{R}^6 \\
R^3 & \quad \text{Alk}^1 \quad \text{Alk}^2 \quad R^5
\end{align*}
\]

a stereochemically isomeric form thereof, an N-oxide form thereof, a pharmaceutically acceptable acid addition salt thereof, or a quaternary ammonium salt thereof, wherein

Alk\(^1\) is \(C_{1-4}\)alkycarbonyl, \(C_{1-4}\)alkyrcarbonyl\(C_{1-4}\)alkyl, carbonyl, carbonyl\(C_{1-4}\)alkyl, or \(C_{1-6}\)alkanediyldiyloxy optionally substituted with hydroxy, halo, amino, hydroxy\(C_{1-4}\)alkyl, \(C_{1-4}\)alkyloxy, \(C_{1-4}\)alkyloxy\(C_{1-4}\)alkyl, \(C_{1-4}\)alkylcarbonyloxy, \(C_{1-4}\)alkylcarbonyl\(C_{1-4}\)alkylcarbonyloxy, or \(C_{3-6}\)cycloalkylcarbonyloxy\(C_{1-4}\)alkylcarbonyloxy;

Alk\(^2\) is \(C_{1-4}\)alkycarbonyl\(C_{1-4}\)alkyl; \(C_{1-6}\)alkanediyldiyloxy substituted with hydroxy, halo, amino, hydroxy\(C_{1-4}\)alkyl, \(C_{1-4}\)alkyloxy, \(C_{1-4}\)alkyloxy\(C_{1-4}\)alkyl, \(C_{1-4}\)alkylcarbonyl, \(C_{1-4}\)alkylcarbonyloxy\(C_{1-4}\)alkylcarbonyloxy;
nyloxy, or C_{3-6} cycloalkylcarbonyloxyC_{1-4} alklyloxycarbonyloxy; C_{3-6} cycloalkanediyl optionally substituted with halo, hydroxy, hydroxyC_{1-4} alkyl, C_{1-4} alklyloxy, C_{1-4} alklyloxycarbonyl, C_{1-4} alklyloxyC_{1-4} alklyloxycarbonyl, or C_{3-6} cycloalkylcarbonyloxyC_{1-4} alklyloxycarbonyloxy; or

\[-Z^1\cdot Z^2,\]

is a bivalent radical of formula

\[-O\cdot CH(R^4)\cdot CH_2^{-} \]

(a-1),

\[-O\cdot CH(R^4)\cdot CH_2\cdot O^{-} \]

(a-2),

\[-O\cdot CH(R^4)\cdot CH_2\cdot S^{-} \]

(a-3),

\[-O\cdot CH(R^4)\cdot CH_2\cdot CH_2^{-} \]

(a-4),

\[-O\cdot CH(R^4)\cdot CH_2\cdot CH_2\cdot CH_2^{-} \]

(a-5),

\[-O\cdot C(R^4)=CH^{-} \]

(a-6),

\[-O\cdot C(R^4)=CH\cdot CH_2^{-} \]

(a-7),

\[-O\cdot C(R^4)=CH\cdot CH_2\cdot CH_2^{-} \]

(a-8),

or

\[-O\cdot CH(R^4)\cdot CH=CH^{-} \]

(a-9),

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy;

R^1, R^2 and R^3 are each independently selected from hydrogen, C_{1-6} alkyl, C_{3-6} alkenyl, C_{1-6} alklyloxy, trihalomethyl, trihalomethoxy, halo, hydroxy, cyano; nitro, amino, C_{1-6} alklycarbonylamino, C_{1-6} alklyoxycarbonyl, C_{1-6} alklycarbonyloxy, aminocarbonyl, mono- or di(C_{1-6} alkyl)aminocarbonyl, aminoC_{1-6} alkyl, mono- or di(C_{1-6} alkyl)aminoC_{1-6} alkyl, C_{1-6} alklycarbonyloxyC_{1-4} alklyloxycarbonyloxy, or C_{3-6} cycloalkylcarbonyloxyC_{1-4} alklyloxycarbonyloxy; or

when R^1 and R^2 are on adjacent carbon atoms, R^1 and R^2 taken together may form a bivalent radical of formula

\[-CH_2\cdot CH_2\cdot CH_2^{-} \]

(b-1),

\[-CH_2\cdot CH_2\cdot CH_2\cdot CH_2^{-} \]

(b-2),

\[-CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2^{-} \]

(b-3),

\[-CH=CH\cdot CH=CH^{-} \]

(b-4),
wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy, C₁₋₄alkyl or CH₂OH;

R⁴ is hydrogen, C₁₋₄alkyl, phenylmethyl, hydroxyC₁₋₄alkyl, C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyloxyC₁₋₄alkylcarbonyl, C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkylcarbonyloxy, or a direct bond to the -Alk¹-NR⁶-Alk²-R⁵ moiety when the bivalent radical -Z¹-Z² is of formula (a-6), (a-7) or (a-8);

R⁶ is hydrogen, C₁₋₄alkyl, C₁₋₄alkylcarbonyl, C₁₋₄alkylcarbonyloxyC₁₋₄alkylcarbonyl, phenylmethyl, C₁₋₄alkylaminocarbonyl, C₁₋₄alkylcarbonyloxyC₁₋₄alkylcarbonyloxy, or C₃₋₆cycloalkylcarbonyloxyC₁₋₄alkylcarbonyloxy;

R⁸ is a radical of formula

wherein n is 1 or 2;

p¹ is 0, and p² is 1 or 2; or p¹ is 1 or 2, and p² is 0;

X is oxygen, sulfur, NR⁹ or CHNO₂;

Y is oxygen or sulfur;

R⁷ is hydrogen, C₁₋₄alkyl, C₃₋₆cycloalkyl, phenyl or phenylmethyl;

R⁸ is C₁₋₄alkyl, C₃₋₆cycloalkyl, phenyl or phenylmethyl;

R⁹ is cyano, C₁₋₄alkyl, C₃₋₆cycloalkyl, C₁₋₄alkyloxycarbonyl or aminocarbonyl;

R¹⁰ is hydrogen or C₁₋₄alkyl;

or R⁹ and R¹⁰ taken together with the nitrogen atom to which they are attached may form a pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, or morpholinyl group, optionally substituted with C₁₋₄alkyl or C₁₋₄alkyloxy; and

Q is a bivalent radical of formula

-CH₂-CH₂-

-CH₂-CH₂-CH₂-

-CH₂-CH₂-CH₂-CH₂-
wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by C₁₋₄ alkyl, hydroxy or phenyl, or is a bivalent radical of formula:

![Chemical structures](image)

[0015] As used in the foregoing definitions halo is generic to fluoro, chloro, bromo and iodo; C₁₋₄ alkyl defines straight and branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as, for example, methyl, ethyl, propyl, butyl, 1-methylethyl, 2-methylpropyl and the like; C₁₋₄ alkyl is meant to include C₁₋₄ alkyl and the higher homologues thereof having 5 or 6 carbon atoms, such as, for example, 2-methylbutyl, pentyl, hexyl and the like; C₃₋₆ cycloalkyl is generic to cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl; C₃₋₆ alkyl defines straight and branched chain unsaturated hydrocarbon radicals having from 3 to 6 carbon atoms, such as propenyl, butenyl, pentenyl or hexenyl; C₁₋₂ alkanediyl defines methylene or 1,2-ethanediyl; C₁₋₃ alkanediyl defines bivalent straight or branched chain hydrocarbon radicals containing from 1 to 3 carbon atoms such as, for example, methylene, 1,2-ethanediyl, 1,3-propanediyl, and the branched isomers thereof; C₁₋₅ alkanediyl defines bivalent straight or branched chain hydrocarbon radicals containing from 1 to 5 carbon atoms such as, for example, methylene, 1,2-ethanediyl, 1,3-propanediyl, 1,4-butanediyl, 1,5-pentanediyl, and the branched isomers thereof; C₁₋₆ alkanediyl includes C₁₋₅ alkanediyl and the higher homologues thereof having 6 carbon atoms such as, for example, 1,6-hexanediyl and the like. The term "CO" refers to a carbonyl group.

[0016] Some examples of the R₅ moiety are:
The term “stereochemically isomeric forms” as used hereinbefore defines all the possible isomeric forms which the compounds of formula (I) may possess. Unless otherwise mentioned or indicated, the chemical designation of compounds denotes the mixture of all possible stereochemically isomeric forms, said mixtures containing all diastereomers and enantiomers of the basic molecular structure. More in particular, stereogenic centers may have the R- or S-configuration; substituents on bivalent cyclic (partially) saturated radicals may have either the cis- or trans-configuration. Compounds encompassing double bonds can have an E or Z-stereochemistry at said double bond. Stereochemically isomeric forms of the compounds of formula (I) are obviously intended to be embraced within the scope of this invention.

In compounds of formula (I) wherein the bivalent radical -Z_1-Z_2- is of formula (a-6), (a-7) or (a-8) the substituent R^4 is a direct bond to the -Alk_1-NR_6-Alk_2-R_5 moiety.

The pharmaceutically acceptable acid addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid addition salt forms which the compounds of formula (I) are able to form. The pharmaceutically acceptable acid addition salts can conveniently be obtained by treating the base form with such appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid, sulfuric, nitric, phosphoric and the like acids; or organic acids such as, for example, acetic, propionic, hydroxyacetic, lactic, pyruvic, oxalic (i.e. ethanedioic), malonic, succinic (i.e. butanedioic acid), maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, p-toluensulfonic, cyclamic, salicylic, p-aminosalicylic, pamoic and the like acids.

Conversely said salt forms can be converted by treatment with an appropriate base into the free base form.

Quaternary ammonium salts of compounds of formula (I) as used herein defines which the compounds of formula (I) are able to form by reaction between a basic nitrogen of a compound of formula (I) and an appropriate quaternizing agent, such as, for example, an optionally substituted alkylhalide, arylhalide or arylalkylhalide, e.g. methyliodide or benzyliodide. Other reactants with good leaving groups may also be used, such as alkyl trifluoromethanesulfonates, alkyl methanesulfonates, and alkyl p-toluenesulfonates. A quaternary ammonium salt has a positively charged nitrogen. Pharmaceutically acceptable counterions include chloro, bromo, iodo, trifluoroacetate and acetate. The counterion of choice can be made using ion exchange resin columns.

The term addition salt as used hereinabove also comprises the solvates which the compounds of formula (I) as well as the salts thereof, are able to form. Such solvates are for example hydrates, alcoholates and the like.

The N-oxide forms of the compounds of formula (I), which may be prepared in art-known manners, are meant to comprise those compounds of formula (I) wherein a nitrogen atom is oxidized to the N-oxide.

Interesting compounds are those compounds of formula (I) wherein one or more of the following restrictions apply:

- the bivalent radical -Z_1-Z_2- is of formula (a-1), or (a-6); or
- the bivalent radical -Z_1-Z_2- is of formula (a-2), (a-3), (a-4), or (a-9); in particular the bivalent radical -Z_1-Z_2- is of formula (a-3) or (a-4); or
- the bivalent radical -Z_1-Z_2- is of formula (a-4);
- R_1, R_2 and R_3 are each independently selected from hydrogen, C_1-6 alkyl, hydroxy or halo;
- R^4 is hydrogen;
f) \(\text{Alk}^1 \) is \(C_{1-2} \) alkanediyl optionally substituted with hydroxy, in particular \(\text{Alk}^1 \) is \(-\text{CH}_2 - \);

g) \(\text{Alk}^2 \) is \(C_{1-3} \) alkanediyl substituted with hydroxy, in particular \(\text{Alk}^2 \) is \(-\text{CH}_2 -\text{CHOH-CH}_2 - \); and/or

h) \(R^6 \) is hydrogen or phenylmethyl.

[0025] Particular compounds of formula (I) are those compounds of formula (I) wherein the bivalent radical \(-Z^1-Z^2-\) is of formula \(-\text{CH}_2-\text{CH}_2-\) (a-4).

[0026] Preferred compounds are those compounds of formula (I) wherein \(R^5 \) is a radical of formula (c-1) wherein \(X \) is oxygen, and \(Q \) is a radical of formula (d-2) or (d-5).

[0027] More preferred compounds are those compounds of formula (I) wherein \(R^4 \) is hydrogen; \(\text{Alk}^1 \) is \(-\text{CH}_2 - \); \(\text{Alk}^2 \) is \(-\text{CH}_2 -\text{CHOH-CH}_2 - \); \(R^6 \) is hydrogen; \(R^5 \) is a radical of formula (c-1) wherein \(X \) is oxygen, \(R^7 \) is hydrogen, and \(Q \) is (d-2).

[0028] Other more preferred compounds are those compounds of formula (I) wherein \(R^4 \) is hydrogen; \(\text{Alk}^1 \) is \(-\text{CH}_2 - \); \(\text{Alk}^2 \) is \(-\text{CH}_2 -\text{CHOH-CH}_2 - \); \(R^6 \) is hydrogen; \(R^5 \) is a radical of formula (c-1) wherein \(X \) is oxygen, \(R^7 \) is hydrogen, and \(Q \) is (d-5).

[0029] Still other preferred compounds are those compounds of formula (I) wherein \(R^4 \) is hydrogen; \(\text{Alk}^1 \) is \(-\text{CHOH-CH}_2 - \); \(\text{Alk}^2 \) is \(-\text{CH}_2 -\text{CHOH-CH}_2 - \); \(R^6 \) is hydrogen; \(R^5 \) is a radical of formula (c-1) wherein \(X \) is oxygen, \(R^7 \) is hydrogen, and \(Q \) is (d-2).

[0030] Most preferred compound is

1-[3-[[3,4-dihydro-2H-1-benzopyran-2-yl)methyl][amino]-2-hydroxypropyl]-2,4-imidazolidinedione; a stereoisomeric form or a pharmaceutically acceptable acid addition salt thereof.

[0031] The compounds of the present invention can generally be prepared by alkylating an intermediate of formula (III) with an intermediate of formula (II), wherein \(W \) is an appropriate leaving group such as, for example, halo, e.g. fluoro, chloro, bromo, iodo, or in some instances \(W \) may also be a sulfonyloxy group, e.g. methanesulfonyloxy, benzenesulfonyloxy, trifluoromethanesulfonyloxy and the like reactive leaving groups. The reaction can be performed in a reaction-inert solvent such as, for example, acetonitrile or tetrahydrofuran, and optionally in the presence of a suitable base such as, for example, sodium carbonate, potassium carbonate, calcium oxide or triethylamine. Stirring may enhance the rate of the reaction. The reaction may conveniently be carried out at a temperature ranging between room temperature and the reflux temperature of the reaction mixture and, if desired, the reaction may be carried out in an autoclave at an increased pressure.

[0032] Compounds of formula (I) can also be prepared by reductively alkylating an intermediate of formula (IV), wherein \(\text{Alk}^{1'} \) represents a direct bond or \(C_{1-5} \) alkanediyl, following art-known reductive alkylation procedures with an intermediate of formula (III).

[0033] Said reductive alkylation can be performed in a reaction-inert solvent such as, for example, dichloromethane, ethanol, toluene or a mixture thereof, and in the presence of a reducing agent such as, for example, a borohydride, e. g. sodium borohydride, sodium cyanoborohydride or triacetoxyborohydride. It may also be convenient to use hydrogen as a reducing agent in combination with a suitable catalyst such as, for example, palladium-on-charcoal, rhodium-on-carbon or platinum-on-charcoal. In case hydrogen is used as reducing agent, it may be advantageous to add a dehydrating agent to the reaction mixture such as, for example, aluminium tert-butoxide. In order to prevent the undesired further hydrogenation of certain functional groups in the reactants and the reaction products, it may also be advantageous to add an appropriate catalyst-poison to the reaction mixture, e.g., thiophene or quinoline-sulphur. To enhance
the rate of the reaction, the temperature may be elevated in a range between room temperature and the reflux temperature of the reaction mixture and optionally the pressure of the hydrogen gas may be raised.

Alternatively, compounds of formula (I) can also be prepared by reacting an acid chloride of formula (V), wherein Alk' represents C₁₋₅ alkanediyl or a direct bond, with an intermediate of formula (III) under suitable reaction conditions.

Said reaction can be performed under hydrogenation conditions with hydrogen gas in the presence of a suitable catalyst such as, for example, palladium-on-charcoal, rhodium-on-carbon or platinum-on-charcoal, in a suitable solvent such as, for example, ethyl acetate, and in the presence of magnesiumoxide. In order to prevent the undesired further hydrogenation of certain functional groups in the reactants and the reaction products, it may also be advantageous to add an appropriate catalyst-poison to the reaction mixture, e.g. thiophene or quinoline-sulphur. To enhance the rate of the reaction, the temperature may be elevated in a range between room temperature and the reflux temperature of the reaction mixture and optionally the pressure of the hydrogen gas may be raised.

Compounds of formula (I-a), defined as compounds of formula (I) wherein Alk² represents -CH₂-CHOH-CH₂-, can be prepared by reacting intermediates of formula (VI) with intermediates of formula (VII) in a reaction-inert solvent, such as methanol, and optionally in the presence of an organic base, such as triethyl amine.

The compounds of formula (I) may further be prepared by converting compounds of formula (I) into each other according to art-known group transformation reactions. For instance, compounds of formula (I) wherein R⁶ is phenethylmethyl can be converted to the corresponding compounds of formula (I) wherein R⁶ is hydrogen by art-known debenzylation procedures. Said debenzylation can be performed following art-known procedures such as catalytic hydrogenation using appropriate catalysts, e.g. platinum on charcoal, palladium on charcoal, in appropriate solvents such as methanol, ethanol, 2-propanol, diethyl ether, tetrahydrofuran, and the like. Furthermore, compounds of formula (I) wherein R⁶ is hydrogen may be alkylated using art-known procedures such as, e.g. reductive N-alkylation with a suitable aldehyde or ketone.

The compounds of formula (I) may also be converted to the corresponding N-oxide forms following art-known procedures for converting a trivalent nitrogen into its N-oxide form. Said N-oxidation reaction may generally be carried out by reacting the starting material of formula (I) with an appropriate organic or inorganic peroxide. Appropriate inorganic peroxides comprise, for example, hydrogen peroxide, alkali metal or earth alkaline metal peroxides, e.g. sodium peroxide, potassium peroxide; appropriate organic peroxides may comprise peroxy acids such as, for example, benzenecarboxylic acid or halo substituted benzenecarboxylic acid, e.g. 3-chlorobenzenecarboxylic acid, peroxyalkanoic acids, e.g. peroxyacetic acid, alkylhydroperoxides, e.g. tert-butyl hydroperoxide. Suitable solvents are, for example, water, lower alkanols, e.g. ethanol and the like, hydrocarbons, e.g. toluene, ketones, e.g. 2-butanone, halogenated hydrocarbons, e.g. dichloromethane, and mixtures of such solvents.

The starting materials and some of the intermediates are known compounds and are commercially available.
Compounds of formula (I) and some of the intermediates may have one or more stereogenic centers in their structure, present in a R or a S configuration, such as, e.g. the carbon atom bearing the R₄ substituent, and the carbon atom linked to the -Alk¹⁻NR⁶⁻Alk²⁻R⁵ moiety.

The compounds of formula (I) as prepared in the hereinabove described processes may be synthesized in the form of racemic mixtures of enantiomers which can be separated from one another following art-known resolution procedures. The racemic compounds of formula (I) may be converted into the corresponding diastereomeric salt forms by reaction with a suitable chiral acid. Said diastereomeric salt forms are subsequently separated, for example, by selective or fractional crystallization and the enantiomers are liberated therefrom by alkali. An alternative manner of separating the diastereomeric forms of the compounds of formula (I) involves liquid chromatography using a chiral stationary phase. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically.

Preferably if a specific stereoisomer is desired, said compound will be synthesized by stereospecific methods of preparation. These methods will advantageously employ enantiomERICALLY pure starting materials.

The compounds of formula (I), the N-oxide forms, the pharmaceutically acceptable salts and stereoisomeric forms thereof possess favourable fundic relaxation properties as evidenced in pharmacological example C-1, the "Gastric tone measured by an electronic barostat in conscious dogs"-test.

Furthermore, the compounds of the present invention have additional beneficial pharmacological properties in that they have little or no vasoconstrictor activity as can be demonstrated in pharmacological example C.2 "Vasoconstrictive activity on basilar artery". Vasconstrictor activity can cause undesirable side-effects such as coronary effects which can induce chest pain.

In view of the capability of the compounds of the present invention to relax the fundus, the subject compounds are useful to treat conditions related to a hampered or impaired relaxation of the fundus such as, e.g. dyspepsia, early satiety, bloating and anorexia.

Dyspepsia is described as a motility disorder. Symptoms can be caused by a delayed gastric emptying or by impaired relaxation of the fundus to food ingestion. Warm-blooded animals, including humans, (generally called herein patients) suffering from dyspeptic symptoms as a result of delayed gastric emptying usually have a normal fundic relaxation and can be relieved of their dyspeptic symptoms by administering a prokinetic agent such as, e.g. cisapride. Patients can have dyspeptic symptoms without having a disturbed gastric emptying. Their dyspeptic symptoms may result from a hypercontracted fundus or hypersensitivity resulting in a diminished compliance and abnormalities in the adaptive fundic relaxation. A hypercontracted fundus results in a diminished compliance of the stomach. The "compliance of the stomach" can be expressed as the ratio of the volume of the stomach over the pressure exerted by the stomach wall. The compliance of the stomach relates to the gastric tone, which is the result of the tonic contraction of muscle fibers of the proximal stomach. This proximal part of the stomach, by exerting a regulated tonic contraction (gastric tone), accomplishes the reservoir function of the stomach.

Patients suffering from early satiety cannot finish a normal meal since they feel saturated before they are able to finish said normal meal. Normally when a subject starts eating, the stomach will show an adaptive relaxation, i.e. the stomach will relax to accept the food that is ingested. This adaptive relaxation is not possible when the compliance of the stomach is hampered which results in an impaired relaxation of the fundus.

Hence, the use of a compound of formula (I) as medicine is provided, and in particular the use of a compound of formula (I) for the manufacture of a medicine for treating conditions involving an impaired relaxation of the fundus to food ingestion. Both prophylactic and therapeutical treatment are envisaged.

The symptoms of impaired fundic relaxation may also arise due to the intake of chemical substances, e.g. Selective Serotonin Re-uptake Inhibitors (SSRIs), such as fluoxetine, paroxetine, fluvoxamine, citalopram and sertraline.

To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, in base or acid addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for administration orally, rectally or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may
be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause a significant deleterious effect to the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment. Acid addition salts of (I) due to their increased water solubility over the corresponding base form, are obviously more suitable in the preparation of aqueous compositions.

It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples there-of.

[0050] For oral administration, the pharmaceutical compositions may take the form of solid dose forms, for example, tablets (both swallowable-only and chewable forms), capsules or gelcaps, prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g. lactose, microcrystalline cellulose or calcium phosphate); lubricants e.g. magnesium stearate, talc or silica); disintegrants (e.g. potato starch or sodium starch glycollate); or wetting agents (e.g. sodium lauryl sulphate). The tablets may be coated by methods well known in the art.

[0051] Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be prepared as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means, optionally with pharmaceutically acceptable additives such as suspending agents (e.g. sorbitol syrup, methylcellulose, hydroxypropyl methylcellulose or hydrogenated edible fats); emulsifying agents (e.g. lecithin or acacia); non-aqueous vehicles (e.g. almond oil, oily esters or ethyl alcohol); and preservatives (e.g. methyl or propyl p-hydroxybenzoates or sorbic acid).

[0052] Pharmaceutically acceptable sweeteners comprise preferably at least one intense sweetener such as saccharin, sodium or calcium saccharin, aspartame, acesulfame potassium, sodium cyclamate, alitame, a dihydrochalcone sweetener, monellin, stevioside or sucralose (4,1',6'-trichloro-4,1',6'-trideoxygalactosucrose), preferably saccharin, sodium or calcium saccharin, and optionally a bulk sweetener such as sorbitol, mannitol, fructose, sucrose, maltose, isomalt, glucose, hydrogenated glucose syrup, xylitol, caramel or honey.

[0053] Intense sweeteners are conveniently employed in low concentrations. For example, in the case of sodium saccharin, the concentration may range from 0.04% to 0.1% (w/v) based on the total volume of the final formulation, and preferably is about 0.06% in the low-dosage formulations and about 0.08% in the high-dosage ones. The bulk sweetener can effectively be used in larger quantities ranging from about 10% to about 35%, preferably from about 10% to 15% (w/v).

[0054] The pharmaceutically acceptable flavours which can mask the bitter tasting ingredients in the low-dosage formulations are preferably fruit flavours such as cherry, raspberry, black currant or strawberry flavour. A combination of two flavours may yield very good results. In the high-dosage formulations stronger flavours may be required such as Caramel Chocolate flavour, Mint Cool flavour, Fantasy flavour and the like pharmaceutically acceptable strong flavours. Each flavour may be present in the final composition in a concentration ranging from 0.05% to 1% (w/v).

Combinations of said strong flavours are advantageously used. Preferably a flavour is used that does not undergo any change or loss of taste and colour under the acidic conditions of the formulation.

[0055] The compounds of the invention may also be formulated as depot preparations. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example as a sparingly soluble salt.

[0056] The compounds of the invention may be formulated for parenteral administration by injection, conveniently intravenous, intramuscular or subcutaneous injection, for example by bolus injection or continuous intravenous infusion. Formulations for injection may be presented in unit dosage form e.g. in ampoules or in multidose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulation agents such as isotonizing, suspending, stabilising and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g. sterile pyrogen-free water before use.

[0057] The compounds of the invention may also be formulated in rectal compositions such as suppositories or
retention enemas, e.g. containing conventional suppository bases such as cocoa butter or other glycerides.

For intranasal administration the compounds of the invention may be used, for example, as a liquid spray, as a powder or in the form of drops.

The formulations of the present invention may optionally include an anti-flatulent, such as simethicone, alpha-D-galactosidase and the like.

In general it is contemplated that a therapeutically effective amount would be from about 0.001 mg/kg to about 2 mg/kg body weight, preferably from about 0.02 mg/kg to about 0.5 mg/kg body weight. A method of treatment may also include administering the active ingredient on a regimen of between two or four intakes per day.

Experimental part

In the procedures described hereinafter the following abbreviations were used : "ACN" stands for acetonitrile and "DCM" stands for dichloromethane.

For some chemicals the chemical formula was used, e.g. CH$_2$Cl$_2$ for dichloromethane, CH$_3$OH for methanol, NH$_3$ for ammonia, HCl for hydrochloric acid, and NaOH for sodium hydroxide.

In those cases the stereochemically isomeric form which was first isolated is designated as "A", the second as "B", the third one as "C" and the fourth one as "D", without further reference to the actual stereochemical configuration.

A. Preparation of the intermediates

Example A.1

A reaction solution of 1-(2-propenyl)-2,4-imidazolidinedione (0.036 mol) and 3-chlorobenzenecarboperoxoic acid (0.043 mol, 70.75%) in DCM (25 ml) was stirred for 2 hours at room temperature. An aqueous solution of bisulfite was added (to remove excess 3-chlorobenzenecarboperoxoic acid) and the mixture was stirred for 10 minutes. Na$_2$CO$_3$ was added and this mixture was extracted with DCM. The separated organic layer was dried, filtered and the solvent evaporated, yielding 5 g (89%) of (±)-1-(oxiranylmethyl)-2,4-imidazolidinedione (interm. 1).

Example A.2

a) A solution of 2-hydroxypyrimidine hydrochloride (1:1) (0.075 mol) in methanol (150 ml) was stirred for 30 minutes and then added to a solution of sodium carbonate (0.075 mol) in methanol (20 ml). The mixture was stirred and refluxed for 15 minutes, and cooled to 55°C. A solution of N,N-bis(phenylmethyl)oxiranmethanamine (0.075 mol) in toluene (160 ml) was added dropwise and the reaction mixture was stirred at 50°C overnight. Water (75 ml) was added and the mixture was stirred at 55°C for 15 minutes. The organic layer was separated, washed with water, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH$_3$OH/CH$_2$Cl$_2$ 97/3). The pure fractions were collected and the solvent was evaporated, yielding 11.8 g (45%) of (±)-1-[3-[bis(phenylmethyl)amino]-2-hydroxypropyl]-2(1H)pyrimidinone (interm. 2).

b) A solution of intermediate (2) (0.034 mol) in methanol (500 ml) was hydrogenated with palladium on activated carbon as a catalyst in the presence of thiophene. After uptake of hydrogen (1 equivalent), the catalyst was filtered off and the filtrate was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH$_2$Cl$_2$/(CH$_3$OH/NH$_3$) 95/5). The pure fractions were collected and the solvent was evaporated, yielding 6.15 g (70%) of tetrahydra-1-[2-hydroxy-3-[(phenylmethyl)amino]propyl]-2(1H)pyrimidinone (interm. 3).

B. Preparation of the final compounds

Example B.1

3,4-Dihydro-N-(phenylmethyl)-2H-1-benzopyran-2-methanamine (0.032 mol) in methanol (100 ml) was stirred at room temperature. A solution of intermediate (1) (0.032 mol) in methanol (50 ml) was added dropwise and the resulting reaction mixture was stirred overnight at room temperature. The solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH$_2$Cl$_2$/(CH$_3$OH/NH$_3$) 99/1). The desired fractions were collected and the solvent was evaporated, yielding 3.5g (27%) of (±)-1-[3-[[3,4-dihydro-2H-1-benzopyran-2-yl]methyl] (phenylmethyl)-amino]-2-hydroxypropyl]-2,4-imidazolidinedione (comp. 3).
Example B.2

[0067] A mixture of 3,4-dihydro-2H-1-benzopyran-2-carboxaldehyde, (0.023 mol) and intermediate (3) (0.023 mol) in methanol (250 ml) was hydrogenated with palladium on activated carbon (10%) as a catalyst in the presence of thiophene. After uptake of hydrogen (1 equivalent), the catalyst was filtered off and the filtrate was evaporated. The residue was purified by column chromatography over silica gel (elucent: CH₂Cl₂/CH₃OH 99/1). The pure fractions were collected and the solvent was evaporated, yielding 5.9 g (62%) of (±)-1-[3-[[3,4-dihydro-2H-1-benzopyran-2-yl]methyl](phenylmethyl)amino]-2-hydroxypropyl]tetrahydro-2(1H)-pyrimidinone (comp. 1).

Example B.3

[0068] A mixture of compound (3) (0.0086 mol) in methanol (100 ml) was hydrogenated at 25°C with palladium on activated carbon (1 g) as a catalyst. After uptake of hydrogen (1 equivalent), the catalyst was filtered off and the filtrate was evaporated. The residue was dissolved in ACN and converted into the hydrochloric acid salt (1:1) with HCl/2-propanol. The precipitate was filtered off and dried, yielding 0.49 g of (±)-1-[3-[[3,4-dihydro-2H-1-benzopyran-2-yl]methyl]amino]-2-hydroxypropyl]-2,4-imidazolidinedione monohydrochloride (comp. 4).

Example B.4

[0069] a) A solution of 2-hydroxypyrimidine (0.16 mol) in methanol (300 ml) was stirred at room temperature for 30 minutes. A solution of Na₂CO₃ (0.16 mol) in methanol (40 ml) was added. The mixture was stirred and refluxed for 15 minutes and cooled to 55°C. A solution of N,N-bis(phenylmethyl)-2-oxiranemethanamine (0.16 mol) in toluene (320 ml) was added dropwise. The mixture was stirred at 50°C overnight. Water (150 ml) was added. The mixture was stirred at 55°C for 15 minutes. The organic layer was separated, washed with water, dried, filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (elucent: CH₂Cl₂/CH₃OH 97/3). The pure fractions were collected and the solvent was evaporated, yielding 26.55 g of (±)-1-[bis(phenylmethyl)amino]-2-hydroxypropyl]-2(1H)-pyrimidinone (intermediate 4).

b) A mixture of intermediate (4) (0.073 mol) in HCl/2-propanol (20 ml) and CH₃OH (250 ml) was hydrogenated with Pd/C 10% (2 g) as a catalyst. After uptake of hydrogen (3 equivalents), the catalyst was filtered off and the filtrate was evaporated. The residue was separated into its enantiomers by HPLC (elucent: hexane/EtOH 50/50; Chiralpak AD 1000 Å 20 µm). The pure fractions were collected and the solvent was evaporated, yielding 4 g of (A)-tetrahydro-1-[2-hydroxy-3-[(phenylmethyl)amino]propyl]-2(1H)-pyrimidinone (intermediate 5).

c) A mixture of [S-(R*,R*)]-3,4-dihydro-2-oxiranyl-2H-1-benzopyran (0.006 mol) and intermediate (5) (0.006 mol) in ethanol (25 ml) was stirred and refluxed for 2 hours. The solvent was evaporated and the residue was purified by HPLC (elucent: hexane/ethanol 70/30; Chiralcel OJ 20 µm). The pure fractions were collected and the solvent was evaporated, yielding 1.7 g of [S(A)]-1-[3-[[2-(3,4-dihydro-2H-1-benzopyran-2-yl]-2-hydroxy ethyl]phenylmethyl]amino]-2-hydroxypropyl]tetrahydro-2(1H)-pyrimidinone monohydrochloride dihydrate (mp. 138°C) (compound 15).

d) A mixture of intermediate (6) (0.004 mol) in CH₃OH (100 ml) was hydrogenated with Pd/C 10% (0.5 g) as a catalyst. After uptake of hydrogen (1 equivalent), the catalyst was filtered off. The reaction mixture was converted into the hydrochloric acid salt (1:1) with HCl/2-propanol. DIPE was added. The precipitate was filtered off and dried, yielding 0.69 g of [S(A)]-1-[3-[[2-(3,4-dihydro-2H-1-benzopyran-2-yl]-2-hydroxy ethyl]amino]-2-hydroxypropyl]tetrahydro-2(1H)-pyrimidinone monohydrochloride dihydrate (mp. 138°C) (compound 15).

Table F-1 and F-2 list the compounds that were prepared according to one of the above Examples and table F.3 lists both the experimental (column heading "exp.") and theoretical (column heading "theor.") elemental analysis values for carbon, hydrogen and nitrogen of some of the compounds as prepared in the experimental part hereinabove.

[0070]
<table>
<thead>
<tr>
<th>Co No.</th>
<th>Ex. No.</th>
<th>R<sup>6</sup></th>
<th>-Alk<sup>2</sup>-R<sup>5</sup></th>
<th>Physical data (mp. in °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B.2</td>
<td>-CH<sub>2</sub>-C<sub>6</sub>H<sub>5</sub></td>
<td>-CH<sub>2</sub>-CH<sub>2</sub>-N-CONH<sub>2</sub></td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>B.3</td>
<td>H</td>
<td>-CH<sub>2</sub>-CH<sub>2</sub>-N-CONH<sub>2</sub></td>
<td>.HCl (1:2)</td>
</tr>
<tr>
<td>3</td>
<td>B.1</td>
<td>-CH<sub>2</sub>-C<sub>6</sub>H<sub>5</sub></td>
<td>-CH<sub>2</sub>-CH<sub>2</sub>-N-CONH<sub>2</sub></td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>B.3</td>
<td>H</td>
<td>-CH<sub>2</sub>-CH<sub>2</sub>-N-CONH<sub>2</sub></td>
<td>.HCl (1:1)</td>
</tr>
<tr>
<td>5</td>
<td>B.3</td>
<td>H</td>
<td>-CH<sub>2</sub>-CH<sub>2</sub>-N-CONH<sub>2</sub></td>
<td>(A); .HCl (1:2)</td>
</tr>
<tr>
<td>6</td>
<td>B.3</td>
<td>H</td>
<td>-CH<sub>2</sub>-CH<sub>2</sub>-N-CONH<sub>2</sub></td>
<td>(B); .HCl (1:1)</td>
</tr>
<tr>
<td>7</td>
<td>B.3</td>
<td>H</td>
<td>-CH<sub>2</sub>-CH<sub>2</sub>-N-CONH<sub>2</sub></td>
<td>(C); .HCl (1:2)</td>
</tr>
<tr>
<td>8</td>
<td>B.3</td>
<td>H</td>
<td>-CH<sub>2</sub>-CH<sub>2</sub>-N-CONH<sub>2</sub></td>
<td>(D); .HCl (1:1), H<sub>2</sub>O (1:1)</td>
</tr>
<tr>
<td>13</td>
<td>B.1</td>
<td>-CH<sub>2</sub>-C<sub>6</sub>H<sub>5</sub></td>
<td>-CH<sub>2</sub>-CH<sub>2</sub>-N-CONH<sub>2</sub></td>
<td>(R); .HCl (1:1)</td>
</tr>
</tbody>
</table>
Table F.3

<table>
<thead>
<tr>
<th>Co. No.</th>
<th>Ex. No.</th>
<th>R⁶</th>
<th>Physical data (mp. in °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>B.3</td>
<td>H</td>
<td>(R); .HCl (1:1); mp. 241°C; [α]_D²⁰ = -75.62°, c = 4.95 mg/ml in CH₂OH</td>
</tr>
<tr>
<td>.C₂H₂O₄ stands for the ethanedioate salt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table F.2

<table>
<thead>
<tr>
<th>Co. No.</th>
<th>Ex. No.</th>
<th>R⁶</th>
<th>Physical data (mp. in °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>B.1</td>
<td>-CH₂-C₆H₅</td>
<td>.HCl (1:1)</td>
</tr>
<tr>
<td>10</td>
<td>B.3</td>
<td>H</td>
<td>.HCl (1:1)</td>
</tr>
<tr>
<td>11</td>
<td>B.2</td>
<td>-CH₂-C₆H₅</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>B.3</td>
<td>H</td>
<td>-</td>
</tr>
</tbody>
</table>

Table F.3:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>53.30</td>
<td>52.05</td>
<td>7.11</td>
<td>6.94</td>
<td>11.04</td>
<td>10.71</td>
</tr>
<tr>
<td>4</td>
<td>52.82</td>
<td>54.01</td>
<td>5.95</td>
<td>6.23</td>
<td>11.34</td>
<td>11.81</td>
</tr>
<tr>
<td>5</td>
<td>53.29</td>
<td>52.04</td>
<td>7.60</td>
<td>6.94</td>
<td>10.32</td>
<td>10.71</td>
</tr>
<tr>
<td>6</td>
<td>53.94</td>
<td>57.38</td>
<td>7.34</td>
<td>7.36</td>
<td>11.06</td>
<td>11.81</td>
</tr>
<tr>
<td>7</td>
<td>52.85</td>
<td>52.04</td>
<td>7.90</td>
<td>6.94</td>
<td>10.15</td>
<td>10.71</td>
</tr>
<tr>
<td>8</td>
<td>53.22</td>
<td>54.61</td>
<td>7.65</td>
<td>7.55</td>
<td>10.87</td>
<td>11.24</td>
</tr>
<tr>
<td>10</td>
<td>53.52</td>
<td>54.01</td>
<td>6.14</td>
<td>6.23</td>
<td>11.63</td>
<td>11.81</td>
</tr>
</tbody>
</table>
C. Pharmacological examples

C.1. Gastric tone measured by an electronic barostat in conscious dogs

[0071] Gastric tone cannot be measured by manometric methods. Therefore an electronic barostat was used. This allows the study of the physiological pattern and regulation of gastric tone in conscious dogs and the influence of test-compounds on this tone.

[0072] The barostat consists of an air injection system which is connected by a double-lumen 14-French polyvinyl tube to an ultrathin flaccid polyethylene bag (maximal volume: ± 700 ml). Variations in gastric tone were measured by recording changes in the volume of air within an intragastric bag, maintained at a constant pressure. The barostat maintains a constant pressure (preselected) within a flaccid air-filled bag introduced into the stomach, changing the volume of air within the bag by an electronic feedback system.

[0073] Thus, the barostat measures gastric motor activity (contraction or relaxation) as changes in intragastric volume (decrease or increase resp.) at a constant intragastric pressure. The barostat consists of a strain gauge linked by an electronic relay to an air injection-aspiration system. Both the strain gauge and the injection system are connected by means of double-lumen polyvinyl tube to an ultrathin polyethylene bag. A dial in the barostat allows selection of the pressure level to be maintained within the intragastric bag.

[0074] Female beagle dogs, weighing 7-17 kg, were trained to stand quietly in Pavlov frames. They were implanted with a gastric cannula under general anaesthesia and aseptic precautions. After a median laparotomy, an incision was made through the gastric wall in longitudinal direction between the greater and the lesser curve, 2 cm above the nerves of Latarjet. The cannula was secured to the gastric wall by means of a double purse string suture and brought out via a stub wound at the left quadrant of the hypochondrium. Dogs were allowed a recovery period of two weeks.

[0075] At the beginning of the experiment, the cannula was opened in order to remove any gastric juice or food remnants. If necessary, the stomach was cleansed with 40 to 50 ml lukewarm water. The ultrathin bag of the barostat was positioned into the fundus of the stomach through the gastric cannula. In order to ensure easy unfolding of the intragastric bag during the experiment, a volume of 300-400 ml was injected twice into the bag.

[0076] When during a stabilisation period of maximum 90 minutes, the gastric volume is stable during 15 minutes at a constant pressure of 6 mmHg (about 0.81 kPa), the test compound was administered subcutaneously (S.C.), or intraduodenally (I.D.). Test compounds were screened, i.e. changes in gastric volume were measured, usually at 0.63 mg/kg. Other doses and routes were tested if a test compound was shown to be active during the screening procedure. Table C-1 summarizes the mean maximal change in volume on relaxation of the fundus, during the 1 hour observation period after S.C. or I.D. administration of the test compound (0.63 mg/kg).

<table>
<thead>
<tr>
<th>Co. No.</th>
<th>Route</th>
<th>Maximum change in volume (ml)</th>
<th>Co. No.</th>
<th>Route</th>
<th>Maximum change in volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>S.C.</td>
<td>41</td>
<td>14</td>
<td>I.D.</td>
<td>144</td>
</tr>
<tr>
<td>6</td>
<td>S.C.</td>
<td>146</td>
<td>14</td>
<td>S.C.</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>S.C.</td>
<td>34</td>
<td>15</td>
<td>I.D.</td>
<td>5</td>
</tr>
</tbody>
</table>

C.2 Vasoconstrictive activity on basilar artery

[0077] Segments of basilar arteries taken from pigs (anaesthetised with sodium pentobarbital) were mounted for recording of isometric tension in organ baths. The preparations were bathed in Krebs - Henseleit solution. The solution was kept at 37°C and gassed with a mixture of 95% O₂ - 5% CO₂. The preparations were stretched until a stable basal tension of 2 grams was obtained.

The preparations were made to constrict with serotonin (3x10⁻⁷ M). The response to the addition of serotonin was measured and subsequently the serotonin was washed away. This procedure was repeated until stable responses were obtained. Subsequently the test compound was administered to the organ bath and the constriction of the preparation was measured. This constrictive response was expressed as a percentage of the response to serotonin as
measured previously.

Claims

1. A compound of formula (I)

 ![Chemical Structure](image)

 (I),

 a stereochemically isomeric form thereof, an N-oxide form thereof, a pharmaceutically acceptable acid addition salt thereof, or a quaternary ammonium salt thereof, wherein

 \(\text{Alk}^1 \) is \(\text{C}_{1-4} \text{alkylcarbonyl}, \text{C}_{1-4} \text{alkylcarbonylC}_{1-4} \text{alkyl}, \text{carbonyl, carbonylC}_{1-4} \text{alkyl}, \) or \(\text{C}_{1-4} \text{alkanediyi} \) optionally substituted with hydroxy, halo, amino, hydroxy\(\text{C}_{1-4} \)alkyl, \(\text{C}_{1-4} \)alkyloxy, \(\text{C}_{1-4} \)alkyloxycarbonyloxy, \(\text{C}_{1-4} \)alkyloxycarbonyloxy\(\text{C}_{1-4} \)alkyloxycarbonyloxy; \(\text{Alk}^2 \) is \(\text{C}_{1-4} \)alkylcarbonyl\(\text{C}_{1-4} \)alkyl; \(\text{C}_{1-6} \)alkanediyi substituted with hydroxy, halo, amino, hydroxy\(\text{C}_{1-4} \)alkyl, \(\text{C}_{1-4} \)alkyloxy, \(\text{C}_{1-4} \)alkyloxycarbonyl, \(\text{C}_{1-4} \)alkyloxycarbonyloxy, \(\text{C}_{1-4} \)alkyloxycarbonyloxy; \(\text{C}_{3-6} \)cycloalkylcarbonyloxy\(\text{C}_{1-4} \)alkyloxycarbonyloxy; \(\text{C}_{3-4} \)cycloalkanediyi optionally substituted with halo, hydroxy, hydroxy\(\text{C}_{1-4} \)alkyl, \(\text{C}_{1-4} \)alkyloxy, \(\text{C}_{1-4} \)alkyloxycarbonyl, \(\text{C}_{1-4} \)alkyloxycarbonyloxy, \(\text{C}_{1-4} \)alkyloxycarbonyloxy, or \(\text{C}_{3-4} \)cycloalkylcarbonyloxy\(\text{C}_{1-4} \)alkyloxycarbonyloxy;

\(-Z^1\text{-Z}^2\) is a bivalent radical of formula

\(-\text{O-CH}(R^4)\text{-CH}_2^\text{-}\) (a-1),

\(-\text{O-CH}(R^4)\text{-CH}_2^\text{-}\text{O-}\) (a-2),

\(-\text{O-CH}(R^4)\text{-CH}_2^\text{-}\text{S-}\) (a-3),

\(-\text{O-CH}(R^4)\text{-CH}_2^\text{-}\text{CH}_2^\text{-}\) (a-4),

\(-\text{O-CH}(R^4)\text{-CH}_2^\text{-}\text{CH}_2^\text{-}\text{CH}_2^\text{-}\) (a-5),

\(-\text{O-C}(R^4)\text{=}\text{CH-}\) (a-6),

\(-\text{O-C}(R^4)\text{=}\text{CHCH}_2^\text{-}\) (a-7),

\(-\text{O-C}(R^4)\text{=}\text{CHCH}_2^\text{-}\text{CH}_2^\text{-}\) (a-8),

or

\(-\text{O-CH}(R^4)\text{-CH=CH-}\) (a-9),
wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy;

R¹, R² and R³ are each independently selected from hydrogen, C₁₋₄ alkyl, C₃₋₆ alkenyl, C₁₋₆ alkoxy, trihalomethyl, trihalomethoxy, halo, hydroxy, cyano, nitro, amino, C₁₋₆ alkylcarbonylamino, C₁₋₄ alkoxy carbonyl, C₁₋₄ alkenylcarbonyl, amino carbonyl, mono- or di(C₁₋₄ alkyl)aminocarbonyl, aminoC₁₋₆ alkyl, mono- or di(C₁₋₆ alkyl)aminoc₁₋₆ alkyl, C₁₋₄ alkenylcarbonyloxyC₁₋₄ alkoxy carbonyl, or C₃₋₆ cycloalkylcarbonyloxyC₁₋₄ alkoxy carbonyl; or when R¹ and R² are on adjacent carbon atoms, R¹ and R² taken together may form a bivalent radical of formula

[Chemical structures and formulas are shown here, including various alkyl, alkenyl, alkoxy, amino, and carbonyl groups.]

EP 1 187 829 B1

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by hydroxy, C₁₋₄ alkyl or CH₂OH;

R⁴ is hydrogen, C₁₋₆ alkyl, phenylmethyl, hydroxyC₁₋₄ alkyl, C₁₋₄ alkoxyC₁₋₄ alkyl, C₁₋₄ alkenylcarbonyl, C₁₋₄ alkylcarbonyloxyC₁₋₄ alkenylcarbonyl, C₃₋₆ cycloalkylcarbonyloxyC₁₋₄ alkenylcarbonyl, or a direct bond to the - Alk¹-NR₆-Alk²-R⁵ moiety when the bivalent radical -Z¹-Z²- is of formula (a-6), (a-7) or (a-8);

R⁶ is hydrogen, C₁₋₆ alkyl, C₁₋₆ alkenyl carbonyl, C₁₋₄ alkenylcarbonyl, phenylmethyl, C₁₋₄ alkenylaminocarbonyl, C₁₋₄ alkenylcarbonyloxyC₁₋₄ alkenylcarbonyl, or C₃₋₆ cycloalkylcarbonyloxyC₁₋₄ alkenylcarbonyl;

R⁵ is a radical of formula

[More chemical structures and formulas are shown, including various alkyl, alkenyl, alkoxy, amino, and carbonyl groups.]
wherein n is 1 or 2;

\(p^1 \) is 0, and \(p^2 \) is 1 or 2; or \(p^1 \) is 1 or 2, and \(p^2 \) is 0;

\(X \) is oxygen, sulfur, \(NR^9 \) or \(CHNO_2 \);

\(Y \) is oxygen or sulfur;

\(R^7 \) is hydrogen, \(C_1-C_6 \) alkyl, \(C_3-C_5 \) cycloalkyl, phenyl or phenylmethyl;

\(R^8 \) is \(C_1-C_6 \) alkyl, \(C_3-C_5 \) cycloalkyl, phenyl or phenylmethyl;

\(R^9 \) is cyano, \(C_1-C_6 \) alkyl, \(C_3-C_5 \) cycloalkyl, \(C_1-C_4 \) alkyloxycarbonyl or aminocarbonyl;

\(R^{10} \) is hydrogen or \(C_1-C_6 \) alkyl;

or \(R^9 \) and \(R^{10} \) taken together with the nitrogen atom to which they are attached may form a pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, or morpholinyl group, optionally substituted with \(C_1-C_4 \) alkyl or \(C_1-C_4 \) alkoxy; and

\(Q \) is a bivalent radical of formula

\[\text{CH}_2\text{-CH}_2\text{-} \] (d-1),

\[\text{CH}_2\text{-CH}_2\text{CH}_2\text{-} \] (d-2),

\[\text{CH}_2\text{-CH}_2\text{CH}_2\text{CH}_2\text{-} \] (d-3),

\[\text{CH}=-	ext{CH} \] (d-4),

\[\text{CH}_2\text{-CO} \] (d-5),

\[\text{CO}-	ext{CH}_2 \] (d-6),

\[(\text{CH}_2)_2\text{-CO} \] (d-7),

\[\text{CO}-(\text{CH}_2)_{2} \] (d-8),

\[\text{CO}-	ext{CH}_2\text{-CO} \] (d-9),

\[\text{CH}_2\text{-CO}-	ext{CH}_2\text{-} \] (d-10),

wherein optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by \(C_1-C_4 \) alkyl, hydroxy or phenyl, or

\(Q \) is a bivalent radical of formula

\[\text{(d-11)} \] or \[\text{(d-12)} \]
2. A compound as claimed in claim 1 wherein R⁵ is a radical of formula (c-1) wherein X is oxygen, and Q is a radical of formula (d-2) or (d-5).

3. A compound as claimed in claim 1 wherein R⁴ is hydrogen; Alk¹ is -CH₂-, Alk² is -CH₂-CHOH-CH₂-, R⁶ is hydrogen, R⁵ is a radical of formula (c-1) wherein X is oxygen, R⁷ is hydrogen, and Q is (d-2).

4. A compound according to claim 1 wherein R⁴ is hydrogen, Alk¹ is -CH₂-, Alk² is -CH₂-CHOH-CH₂-, R⁶ is hydrogen, R⁵ is a radical of formula (c-1) wherein X is oxygen, R⁷ is hydrogen, and Q is (d-5).

5. A compound according to claim 1 wherein R⁴ is hydrogen; Alk¹ is -CHOH-CH₂²; Alk² is -CH₂-CHOH-CH₂²; R⁶ is hydrogen; R⁵ is a radical of formula (c-1) wherein X is oxygen, R⁷ is hydrogen, and Q is (d-2).

6. A compound according to claim 1 wherein the compound is 1-[3-[[3,4-dihydro-2H-1-benzopyran-2-yl]methyl]amino]-2-hydroxypropyl]-2,4-imidazolidinedione; a stereoisomeric form or a pharmaceutically acceptable acid addition salt thereof.

7. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as claimed in any of claims 1 to 6.

8. A process for preparing a pharmaceutical composition as claimed in claim 7 wherein a therapeutically active amount of a compound as claimed in any of claims 1 to 6 is intimately mixed with a pharmaceutically acceptable carrier.

9. A compound as claimed in any of claims 1 to 6 for use as a medicine.

10. A process for preparing a compound of formula (I) wherein

 a) an intermediate of formula (II) is alkylated with an intermediate of formula (III) in a reaction-inert solvent and, optionally in the presence of a suitable base,

 \[
 \begin{align*}
 \text{(II)} & \quad \text{Alk}^1 \quad \text{Alk}^2 \quad \text{R}^5

 \text{(III)} & \quad \text{H} \quad \text{R}^6

 \end{align*}
 \]

 \[(I)\]

 b) an intermediate of formula (IV), wherein Alk¹ represents a direct bond or C₁₅-alkanediyl, is reductively alkylated with an intermediate of formula (III);

 \[
 \begin{align*}
 \text{(IV)} & \quad \text{Alk}^1 \quad \text{CHO}

 \text{(III)} & \quad \text{H} \quad \text{R}^6

 \end{align*}
 \]

 \[(I)\]

 c) an intermediate of formula (VI) is reacted with an intermediate of formula (VII) thus yielding compounds of formula (I-a), defined as compounds of formula (I) wherein Alk² represents -CH₂-CHOH-CH₂⁻;
in the above reaction schemes the radicals -Z1,Z2-, R1, R2, R3, R4, R5, R6, Alk1 and Alk2 are as defined in claim 1 and W is an appropriate leaving group;

d) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into an acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.

Patentansprüche

1. Verbindung der Formel (I)

\[
\text{Patentansprüche}
\]

1. Verbindung der Formel (I)

\[
\begin{align*}
\text{Patentansprüche} \\
1. \text{Verbindung der Formel (I)} \\
\end{align*}
\]

\[
\begin{align*}
\text{Patentansprüche} \\
1. \text{Verbindung der Formel (I)} \\
\end{align*}
\]

\[
\begin{align*}
\text{Patentansprüche} \\
1. \text{Verbindung der Formel (I)} \\
\end{align*}
\]

\[
\begin{align*}
\text{Patentansprüche} \\
1. \text{Verbindung der Formel (I)} \\
\end{align*}
\]
oder

-CH₂-CH₂- (b-1),

-CH₂-CH₂-CH₂- (b-2),

-CH₂-CH₂-CH₂-CH₂- (b-3),

-CH=CH-CH=CH- (b-4),

-O-CH₂-O- (b-5),

-O-CH₂-CH₂- (b-6),

-O-CH₂-CH₂-CH₂- (b-7),

-O-CH₂-CH₂-CH₂-CH₂- (b-8),

-O-CH₂-CH₂-CH₂-CH₂-CH₂- (b-9),
worin gegebenenfalls ein oder zwei Wasserstoffatome an demselben Kohlenstoffatom oder verschiedenen Kohlenstoffatomen durch Hydroxy, C₁₋₄-Alkyl oder CH₂OH ersetzt sein können, bilden können;
R⁴ für Wasserstoff, C₁₋₆-Alkyl, Phenylmethyl, Hydroxy-C₁₋₄-alkyl, C₁₋₄-Alkyloxy-C₁₋₄-alkyl, C₁₋₄-Alkylcarnonylxy-C₁₋₄-alkylcarnonylxy, C₃₋₆-Cycloalkylcarnonylxy-C₁₋₄-alkylcarnonylxy oder in dem Fall, daß der zweiwertige Rest -Z₁₋² der Formel (a-6), (a-7) oder (a-8) entspricht, eine direkte Bindung zur Alk₁₋²-Alk₂₋R⁵-Gruppierung steht;
R⁶ für Wasserstoff, C₁₋₆-Alkyl, C₁₋₄-Alkylcarbonyl, C₁₋₄-Alkylcarnonylxy, Phenylmethyl, C₁₋₄-Alkylaminocarbonyl, C₁₋₄-Alkylcarnonylxy-C₁₋₄-alkylcarnonylxy oder C₃₋₆-Cycloalkylcarnonylxy-C₁₋₄-alkylcarnonylxy steht;
R⁵ für einen Rest der Formel

![Diagram](image)

steht, wobei n 1 oder 2 bedeutet;
p¹ 0 bedeutet und p² 1 oder 2 bedeutet oder p¹ 1 oder 2 bedeutet und p² 0 bedeutet;
X Sauerstoff, Schwefel, NR⁹ oder CHNO₂ bedeutet;
Y Sauerstoff oder Schwefel bedeutet;
R⁷ Wasserstoff, C₁₋₆-Alkyl, C₃₋₆-Cycloalkyl, Phenyl oder Phenylmethyl bedeutet;
R³ C₁₋₆-Alkyl, C₃₋₆-Cycloalkyl, Phenyl oder Phenylmethyl bedeutet;
R⁹ Cyano, C₁₋₆-Alkyl, C₃₋₆-Cycloalkyl, C₁₋₄-Alkylcarnonylxy oder Aminocarbonyl bedeutet;
R¹₀ Wasserstoff oder C₁₋₆-Alkyl bedeutet
oder R⁷ und R¹₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, eine gegebenenfalls durch C₁₋₄-Alkyl oder C₁₋₄-Alkylxy substituierte Pyrrolidinyl-, Piperidinyl-, Homopiperidinyl-, Piperazinyl- oder Morpholinylgruppe bilden können; und
Q einen zweiwertigen Rest der Formel

-CH₂-CH₂⁻ (d-1),
-CH₂-CH₂-CH₂⁻ (d-2),
-CH₂-CH₂-CH₂-CH₂⁻ (d-3),
-CH=CH⁻ (d-4),
-CH₂-O⁻ (d-5),
-CO-CH₂⁻ (d-6),
-(CH₂)₂-CO⁻ (d-7),
-CO-(CH₂)₂⁻ (d-8),
worin gegebenenfalls ein oder zwei Wasserstoffatome an demselben Kohlenstoffatom oder verschiedenen Kohlenstoffatomen durch C$_{1-4}$-Alkyl, Hydroxy oder Phenyl ersetzt sein können, oder einen zweiwertigen Rest der Formel bedeutet.

2. Verbindung nach Anspruch 1, in der R5 für einen Rest der Formel (c-1), worin X Sauerstoff bedeutet und Q einen Rest der Formel (d-2) oder (d-5) bedeutet, steht.

3. Verbindung nach Anspruch 1, in der R4 für Wasserstoff steht, Alk1 für -CH$_2$- steht, Alk2 für -CH$_2$-CHOH-CH$_2$- steht, R6 für Wasserstoff steht und R5 für einen Rest der Formel (c-1), worin X Sauerstoff bedeutet, R7 Wasserstoff bedeutet und Q (d-2) bedeutet, steht.

4. Verbindung nach Anspruch 1, in der R4 für Wasserstoff steht, Alk1 für -CH$_2$- steht, Alk2 für -CH$_2$-CHOH-CH$_2$- steht, R6 für Wasserstoff steht und R5 für einen Rest der Formel (c-1), worin X Sauerstoff bedeutet, R7 Wasserstoff bedeutet und Q (d-5) bedeutet, steht.

5. Verbindung nach Anspruch 1, in der R4 für Wasserstoff steht, Alk1 für -CHOH-CH$_2$- steht, Alk2 für -CH$_2$-CHOH-CH$_2$- steht, R6 für Wasserstoff steht und R5 für einen Rest der Formel (c-1), worin X Sauerstoff bedeutet, R7 Wasserstoff bedeutet und Q (d-2) bedeutet, steht.

6. Verbindung nach Anspruch 1, bei der es sich um 1-[[3,4-Dihydro-2H-1-benzopyran-3-yl]-methyl]-amino-2-hydroxypropyl]-2,4-imidazolidindion, eine stereoisomere Form oder ein pharmazeutisch unbedenkliches Säureadditionsalz davon handelt.

7. Pharmazeutische Zusammensetzung, enthaltend einen pharmazeutisch unbedenklichen Träger und eine therapeutisch wirksame Menge einer Verbindung nach einem der Ansprüche 1 bis 6.

8. Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung nach Anspruch 7, bei dem man eine therapeutisch wirksame Menge einer Verbindung nach einem der Ansprüche 1 bis 6 innig mit einem pharmazeutisch unbedenklichen Träger vermischt.

9. Verbindung nach einem der Ansprüche 1 bis 6 zur Verwendung als Arzneimittel.

10. Verfahren zur Herstellung einer Verbindung der Formel (I), bei dem man

 a) ein Zwischenprodukt der Formel (II) in einem unter den Reaktionsbedingungen inerten Lösungsmittel und
gegebenenfalls in Gegenwart einer Base mit einem Zwischenprodukt der Formel (III) alkyliert

\[
\begin{align*}
\text{(II)} & \quad \text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5, \text{Z}^1, \text{Z}^2, \text{Alk}^1, \text{W} \\
\text{(III)} & \quad \text{H-N}\text{Alk}^2\text{R}^5 \\
\end{align*}
\]

\[\Rightarrow \text{(I)}\]

b) ein Zwischenprodukt der Formel (IV), worin Alk' für eine direkte Bindung oder \(C_{1,5}\)-Alkandiyl steht, mit einem Zwischenprodukt der Formel (III) reduktiv alkyliert

\[
\begin{align*}
\text{(IV)} & \quad \text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5, \text{Z}^1, \text{Z}^2, \text{Alk}^1\text{CHO} \\
\text{(III)} & \quad \text{H-N}\text{Alk}^2\text{R}^5 \\
\end{align*}
\]

\[\Rightarrow \text{(I)}\]

c) ein Zwischenprodukt der Formel (VI) mit einem Zwischenprodukt der Formel (VII) zu Verbindungen der Formel (I-a), die als Verbindungen der Formel (I), in denen Alk² für \(-\text{CH}_2\text{CHOH-CH}_2\) steht, definiert sind, umsetzt

\[
\begin{align*}
\text{(VI)} & \quad \text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5, \text{R}^6, \text{Alk}^1, \text{N-H} \\
\text{(VII)} & \quad \text{CH}_2\text{R}^5 \\
\end{align*}
\]

\[\Rightarrow \text{(I-a)}\]

wobei die Reste -Z¹-Z², R¹, R², R³, R⁴, R⁵, Alk¹ und Alk² in den obigen Reaktionsschemata die in Anspruch 1 angegebene Bedeutung besitzen und W für eine geeignete Abgangsgruppe steht;

d) oder Verbindungen der Formel (I) durch an sich bekannte Transformationsreaktionen ineinander umwandelt oder gegebenenfalls eine Verbindung der Formel (I) in ein Säureadditionssalz oder umgekehrt ein Säureadditionssalz einer Verbindung der Formel (I) mit Alkali in eine freie Basenform umwandelt und gegebenenfalls stereochemisch isomere Formen davon herstellt.

Revendications

1. Composé de formule (I)
une forme stéréochimiquement isomère de celui-ci, une forme N-oxyde de celui-ci, un sel d’addition d’acide pharmaceutiquement acceptable de celui-ci, ou un sel d’ammonium quaternaire de celui-ci, dans laquelle

Alk1 est alkylcarbonyle en C$_{1-4}$, alkyl(C$_{1-4}$)carbonylalkyle(C$_{1-4}$), carbonyle, carbonylalkyle en C$_{1-4}$ ou alcanediyle en C$_{1-6}$ éventuellement substitué par hydroxy, halogéno, amino, hydroxyalkyle en C$_{1-4}$, alkyl(alkyl(C$_{1-4}$)-oxyalkyle(C$_{1-4}$), alkylcarbonyloxalyle en C$_{1-4}$, alkyl(C$_{1-4}$)carbonyloxalyle(C$_{1-4}$)oxycarbonyloxalyle, ou cycloalkyl(C$_{3-8}$)carbonyloxalyle(C$_{1-4}$)oxycarbonyloxalyle ;

Alk2 est alkyl(C$_{1-4}$)carbonylalkyle(C$_{1-4}$) ; alcanediyle en C$_{1-6}$ substitué par hydroxy, halogéno, amino, hydroxyalkyle en C$_{1-4}$, alkyl(alkyl(C$_{1-4}$)-oxyalkyle(C$_{1-4}$), alkylcarbonyloxalyle en C$_{1-4}$, alkyl(C$_{1-4}$)carbonyloxalyle(C$_{1-4}$)oxycarbonyloxalyle, ou cycloalkyl(C$_{3-8}$)éventuellement substitué par halogéno, hydroxy, hydroxyalkyle en C$_{1-4}$, alkyl(C$_{1-4}$)oxyalkyle(C$_{1-4}$), alkylcarbonyloxalyle en C$_{1-4}$, alkyl(C$_{1-4}$)carbonyloxalyle(C$_{1-4}$)oxycarbonyloxalyle, ou cycloalkyl(C$_{3-8}$)carbonyloxalyle(C$_{1-4}$)oxycarbonyloxalyle ;

-Z1-Z2- est un radical bivalent de formules

\[
\begin{align*}
-O-CH(R^4)-CH_2^- & \quad (a-1), \\
-O-CH(R^4)-CH_2-O^- & \quad (a-2), \\
-O-CH(R^4)-CH_2-S^- & \quad (a-3), \\
-O-CH(R^4)-CH_2-CH_2^- & \quad (a-4), \\
-O-CH(R^4)-CH_2-CH_2^- & \quad (a-5), \\
-O-C(R^4)-CH = CH^- & \quad (a-6), \\
-O-C(R^4)-CH = CH_2^- & \quad (a-7), \\
-O-C(R^4)-CH = CH_2^- & \quad (a-8), \\
\end{align*}
\]

ou

\[
-O-CH(R^4)-CH=CH^- & \quad (a-9), \\
\]

dans lesquelles on peut éventuellement remplacer un ou deux atomes d’hydrogène sur le même atome de carbone ou sur un atome de carbone différent par hydroxy ;

R1, R2 et R3 sont chacun indépendamment choisis parmi: hydrogène, alkyle en C$_{1-6}$, alcényle en C$_{3-6}$, alkényle en C$_{3-6}$, trihalogénométhyle, trihalogénométhoxy, halogéno, hydroxy, cyano, nitro, amino, alkylcarbonylamino en C$_{1-6}$, alkylcarbonyloxalyle en C$_{1-6}$, alkylcarbonyloxalyle(C$_{1-4}$)aminocarbonyle, mono- ou dialkylaminocarbonyle en C$_{1-6}$.
aminoalkyle en C\textsubscript{1-6}, mono- ou dialkyl(C\textsubscript{1-6})aminoalkyle(C\textsubscript{1-6}), alkyl(C\textsubscript{1-4})carbonyloxyalkyl(C\textsubscript{1-4})oxycarboxyloxy, ou cycloalkyl(C\textsubscript{3-6})-carbonyloxyalkyl(C\textsubscript{1-4})oxycarboxyloxy ; ou lorsque R\textsubscript{1} et R\textsubscript{2} sont sur des atomes de carbone adjacents, R\textsubscript{1} et R\textsubscript{2} pris ensemble peuvent former un radical bivalent de formules

\begin{align*}
&\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-} \quad \text{(b-1),} \\
&\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-} \quad \text{(b-2),} \\
&\text{CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-} \quad \text{(b-3),} \\
&\text{-CH_2=CH_2=CH-} \quad \text{(b-4),} \\
&\text{-O\text{-CH}_2\text{-O-}} \quad \text{(b-5),} \\
&\text{-O\text{-CH}_2\text{-CH}_2-} \quad \text{(b-6),} \\
&\text{-O\text{-CH}_2\text{-CH}_2\text{-O-}} \quad \text{(b-7),} \\
&\text{-O\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-}} \quad \text{(b-8),} \\
&\text{-O\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-}} \quad \text{(b-9),}
\end{align*}

dans lesquelles on peut éventuellement remplacer un ou deux atomes d'hydrogène sur le même atome de carbone ou sur un atome de carbone différent par hydroxy, alkyle en C\textsubscript{1-4} ou CH\textsubscript{2}OH ;

R4 est hydrogène, alkyle en C\textsubscript{1-6}, phénylméthyle, hydroxalkyle en C\textsubscript{1-4}, alkyl(C\textsubscript{1-4})oxyalkyle(C\textsubscript{1-4}), alkyloxycarbo-
nonyloxy, ou une liaison directe au motif -Alk1-NR6-Alk2-R5 lorsque le radical bivalent \text{Z} 1-\text{Z} 2 est de formules (a-6), (a-7) ou (a-8) ;

R5 est un radical de formules,

\begin{align*}
&\text{R_6 est hydrogène, alkyle en C\textsubscript{1-6}, alkylcarbonyle en C\textsubscript{1-4}, alkylcarbonyle en C\textsubscript{1-4}, phénylméthyle, alkylamino-} \\
&\text{carbonyle en C\textsubscript{1-4}, alkyl(C\textsubscript{1-4})carbonyloxyalkyl(C\textsubscript{1-4})oxycarboxyloxy, ou cycloalkyl(C\textsubscript{3-6})-carbonyloxyalkyl(C\textsubscript{1-4})oxycarboxyloxy ;} \\
&\text{R5 est un radical de formules,}
\end{align*}

dans laquelle n est 1 ou 2 ;

p1 est 0, et p2 est 1 ou 2 ; ou p1 est 1 ou 2, et p2 est 0 ;

X est oxygène, soufre, NR9 ou CHNO\textsubscript{2} ;

Y est oxygène ou soufre ;

R7 est hydrogène, alkyle en C\textsubscript{1-6}, cycloalkyle en C\textsubscript{3-6}, phénylé ou phénylméthyle ;
R₈ est alkyle en C₁₋₆, cycloalkyle en C₃₋₆, phényle ou phénylméthyle ;
R₉ est cyano, alkyle en C₁₋₆, cycloalkyle en C₃₋₆, alkyloxycarbonyle en C₁₋₆, ou aminocarbonyle ;
R¹⁰ est hydrogène ou alkyle en C₁₋₆ ;
ou R₉ et R¹⁰ pris ensemble avec l’atome d’azote auquel ils sont liés peuvent former un groupement pyrrolidinyle,
pipéridinyle, homopipéridinyle, pipérazinyle ou morpholinyle, éventuellement substitué par alkyle en C₁₋₄ ou alk-
yloxy en C₁₋₄ ; et
Q est un radical bivalent de formules

\[
\begin{align*}
\text{CH₂-CH₂} & \quad \text{(d-1)}, \\
\text{CH₂-CH₂-CH₂} & \quad \text{(d-2)}, \\
\text{CH₂-CH₂-CH₂-CH₂} & \quad \text{(d-3)}, \\
\text{CH=CH} & \quad \text{(d-4)}, \\
\text{CH₂-CO} & \quad \text{(d-5)}, \\
\text{CO-CH₂} & \quad \text{(d-6)}, \\
\text{CO-(CH₂)₂-CO} & \quad \text{(d-7)}, \\
\text{CO-(CH₂)₂} & \quad \text{(d-8)}, \\
\text{CO-CH₂-CO} & \quad \text{(d-9)}, \\
\text{CH₂-CO-CH₂} & \quad \text{(d-10)},
\end{align*}
\]

dans lesquelles on peut remplacer un ou deux atomes d’hydrogène sur le même atome de carbone ou sur un
atome de carbone différent par alkyle en C₁₋₄, hydroxy ou phényle, ou
Q est un radical bivalent de formule

\[
\begin{align*}
\text{(d-11)} & \quad \text{ou} \\
\text{(d-12)}
\end{align*}
\]

2. Composé selon la revendication 1, caractérisé en ce que R₅ est un radical de formule (c-1), dans laquelle X est
oxygène, et Q est un radical de formule (d-2) ou (d-5).

3. Composé selon la revendication 1, caractérisé en ce que R₄ est hydrogène ; Alk¹ est -CH₂-, Alk² est
-\(\text{CH}_2\text{-CHOH-CH}_2\text{)}\), R\(^6\) est hydrogène, R\(^5\) est un radical de formule (c-1) dans laquelle X est oxygène, R\(^7\) est hydrogène, et Q est (d-2).

4. Composé selon la revendication 1, caractérisé en ce que R\(^4\) est hydrogène, Alk\(^1\) est -\(\text{CH}_2\text{)}\), Alk\(^2\) est -\(\text{CH}_2\text{-CHOH-CH}_2\text{)}\), R\(^6\) est hydrogène, R\(^5\) est un radical de formule (c-1) dans laquelle X est oxygène, R\(^7\) est hydrogène, et Q est (d-5).

5. Composé selon la revendication 1, caractérisé en ce que R\(^4\) est hydrogène ; Alk\(^1\) est -\(\text{CHOH-CH}_2\text{)}\) ; Alk\(^2\) est -\(\text{CH}_2\text{-CHOH-CH}_2\text{)}\) ; R\(^6\) est hydrogène ; R\(^5\) est un radical de formule (c-1) dans laquelle X est oxygène, R\(^7\) est hydrogène, et Q est (d-2).

6. Composé selon la revendication 1, caractérisé en ce que le composé est la 1-[3-[(3,4-dihydro-2H-1-benzopyrane-2-yl)méthyl]-amino]-2-hydroxypropyl]-2,4-imidazolidinedione ; une forme stéréo-isomère ou un sel d'addition d'acide pharmaceutiquement acceptable de celui-ci.

7. Composition pharmaceutique comprenant un support pharmaceutiquement acceptable et une quantité thérapeutiquement active d'un composé selon l'une quelconque des revendications 1 à 6.

8. Procédé de préparation d'une composition pharmaceutique selon la revendication 7, caractérisé en ce qu'une quantité thérapeutiquement active d'un composé selon l'une quelconque des revendications 1 à 6 est mélangée intimement avec un support pharmaceutiquement acceptable.

9. Composé selon l'une quelconque des revendications 1 à 6, destiné à être utilisé comme médicament.

10. Procédé de préparation d'un composé de formule (I) dans laquelle

\[\begin{align*}
\text{(II)} & \quad \text{Alk}^1 \quad W \quad + \quad \text{H-N-Alk}^2 \quad R^5 \quad \rightarrow \quad (I) \\
\text{(IV)} & \quad \text{Alk}^1 \quad \text{CHO} \quad + \quad \text{H-N-Alk}^2 \quad R^5 \quad \rightarrow \quad (I)
\end{align*}\]

b) un intermédiaire de formule (IV), dans laquelle Alk\(^1\) représente une liaison directe ou un alcanediyle en C\(_{1-5}\), est alkylé de manière réductrice avec un intermédiaire de formule (III) ;

c) un intermédiaire de formule (VI) est mis en réaction avec un intermédiaire de formule (VII), donnant ainsi des composés de formule (I-a), définis comme des composés de formule (I), dans laquelle Alk\(^2\) représente -\(\text{CH}_2\text{-CHOH-CH}_2\text{)}\).
dans les schémas réactionnels ci-dessus, les radicaux \(-Z_1^- -Z_2^- \), \(R_1 \), \(R_2 \), \(R_3 \), \(R_4 \), \(R_5 \), \(R_6 \), \(\text{Alk}^1 \) et \(\text{Alk}^2 \) sont tels que définis dans la revendication 1 et \(W \) est un groupement partant approprié ;

d) ou les composés de formule (I) sont transformés les uns en les autres selon des réactions de transformation connues dans la technique ; ou, si on le souhaite, un composé de formule (I) est transformé en un sel d'addition d'acide, ou inversement un sel d'addition d'acide d'un composé de formule (I) est transformé en une forme de base libre avec un alcali ; et, si on le souhaite, on prépare des formes stéréochimiquement isomères de celui-ci.