EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
13.08.2008 Bulletin 2008/33

Application number: 00941322.0

Date of filing: 08.06.2000

International application number:
PCT/US2000/015981

International publication number:

FLUID AND AIR NOZZLE FOR HEADLIGHT CLEANING
LUFT- UND FLUIDDÜSE ZUR REINIGUNG VON SCHEINWERFERN
BUSES DE LIQUIDE ET D’AIR POUR LE NETTOYAGE DES PHARES D’UN VEHICULE

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Priority: 11.06.1999 US 138897 P
29.11.1999 US 451257

Date of publication of application:
20.03.2002 Bulletin 2002/12

Proprietor: Sprague Devices, Inc
Canby, OR 97013 (US)

Inventors:
• HOLT, Donald, E.
Woodburn, OR 97071 (US)

• LUNDBERG, Chester, E.
Sherwood, OR 97140 (US)

Representative: Lacey, Dean Andrew et al
Swindell & Pearson
48 Friar Gate
Derby DE1 1GY (GB)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Background of the Invention

This invention relates to a headlight cleaning apparatus and more particularly to a fluid and air nozzle for use with vehicles equipped with both pressurized air systems and pressurized windshield cleaning fluid systems, such as commonly found in commercial transport trucks and certain automobiles.

Due to the excessive mileage that commercial carriers undergo between washings, the headlight surfaces of transport trucks frequently become dirty or laden with snow and ice. Devices have been employed that clean headlights and it is known to direct pressurized air and fluid against headlights for this purpose as is shown in U.S. Patent No. 3,469,088. U.S. Patent No. 4,026,468 relates to a headlight cleaning assembly that cleans vehicle headlights by using first and second nozzles for jetting an air/liquid mixture against the headlight surface. U.S. Patent No. 5,083,339 shows a lens cleaning apparatus employing a nozzle which cleans the lens in reciprocating movements of the arm.

A problem with the prior art is that most headlight washer nozzles are custom fitted to certain vehicles in the vicinity of the headlights, and are not adjustable. Thus, these nozzles are not readily fitted to other vehicles for either factory installations or after market installations.

Summary of the Invention

In accordance with the present invention there is provided a fluid-air headlight cleaning nozzle, comprising a fluid-nozzle body defining an air inlet fitting, a fluid inlet fitting, and a trajectory adjustment element; wherein the trajectory adjustment element is a rotatable spool with an air outlet orifice and a fluid outlet orifice, said rotatable spool being in fluid communication with said air inlet fitting, and receiving an air supply therefrom, and providing a jet of air from said air outlet orifice based on the air supply, and said rotatable spool being in fluid communication with said fluid inlet fitting, and receiving a fluid supply therefrom, and providing a jet of cleaning fluid from said fluid outlet orifice based on the fluid supply, wherein the jet of air from said air outlet orifice intersects the jet of cleaning fluid from said fluid outlet orifice so as to form a spray mixture that is directed toward a headlight of a vehicle.

Other features and elements of aspects of the present invention are outlined in the dependent claims 2 to 11 below.

The subject matter of the present invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, both the organization and method of operation, together with further advantages and objects thereof, may best be understood by reference to the following description taken in connection with accompanying drawings wherein like reference characters refer to like elements.

Brief Description of the Drawings

FIG. 1 is a cross-sectional view of a first embodiment of a fluid-air nozzle illustrating the rotatable air spool for adjusting the fluid-air spray trajectory which is not part of the present invention;

FIG. 2 is a cross-sectional view of a first embodiment of a fluid-air nozzle illustrating the rotatable fluid-air spool for adjusting the trajectory of the fluid-air spray stream according to the present invention;

FIG. 3 is a perspective side view of the first embodiment of a fluid-air nozzle illustrating a partial cutaway view of the manual rotatable adjustment spool for adjusting the trajectory of the fluid-air spray stream;

FIG. 4 is a cross-sectional side view taken midpoint of a second embodiment of a fluid-air nozzle illustrating the general design of the rotatable adjustment spool within the nozzle housing according to the present invention;

FIG. 5 is a cross-sectional front view of the second embodiment of a fluid-air nozzle illustrating the air passages through the rotatable adjustment spool as taken through line 5-5 of FIG. 4;

FIG. 6 is a cross-sectional view of the second embodiment of a fluid-air nozzle illustrating the fluid passages through the rotatable adjustment spool as taken through line 6-6 of FIG. 4;

FIG. 7 is a bottom view of an exemplary mounting bracket for use with the first and second embodiments of the fluid-air nozzle;

FIG. 8 is a cross-section view of an exemplary mounting bracket with second embodiment fluid-air nozzle according to the present invention mounted thereon as taken through line 8-8 of FIG. 7;

FIG. 9 is a view of a mounting bracket for use in connection with the invention; and

FIG. 10 is a cross-sectional view of the nozzle housing and bracket assembly.

Detailed Description

In accordance with the present invention, two embodiments of a headlight cleaning nozzle are shown, wherein the embodiments employ pressurized air, as is typically available for accessory purposes on heavy trucks and certain automobiles, and momentarily pressurized windshield washer fluid, as is typically available on such vehicles for the purpose of cleaning the windshield. The air and washer fluid are ejected from separate orifices in the headlight cleaning nozzle merging a short distance therefrom and are propelled onto the surface of the headlight.

Referring to FIG. 1, a cross-sectional view of
an embodiment of a fluid-air nozzle, which does not form part of the present invention, a nozzle body 12 is configured so as to define air passage 2 and fluid passage 4 therein. Fluid passage 4 defines openings in nozzle body 12 at a fluid inlet fitting 10 and a fluid exit orifice 14. Air passage 2 defines openings in nozzle body 12 at an air inlet fitting 11 and an air exit 18. Air passage 2 houses a cylindrical rotatable air spool 15 in air exit 18 of nozzle body 12. A shoulder 5 is defined along the longitudinal axis of air spool 15. An air exit orifice 16 is formed through air spool 15, centrally located within shoulder 5. A mounting hole 6 is defined in nozzle body 12 between air inlet fitting 11 and fluid inlet fitting 10. The inlets and outlets are at right angles to each other in the illustrated embodiment.

Air spool 15 is frictionally engaged in air passage 2 so as to maintain alignment of air spool 15 within nozzle body 12 in absence of adjustment by a user and to act as a seal forcing all of the air stream through air exit orifice 16. Application of a force (i.e., most likely from a finger) to shoulder 5 of air spool 15 will cause air spool 15 to rotate about its longitudinal axis within air passage 2, thereby altering the trajectory of the air jet through the amount of rotation that air spool 15 can undergo is limited by the abutment of shoulder 5 against nozzle body 12 in the vicinity of air exit 18. Changing the rotational position of air spool 15 directs the trajectory of the combined fluid-air stream onto the headlight.

Fluid inlet fitting 10 and air inlet fitting 11 are provided with exterior barbs that are intended to accept and retain flexible tubing suitable for the transfer of the fluid and air from the headlight cleaning system to the nozzle body 12. Nozzle body 12 is suitably fastened onto the vehicle skin adjacent to the headlights by a fastening means such as a screw which is frictionally engaged into mounting hole 6. An alternate mounting method would employ a suitable fastening means installed over the shank of air inlet fitting 11 and fluid inlet fitting 10, such as a clamp or a push-on retainer.

Heavy trucks and certain other vehicles have air systems that supply pressurized air to functioning parts of the vehicle as well as a pressurized washer system that is directly associated with windshield wipers. This washer system for the windshield wipers employs an activating switch located in the cab of the vehicle. Activation of this switch simultaneously turns on the reciprocating drive means for the wipers and a pump that supplies washer fluid to the windshield cleaning system and the headlight cleaning system. The fluid pressure within the headlight cleaning system causes an in-line fluid piloted air relay valve to open the air valve. The washer fluid and air are then delivered by suitable tubing to the headlight washer nozzles where the separate air and fluid streams (jets) are ejected from the nozzle so as to intersect. The power resulting from the compressed air expanding disperses the fluid stream thereby determining the spray pattern and trajectory as well as propelling the combined fluid-air stream onto the headlight lenses. A separate headlight washing only system may also be provided to operate independently of the windshield washing system.

Referring to FIGS. 2 and 3, cross-sectional and perspective side views respectively, illustrating the first embodiment of the present invention, a body is provided having a generally cylindrical rotatable spool 27 therein. One end of rotatable spool 27 contains a fluid flow channel 28 which is oriented generally parallel to the longitudinal axis of spool 27 and terminates at fluid exit orifice 26 approximately midpoint of spool 27. The distal end of spool 27 contains an air flow channel 29 which is oriented generally parallel to the longitudinal axis of spool 27 and terminates at an air exit orifice 25 which is substantially centered above fluid exit orifice 26 and positioned midpoint of spool 27. Both exterior surface ends of spool 27 have a circumferential sealing profile 24 which frictionally connects spool 27 to a fluid endcap 23 and an air endcap 22.

Spool 27 includes two circumferential sealing profiles 24 which accommodate an interference fit between air endcap 22 and fluid endcap 23. Both endcaps are longitudinally bored and have exterior barbs to accommodate suitable transfer hoses for the air and fluid. The interference fit forms an airtight and fluidtight seal and retains fluid endcap 23 and air endcap 22 onto spool 27. Spool 27 is bored from either end so as to have two flow channels, fluid flow channel 28 and air flow channel 29. Fluid flow channel 28 allows fluid stream 50 to transfer from fluid inlet 21 of fluid endcap 23 to the fluid exit orifice 26 at the center of spool 27, and air flow channel 29 allows air stream 52 to transfer from air inlet 20 of air endcap 22 to the air exit orifice 25 at the center of spool 27. Air exit orifice 25 and fluid exit orifice 26 are adjacent positioned and fixedly located midpoint of spool 27. Spool sealing profiles 24 are mated to fluid endcap 23 and air endcap 22 such that spool 27 is able to maintain a fluid and air seal while being rotated relative to the endcaps for the purpose of adjusting the trajectory of both the fluid and air streams. It can therefore be seen that in this nozzle embodiment, the trajectory of both the fluid stream 50 and air stream 52 can simultaneously be adjusted by rotating spool 27 about its axis.

Fluid exit orifice 26 gives the fluid stream a trajectory parallel to the air stream. Air exit orifice 25 directs the air toward the headlight surface and is fashioned such that the exiting and expanding air stream is formed into a somewhat wide, flattened shape for cleaning the maximum possible area of the headlight. An adjustment tab 19 protrudes from spool 27 for manual rotation of spool 27, thereby allowing the adjustment of the trajectory of the fluid-air stream.

This embodiment of the headlight washer nozzle can suitably be mounted to the vehicle by insertion of air endcap 22 and fluid endcap 23 through holes drilled in the skin of the vehicle and placement of a suitable fastener onto boss 60 of each endcap. The headlight washer nozzle may also be mounted on a pedestal.
[0017] Referring now to FIGS. 4-6, which comprise sectional views of a second embodiment of the present invention, rotatable spool 33 is frictionally secured within spool recess 54 of nozzle housing 32 by spool sealing profiles 34 located circumferentially on rotatable spool 33. Perpendicular to the longitudinal axis of spool 33, nozzle housing 32 incorporates longitudinally bored air inlet fitting 30 and longitudinally bored fluid inlet fitting 31. Spool 33 contains axially bored air flow channel 36 that perpendicularly intersects air transfer channel 56 and air outlet orifice 41. Spool 33 also contains axially bored fluid flow channel 35 that perpendicularly intersects fluid transfer channel 58 and fluid outlet orifice 40.

[0018] It can be seen that the function of the second embodiment of the headlight washer nozzle is correspondent to that of the first embodiment in that each of these embodiments has a rotatable spool 33 that transmits the air and fluid from their respective inlet fittings to their respective outlet orifices.

[0019] This embodiment of the adjustable nozzle uses a single piece housing 32 which incorporates both air inlet fitting 30 and fluid inlet fitting 31. Nozzle housing 32 has a spool recess 54 bored therein to frictionally receive spool 33. Spool 33 has three circumferential spool sealing profiles 34 which compress to create seals for the compressed air and fluid when spool 33 is installed into spool recess 54. Seal profiles 34 also serve as sliding surfaces on which spool 33 can revolve within nozzle housing 32. The compression of seal profiles 34, while allowing the spool to be rotated, also frictionally prevents spool 33 from coming out of alignment within nozzle housing 32 due to mechanical vibration.

[0020] Perpendicular to the axis of spool 33, nozzle housing 32 incorporates longitudinally bored air inlet fitting 30 and longitudinally bored fluid inlet fitting 31. Spool 33 has longitudinally bored air flow channel 36 that perpendicularly intersects air transfer channel 56 and air outlet orifice 41. This enables the transfer of air from air inlet fitting 30 through to air outlet orifice 41 located midpoint on spool 33, throughout the available range of rotation of spool 33. Spool 33 also has a longitudinally bored fluid flow channel 35 that intersects perpendicular fluid transfer channel 58 and perpendicular fluid outlet orifice 40. This enables the transfer of fluid from fluid inlet fitting 31 through to fluid outlet orifice 40 located midpoint on spool 33 throughout the available range of rotation of spool 33. Fluid outlet orifice 40 is located adjacent to air outlet orifice 41. The fluid flow and air flow are separate within nozzle housing 32 and are mixed upon ejection from their respective outlet orifices in spool 33.

[0021] Fluid outlet orifice 40 directs a jet of fluid toward the headlight lens. Air outlet orifice 41 directs air toward the headlight and is configured such that the exiting and expanding air stream is formed into a wide, flattened shape for cleaning the maximum possible area of the headlight lens. Spool 33 is rotatable within nozzle housing 32 for the purpose of adjusting the nozzle orifices so that the fluid and air stream trajectory impinges upon the headlight surface in a manner to provide effective cleaning for a wide variety of vehicle applications. Spool 33 is rotated via screw driver slot 37. Slot 37 is aligned with exit orifices 40 and 41, thereby providing a means of visually indicating the direction of the fluid and air stream.

[0022] Spool 33 is retained in housing 32 by raised shoulder 70 which is centrally located on the surface of spool 33 and through which air outlet orifice 41 and fluid outlet orifice 40 extend. Shoulder 70 contributes to the interference fit of spool 33 into spool recess 54 and prevents spool 33 removal. Shoulder 70 makes contact with nozzle housing 32 at the extremes of its rotational range, thereby providing rotational travel stops. These rotational stops maintain the nozzle orifices within an exit window 71 of the housing. Spool 33 may be retained in housing 32 by other means such as a snap-fit or by addition of a suitable fastener such as a pin or a screw or a retaining ring.

[0023] Nozzle housing 32 may be mounted by various methods, dependent upon the physical characteristics of the area surrounding the headlight it is intended to clean. One method is to fasten the nozzle assembly directly to the vehicle skin in a position adjacent to the headlight. Nozzle housing 32 incorporates bosses 38 at the base of inlet fittings 30 and 31 that accept suitable fasteners, for example, of either the push-on or self-threading screw-on variety. The purpose of this fastener is to secure the nozzle to the vehicle once nozzle fittings 30 and 31 are inserted through holes drilled through the vehicle skin.

[0024] The design of air inlet fitting 30 and fluid inlet fitting 31 corresponds to those of the other embodiments with respect to the barb profiles for hose attachment. One method of mounting the nozzle housing 32 to the vehicle skin is substantially similar to that method of affixation described in the previous embodiment.

[0025] Another manner of mounting, with reference to FIG. 6, together with FIG. 9, a view of a mounting bracket for use in connection with the invention and FIG. 10, a cross-sectional view of the nozzle housing and bracket assembly, is accomplished via a groove 72 added where housing 32 and bosses 38 join. The grooves 72 mate with hole 74 and slot 75 in mounting bracket 73. Holes 76 are provided in bracket 73 to give clearance for a fastener, such as a screw, for attaching the nozzle and bracket assembly to the vehicle. Together, these two components provide a manner of securing the nozzle assembly to a vehicle skin where it might not be possible to install push-on retainers, due to accessibility constraints. The illustrated bracket mounting structure may also be used to secure the nozzle assembly to a standoff.

[0026] Referring now to FIGS. 7 and 8, an example of a mounting bracket for use with the first and second embodiment of the present invention is shown. The mounting bracket 64 has a pedestal configuration with two tapered holes 62 therethrough and two mounting holes 66.
A fluid-air headlight cleaning nozzle, comprising a fluid-nozzle housing (32) defining an air inlet fitting (30), a fluid inlet fitting (31), and a trajectory adjustment element (33); characterised in that the trajectory adjustment element is a rotatable spool (33) with an air outlet orifice (41) and a fluid outlet orifice (40), said rotatable spool (33) being in fluid communication with said air inlet fitting (30), and receiving an air supply therefrom, and providing a jet of cleaning fluid from said fluid outlet orifice (40) based on the fluid supply, wherein the jet of air from said air outlet orifice intersects the jet of cleaning fluid from said fluid outlet orifice (40) so as to form a spray mixture that is directed toward a headlight of a vehicle.

2. The fluid-air headlight cleaning nozzle according to claim 1 further comprising a mounting means capable of mounting said fluid-air nozzle body on a vehicle.

3. The air-fluid headlight cleaning nozzle according to claim 1 wherein said nozzle is adapted for use in headlight cleaning systems on vehicles of the type which have pressurized air on board and also a pressurized washer system for windshield wipers.

4. The air-fluid headlight cleaning nozzle according to claim 1 wherein said spool comprises a plurality of circumferential sealing surfaces (34) that frictionally engage said fluid-air nozzle body to act as a seal between said spool and said nozzle body and to maintain alignment of said spool within said nozzle body.

5. The air-fluid headlight cleaning nozzle according to claim 1 wherein said spool comprises a shoulder (70) that abuts said nozzle body thereby acting as rotational travel stop for said spool, and preventing the removal of said spool from said nozzle body.

6. The air-fluid headlight cleaning nozzle according to claim 1 further comprising a retaining ring (66) for preventing the removal of said spool from said nozzle body.

7. The air-fluid headlight cleaning nozzle according to claim 6 wherein said sealing member comprises an elastomeric o-ring.

8. The air-fluid headlight cleaning nozzle according to claim 1 further comprising a snap fit member for preventing the removal of said spool from said nozzle body.

9. The air-fluid headlight cleaning nozzle according to claim 1 further comprising a roll pin for preventing the removal of said spool from said nozzle body.

10. The air-fluid headlight cleaning nozzle according to claim 1 further comprising a retaining ring for preventing the removal of said spool from said nozzle body.

11. The air-fluid headlight cleaning nozzle according to
claim 1 further comprising a screw member for preventing the removal of said spool from said nozzle body.

Patentansprüche

1. Fluid/Luft-Scheinwerfer-Reinigungsdüse mit einem Fluid/Luft-Düsenkörper (32), der einen Lufteinlass-Anschlussstein (30), einen Fluideinlass-Anschlussstein (31) und ein Flugbahn-Einstellelement (33) definiert; dadurch gekennzeichnet, dass das Flugbahn-Einstellelement eine drehbare Spule (33) mit einer Luftauslass-Öffnung (41) und einer Fluidauslass-Öffnung (40) ist, wobei die drehbare Spule (33) mit dem Lufteinlass-Anschlussstein (30) in Fluidverbindung steht und von diesem eine Luftzufuhr erhält und mittels der Luftzufuhr einen Luftstrahl von der Luftauslass-Öffnung (41) erzeugt, und wobei die drehbare Spule (33) mit dem Fluideinlass-Anschlussstein (31) in Fluidverbindung steht und von diesem eine Fluidzufuhr erhält und mittels der Fluidzufuhr einen Strahl aus Reinigungssfluid von der Fluidauslass-Öffnung (40) erzeugt, wobei der Luftstrahl von der Luftauslass-Öffnung (41) den Strahl aus Reinigungssfluid von der Fluidauslass-Öffnung (40) kreuzt, um ein Sprühgemisch zu bilden, das auf einen Scheinwerfer eines Fahrzeugs gerichtet ist.

2. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass sie ausserdem ein Montagemittel aufweist, welches das Montieren des Fluid/Luft-Düsenkörpers an einem Fahrzeug ermöglicht.

3. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass die Düse für die Verwendung in Scheinwerfer-Reinigungssystemen an Fahrzeugen ausgelegt ist, welche Druckluft an Bord sowie ein Druckwassersystem für Scheibenwischer haben.

4. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass die Spule eine Vielzahl von Umfangs-Dichtflächen (34) aufweist, die mit dem Fluid/Luft-Düsenkörper reibend in Eingriff sind, um als Dichtung zwischen der Spule und dem Düsenkörper zu wirken und um die Ausrichtung der Spule innerhalb des Düsenkörpers beizubehalten.

5. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass die Spule eine Schulter (70) aufweist, die an dem Düsenkörper anschlägt, wodurch sie als Drehweg-Anschlag für die Spule wirkt und das Entfernen der Spule aus dem Düsenkörper verhindert.

6. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass sie ausserdem ein Dichtungsglied (34) aufweist, um als Dichtung zwischen der Spule und dem Düsenkörper zu wirken und um die Ausrichtung der Spule innerhalb des Düsenkörpers beizubehalten.

7. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 6, dadurch gekennzeichnet, dass das Dichtungsglied einen O-Ring aus Elastomer aufweist.

8. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass sie ausserdem ein Schnappverschluss-Glied aufweist, um das Entfernen der Spule aus dem Düsenkörper zu verhindern.

9. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass sie ausserdem einen Rollenstift aufweist, um das Entfernen der Spule aus dem Düsenkörper zu verhindern.

10. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass sie ausserdem einen Halterung aufweist, um das Entfernen der Spule aus dem Düsenkörper zu verhindern.

11. Fluid/Luft-Scheinwerfer-Reinigungsdüse nach Anspruch 1, dadurch gekennzeichnet, dass sie ausserdem ein Schraubenglied aufweist, um das Entfernen der Spule aus dem Düsenkörper zu verhindern.

Revendications

1. Buse de nettoyage fluide-air de phase comprenant un corps de buse fluide-air (32) définissant un raccord d’admission d’air (30), un raccord d’admission de fluide (31) et un élément de réglage de trajectoire (33) : caractérisée en ce que l’élément de réglage de trajectoire est un tiroir cylindrique rotatif (33) avec un orifice d’échappement d’air (41) et un orifice d’échappement de fluide (40), ledit tiroir cylindrique rotatif (33) étant en communication fluide avec ledit raccord d’admission d’air (30), et recevant une alimentation d’air de celle-ci, et délivrant un jet d’air depuis ledit orifice d’échappement d’air (41) sur la base de l’alimentation d’air, et ledit tiroir cylindrique rotatif (33) étant en communication fluide avec ledit raccord d’admission de fluide (31), et recevant une alimentation de fluide de celle-ci, et délivrant un jet de fluide de nettoyage depuis ledit orifice d’échappement de fluide (40) sur la base de l’alimentation de fluide, le jet d’air provenant dudit orifice d’échappement d’air croisant le jet de fluide de nettoyage provenant dudit orifice d’échappement de fluide (40).
de façon à former un mélange de pulvérisation qui est dirigé vers un phare d’un véhicule.

2. Buse de nettoyage fluide-air de phare selon la revendication 1 comprenant en outre un moyen de montage capable de fixer ledit corps de buse fluide-air sur un véhicule.

3. Buse de nettoyage fluide-air de phare selon la revendication 1 dans laquelle ladite buse est adaptée à l’utilisation dans des systèmes de nettoyage de phares sur des véhicules équipés de l’air pressurisé et d’un système de lave-glace pressurisé pour essuie-glace de pare-brise.

4. Buse de nettoyage fluide-air de phare selon la revendication 1, dans laquelle ledit tiroir cylindrique comprend une pluralité de surfaces d’étanchéité circonférentielles (34) qui entrent en contact par friction avec ledit corps de buse fluide-air pour jouer le rôle de joint entre ledit tiroir cylindrique et ledit corps de buse et pour maintenir l’alignement dudit tiroir cylindrique à l’intérieur dudit corps de buse.

5. Buse de nettoyage fluide-air de phare selon la revendication 1, dans laquelle ledit tiroir cylindrique comprend un épaulement (70) qui s’appuie contre ledit corps de buse jouant ainsi le rôle de butée de déplacement rotatif dudit tiroir cylindrique, et empêchant le retrait dudit tiroir cylindrique dudit corps de buse.

6. Buse de nettoyage fluide-air de phare selon la revendication 1 comprenant en outre un élément d’étanchéité (34) jouant le rôle de joint entre ledit tiroir cylindrique et ledit corps de buse et maintenant l’alignement dudit tiroir cylindrique à l’intérieur dudit corps de buse.

7. Buse de nettoyage fluide-air de phare selon la revendication 6, dans laquelle ledit élément d’étanchéité comprend un joint torique élastomère.

8. Buse de nettoyage fluide-air de phare selon la revendication 1 comprenant en outre un élément d’ajustement serré empêchant le retrait dudit tiroir cylindrique dudit corps de buse.

9. Buse de nettoyage fluide-air de phare selon la revendication 1 comprenant en outre une goupille élastique empêchant le retrait dudit tiroir cylindrique dudit corps de buse.

10. Buse de nettoyage fluide-air de phare selon la revendication 1 comprenant en outre une bague de retenue empêchant le retrait dudit tiroir cylindrique dudit corps de buse.

11. Buse de nettoyage fluide-air de phare selon la revendication 1 comprenant en outre un élément de vis empêchant le retrait dudit tiroir cylindrique dudit corps de buse.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 3469088 A [0002]
- US 4026468 A [0002]
- US 5657929 A [0028]
- US 5083339 A [0002]
- US 5657929 A [0028]