Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] This invention relates to battery testers that can be incorporated on battery cells.

[0002] Known types of battery testers that are placed on batteries are so called “thermochromic” types. In a thermochromic battery tester there can be two electrodes that are connected by a consumer manually depressing a switch. Once the switch is depressed the consumer has connected an anode of the battery to a cathode of the battery cell through the thermochromic tester. The thermochromic tester includes a silver conductor that has a variable width so that the resistance of the conductor also varies along its width. As current travels through the silver conductor, the current generates heat that changes the color of a thermochromic ink display that is over the silver conductor. The thermochromic ink display is arranged as a gauge to indicate relative capacity of the battery. The higher the current the more heat is generated and the more the gauge will change to indicate that the battery is good.

[0003] Sometimes the switch can be hard for people to depress and it becomes difficult to tell whether the tester worked or not or whether the battery is good or bad. This can be confusing to a consumer. Depressing the switch makes a direct relatively high conductance connection between the anode and cathode of the cell which can draw significant power and reduce battery lifetime.

[0004] The invention concerns a battery tester as claimed in claim 1.

[0005] A major advantage of the tester compared to other testers is that a consumer can merely look at the tester on the battery to determine whether the battery is good or not. This tester eliminates the need to hold the battery and depress a switch to engage the battery tester. This tester provides a gauge effect to enable the consumer to judge the relative amount of capacity left in the battery. The tester may be more efficient that prior testers depending on how many times a consumer presses the switch on the prior tester. Over the lifetime of a battery this tester could either use less current or be comparable to prior approaches.

FIG. 1 is a cross-sectional view of an M-I-M diode structure.
FIG. 1A is a blowup view taken along line 1A-1A of a portion of FIG. 1.
FIG. 2 is a cross-sectional view of an alternative M-I-M diode structure.
FIG. 2A is a blowup view taken along line 2A-2A of a portion of FIG. 2.
FIG. 3 is a cross-sectional view of another alternative M-I-M diode structure.
FIG. 4 is a flow chart of a process to manufacture the device of FIG. 1.
FIGS. 5A-5D are plots of voltage vs. current showing typical switching characteristics of M-I-M diode devices of FIGS. 1-4.
FIG. 6 is a schematic diagram of a multiple non-linear element segmented display battery tester.
FIG. 7 is a schematic diagram of a multiple resistor, variable display battery tester.
FIG. 8 is a diagrammatical, perspective view of a construction example for a multiple non-linear element battery tester of FIG. 6.
FIG. 9 is a diagrammatical view of a construction example for the multiple non-linear element battery tester of FIG. 6.
FIG. 10 is a diagrammatical view of a construction example for the multiple resistor battery tester of FIG. 7.
FIG. 11 is a perspective view of a battery cell having a segmented display battery tester disposed about a circumference of the battery.
FIG. 12 is a perspective view of a battery cell having a variable display battery tester disposed about a circumference of the battery.
FIG. 13 is a diagrammatical view of an alternative arrangement for a battery having a segmented battery tester display.
FIG. 14 is a diagrammatical view of a battery operated device having a battery compartment.
FIG. 15 is a schematic view of a on/off battery tester incorporating a voltage controlled display.

Referring now to FIG. 1, a metal-insulator-metal diode 10 is shown. The metal-insulator-metal diode 10 includes a first electrode 12, e.g., a copper foil substrate or another conductive material such as carbon or gold or other conductive materials such as chromium, tungsten, molybdenum, or other conductive materials such as metal particles dispersed in a polymer binder such as a conductive ink. The metal-insulator-metal diode 10 further includes a composite metal-insulator layer 14 comprised of metal particles 20 suspended in a dielectric binding layer 22. As shown in FIG. 1A, the metal particles 20 have an intrinsic oxide layer 20a that covers the surface of the particles 20. One preferred metal is tantalum that readily forms an intrinsic, stable and generally uniform intrinsic oxide layer 20a. Other metals can be used such as niobium. These other metals should form oxides that are self-limiting, stable, and having a suitable dielectric constant for the application. One reason that tantalum is preferred is that the intrinsic oxide layer forms readily on tantalum upon its exposure to air.

[0007] Disposed on the composite metal-insulating layer 14 is a second electrode 16 also comprised of e.g., copper or another conductive material such as a carbon, chromium, tungsten, molybdenum, or gold or other conductive ma-
terials. The second electrode is preferably disposed directly on the layer 12 to be in contact with the intrinsic oxide layer 20a on the particles 20. The second electrode also can be a composite layer including the conductive materials and a binder. By varying the conductivity of the electrode layer 16, the electrical characteristics of the device 10 can be changed. Specifically, the I-V characteristic curve can be made sharper to obtain a steeper on/off characteristic. That is, the higher the electrical conductivity, the sharper the curve.

[0008] As will be described below in FIGS. 5A-5D, the M-I-M device has a symmetrical current-voltage (I-V) characteristic curve exhibiting diode-like properties. The device also can be made to have lower switching voltages than other approaches, e.g., less than 10 volts and more specifically less than 1 volt to about 0.5 volts but with the same symmetrical properties. By varying the ratio of the tantalum to the binder and also the thickness of the tantalum-binder layer enables shifting of the I-V characteristic curve for the same material up or down within a range of plus or minus 50% or more.

[0009] The switching voltage of the device 10 can be more consistent from device to device. This may occur due in part to the more consistent oxide layer thickness and quality of the intrinsically formed oxide. The thickness of the tantalum oxide layer 20a does not vary widely compared to thermal annealing or anodized oxide layers. It is believed that the intrinsic layer 20a also has a substantially uniform thickness from tantalum particle 20 to tantalum particle 20 that is on the order of monolayers of thickness. Characteristics of the tantalum particles are that the powder has a particle size in a range less than 0.5 μm (0.5 microns) up to about 10's of μm (10's of microns). The printed layer 14 can have a thickness less than 12.7 μm (0.5 mils) up to 203-254 μm (8-10 mils). Other particle sizes and thicknesses could be used herein.

[0010] Referring now to FIG. 2, another embodiment 10' of the diode includes a layer 14' comprising inert particles 24 (as shown in FIG. 2A) of another dielectric material such as particles 24 of titanium dioxide TiO₂ or magnesium carbonate MgCO₃ dispersed within the polymer binder 22 and the tantalum particles 20 having an oxide layer 20a. In this embodiment, a portion (e.g., 0% to 75%) of the tantalum particles 20 are replaced with inert dielectric material particles 24 such as the titanium dioxide or magnesium carbonate. The tantalum particles 20 can optionally have an annealed oxide or other type of oxide layer disposed about the tantalum although, the intrinsic oxide layer 20a alone is preferred.

[0011] The addition of dielectric particles of e.g., titanium dioxide solids to the polymer binder 22 and the tantalum particles 20 can improve printing of the layer 14', enabling use of lower amounts of tantalum particles while still maintaining a high solids content that would exhibit good diode properties. This would be particularly desirable with very thin layers of the metal/insulating material layer to avoid shorting of the two electrodes 12 and 16 through the layer 14'. Including an inert material reduces the probability of shorting and provides a more consistent film/coating.

[0012] Moreover, at sufficiently low concentrations of tantalum, devices may be provided with higher switching voltages. It is anticipated that rather than using the oxide layer around the tantalum particles to act as the insulator, i.e., the potential barrier that electrons need to exceed in order to cause conduction, the barrier would be governed by the dielectric properties of the inert material, e.g., the titanium dioxide and the binder at the lower concentrations of tantalum.

[0013] Referring now to FIG. 3, another embodiment 10" of the diode has the first electrode 12 and the metal-insulating layer 14 or 14' on the first electrode. This structure 10" may give similar diode properties when a connection 28 is made to the metal-insulating layer 14 or 14'. By eliminating the second electrode, the device 10" can have fewer layers, changing the fabrication process without substantially altering the characteristics of the metal insulator layer.

[0014] Referring now to FIG. 4, the device of FIG. 1 can be prepared as follows: The process 30 includes mixing 32 tantalum powder that is 99.97% pure, having the intrinsic oxide layer and having a particle size less than e.g., 5 μm (5 microns), with a polymer binder such as Acheson, Electrodag No. 23DD146A, or Acheson SS24686, a more thixotropic material. Both polymer binders are available from Acheson, Port Huron, MI. Other binders can be used with the tantalum to form a tantalum ink. The binders should be electrically insulating, stable with tantalum or the other metal used and preferably have a relatively high e.g., 15% to 35% or so solids content. The tantalum can be in a range of 100% to 39% of the total weight of the binder. Other ranges could be used. The tantalum particles and binder are mixed well to produce the tantalum ink. The tantalum ink is printed 34 on the first electrode e.g., a copper foil substrate or on other conductive material. The layer is printed, for example, by either draw down bars, screen printing, flexo or gravure printing techniques. The layer is dried 36, e.g., in an oven at 120°C for 15-20 minutes. A second conductive layer such as chromium in the form of chromium particles mixed in a binder material is printed 38 on the tantalum binder layer. This chromium layer is also dried 40 at e.g., at 120°C for 15-20 minutes producing the device 10. Thereafter, the device 10 can be tested 42.

[0015] Alternative conductive layers or metals such as copper, tungsten, molybdenum, carbon and so forth can be used for the first and/or second electrode. The conductivity of this layer can be varied by changing relative concentrations of conductive material to binder. Exemplary ranges for conductive material are 30% to 39%. By varying the conductivity of this layer, the shape of the current-voltage characteristic curve can be varied, making it a little sharper producing a diode having a steeper on/off response.

[0016] Processing is simplified because the tantalum particles used have an intrinsic oxide layer 20a. There is no
need to thermally anneal or otherwise thermally preprocess the tantalum powder. The intrinsic oxide coating is very consistent in thickness and quality. This tends to produce very consistent metal-insulator layer materials and hence diodes with switching voltages having relatively low standard deviations over a series of diodes.

[0017] Another advantage is that since there is no need to thermally anneal the tantalum powder, the properties of the ink can be adjusted to achieve various diode properties to fit different applications. Ink formulation may be an easier process to control than thermal processing of the tantalum.

[0018] This device could also be referred to as a varistor, i.e., a thin printed varistor. This M-I-M structure is good for applications that need a non-linear element that operates at low voltages and perhaps low current that can be printed rather than using semiconductor deposition techniques.

[0019] Referring now to FIGS. 5A-5D plots of voltage vs. current showing typical switching characteristics of M-I-M diode devices of FIGS. 1-5 are shown. As shown in FIG. 5A, a current voltage characteristic curve 44 for a M-I-M diode device exhibits a switching voltage at 100 nA. (nano-amperes) of approximately 1.8 volts, with an on/off ratio that is calculated to be about 33. The current voltage characteristic curve 44 was obtained using a Hewlett Packard semiconductor analyzer, Model No. 4155B.

[0020] This device used a tantalum layer that was prepared by mixing 5 grams of tantalum particles obtained from Alfa Aesar, Ward Hill, MA. having a particle diameter of less than 2 μm (2 microns), with 20 grams of Electrodag 23DD146A polymer having a 25% solid versus 75% volatile compound composition. The ink was coated onto a conductive surface of copper foil using a 381 μm (15 mil) cutout i.e., to produce a layer having a wet thickness of 381 μm (15 mils). The sample was dried in an oven at 120°C for 20 minutes. The ink for the second layer of the diode was prepared by mixing 5 grams of chromium powder with a particle size of less than 5 microns as received from Alfa Aesar with 4 grams of Electrodag 23DD146A and was coated on top of the tantalum ink layer using a 381 μm (5 mil) cutout. This coating was dried for 20 minutes at 120°C.

[0021] As shown in FIG. 5B, the M-I-M diodes can exhibit different switching voltages based upon different "P:B" ratios, that is, different ratios of metal (e.g., tantalum) particles to binder. As shown in FIG. 5B, for the same thickness of 15 mils, with P:B ratios of 5, 2, and 1, devices exhibit switching voltages of approximately 9 volts (curve 45a), 5.3 volts (curve 45b) and 3.8 volts (curve 45c) at 100 nano amperes.

[0022] As also shown in FIG. 5C, varying the wet thickness of the tantalum layer can also produce varying switching voltages. With a tantalum layer having a tantalum to binder ratio (P:B) of 8:1, a M-I-M diode having a 281 μm (15 mil) thick tantalum layer would exhibit a switching voltage of approximately 9 volts (curve 46a), a 10 mil thick layer would provide a M-I-M diode with a switching voltage of approximately 7.8 volts (curve 46b), and a 127 μm (5 mil) thick layer would provide a M-I-M diode with a switching voltage of approximately 4.6 volts (curve 46b). Each of the switching voltages are measured at 100 nano amperes.

[0023] Referring now to FIG. 5D, addition of magnesium carbonate to the tantalum layer can produce M-I-M diodes that have consistently high on/off ratios with minimal impact on switching voltage. As shown in FIG. 5D, as the amount of magnesium carbonate is increased, the switching voltage characteristic becomes steeper. The curve 46a shows the switching characteristic for a 100% tantalum layer having a P:B ratio of 1:1 that exhibits a switching voltage of 1.8 volts. Curves 47b-47d illustrate that as the amount of magnesium carbonate increases, the switching characteristic becomes steeper therefore indicating a better on/off ratio.

[0024] Referring now to FIG. 6, a multiple, non-linear element battery tester 50 is shown connected to a battery 51. The multiple, non-linear element battery tester 50 is comprised of a plurality of individual, non-linear element battery testers 52a-52e coupled to provide a parallel circuit. Each of the individual, non-linear element battery tester circuits 52a-52e include a non-linear element such as a M-I-M diode 54a-54e, respectively, and a film resistor 56a-56e respectively. The battery tester 50 includes a voltage divider provided by two resistors, 58 and 60 coupled in parallel with the plurality of individual non-linear element battery testers 52a-52e. Each of the individual non-linear element battery testers 52a-52e includes a corresponding one of a plurality of display devices 62a-62e disposed between an electrode 55 (potential Vj), and a common connection of the respective parallel circuits 52a-52e of the non-linear elements, i.e., M-I-M diodes 54a-54e and the film resistor 56a-56e.

[0025] The display devices 62a-62e are of a ultra-low current, low voltage, voltage controlled display type. One type of display devices 62a-62e are an electrophoretic display device such as described in "All Printed Bistable Reflective Displays: Printable Electrode Inks and All Printed Metal-Insulator-Metal Diodes" Massachusetts Institute of Technology, June, 1998 and provided by E-INK, Inc. Cambridge, Ma, that are modified to include low switching voltage devices as described above in FIGS. 1-5D.

[0026] This type of display is based on so called "electronic inks", e.g., electrophoretic materials that change their properties e.g., color based on an applied voltage. Using electrophoretic materials such as electronic ink, a flat panel display can be printed on a substrate material. These displays draw very little current and hence dissipate very little power. Any voltage sensitive material could be used as the display. Another material that has been described in "The Reinvention of Paper", Scientific American, Sept., 1996, called Gyricon which is also voltage sensitive. The display needs to operate at voltages that are within the range of the voltage of battery.
The non-linear devices 54a-54e can be the M-I-M diode 10 described above in conjunction with FIGS. 1-5A-5D.

The multiple, non-linear element battery tester 50 has five different diodes, in five parallel paths. If the diodes are constructed to switch at a different voltage, the displays would change state at different voltages producing a segmentation of the display or a gauge effect that would indicate charge status of the battery.

The multiple, non-linear element battery tester 50 has one terminal of each of the displays 62a-62e coupled to a common voltage potential labeled as V_f. The voltage potential V_f is derived from a point between the two resistors, 58, 60. If the resistors 58 and 60 are equal, provides V_f at one-half of the voltage of the cell. The different parallel segments 52a-52e have a value of voltage respectively, at points A-E where the magnitude of the voltage is set by the diodes 54a-54e and the resistor elements 56a-56e. The different parallel segments 52a-52e can be set to have monotonically increasing or decreasing values of voltage at points A-E. For example, for a 9 volt battery, one diode 54a could be selected to switch at 8 volts, diode 54b could be selected to switch at 7 volts, diode 54c could be selected to switch at 6 volts, and so on, so that as the voltage of the battery drops, different segments of the displays 62a-62e turn off.

The diodes 54a-54e can be set to switch at different voltages that would either turn “on” or turn “off” the display, i.e., change from one color to another color depending on how the display is connected to the circuit. The number of segments is only limited by how well the diodes can differentiate different voltages. In the 9 volt example, a one volt difference was used. But if the diodes are fabricated to produce exactly 1/10 of a volt difference the battery tester can have 1/10 of a volt switching difference and the battery tester can be expanded out to 15 or 60 segments or more segments.

The current drawn from the battery can be selected to depend on the values of resistance of the voltage divider of resistors 58 and 60. The display devices 62a-62e draw very little current.

Since diodes 54a-54e are non-linear, at some point as diodes 54a-54e switch they will cause the voltage at electrode 55 to become negative with respect to the voltage of respective ones of the electrode coupled to points A-E. This would cause corresponding flips or changes in the polarity on the displays 62a-62e, causing the displays 62a-62e to change color indicating that the battery is losing charge. When the last one of the displays e.g., 62e changes color it could indicate that the battery 51 is no longer within some defined specification.

Referring now to FIG. 7, an alternate embodiment 50' of a multiple, non-linear element battery tester 50 is shown connected to a battery 51. In this battery tester 50', segmentation i.e., a gauge effect, is provided by using different resistors with a common, segmented display device 78. The battery tester 50' includes a parallel circuit. On one side of the parallel circuit is a non-linear element, e.g., a M-I-M diode 72 and resistor 74. On the other side, rather than just having the two resistor elements to split the current, as the battery tester 50 of FIG. 1, the battery tester 50' includes a plurality of resistors e.g., five, 76a-76e. The plurality of resistors 76a-76e are coupled to corresponding electrodes 76a-76d of a display 78 that has a second electrode 80 coupled at the connection of the non-linear element 72 with the resistor 74 which is at a potential E. The voltage at, any point A-D along the display 78 is equal to the sum of the resistance up to that point divided by the total resistance, as shown below for Equations 1-4.

\[
V_a = V_{\text{battery}} \frac{R_1}{R_1 + R_2 + R_3 + R_4 + R_5}
\]
Equation 1

\[
V_b = V_{\text{battery}} \frac{R_1 + R_2}{R_1 + R_2 + R_3 + R_4 + R_5}
\]
Equation 2

\[
V_c = V_{\text{battery}} \frac{R_1 + R_2 + R_3}{R_1 + R_2 + R_3 + R_4 + R_5}
\]
Equation 3

\[
V_d = V_{\text{battery}} \frac{R_1 + R_2 + R_3 + R_4}{R_1 + R_2 + R_3 + R_4 + R_5}
\]
Equation 4

The voltage V_E at point E is relatively constant throughout the life of the cell and the voltages V_A, V_B, V_C and V_D will vary with respect to the voltage V_E at point E. There will be different points at which the values of the voltages at points A, B, C and D are positive with respect to point E or negative. When there is a polarity change there is a corresponding change color of the display. The difference in the values of resistors 76a-76e can be easily varied by printing different widths of conductive material.
[0035] Preferably, all of the resistors 76a-76e are printed with a transparent conductive material such as ITO (indium tin oxide) and suspended in a polymer binder material. The conductivity of the printed layers can be varied by changing the amount of ITO dispersed in the polymer binder with low levels of ITO producing films of high resistance. A circuit with an overall resistance of 15 meg-ohms between anode and cathode would produce a current draw of 100 nano-amperes (nA). This relatively low current draw would have an impact on cell capacity of only about 1/2 percent.

[0036] Referring now to FIGS. 8 and 9, an example of the battery tester 50 (FIG. 6) is shown. A transparent conductor 94, e.g., a material such as an ITO (indium tin oxide) ink or a transparent coating used for electrostatic dissipation is printed on the cell or label of the battery 51. Examples of the material of the transparent conductor, include an electrostatic coating. The transparent conductor 94 need not carry a high current because the displays 62a-62e (FIG. 1) are voltage sensitive displays. The transparent conductor is merely a current carrying material. The transparent conductor 94 is attached to resistors 58,60 which attach to the anode or the cathode, so the transparent conductor 94 is attached between the anode and the cathode. The attachment of resistors 58,60 to the anode and the cathode of battery 51 can be provided by gluing, crimping or other arrangements.

[0037] Resistors 58-60 may be formed from strips of material having different widths or thicknesses to provide different resistances. On top of the transparent conductor 94, the display is printed. This display could be the electrophoretic ink display mentioned above or it could be a Gyricron based display or any other voltage sensitive material that produces a change in color by varying an applied voltage.

[0038] The display includes an electrophoretic ink material 96 that is printed on the transparent conductor 94. On top of the electrophoretic ink material 96, a first conductor 98 of the display is printed. This conductor 98 couples one side of the display to one of the poles of the battery, either the anode or the cathode, depending on how the display is to be initially switched. This conductor 98 is also printed in segments and is coupled to resistors 56a-56d (FIG. 6, only four used in this example). If the conductor 98 is printed as one solid conductor, the conductor would carry a uniform voltage. Printing the conductor in sections gives a segmentation, e.g., gauge effect.

[0039] The diodes 54a-54d (FIG. 6, only four use in this example) are printed by depositing a tantalum layer segments 100 having tantalum particles with an intrinsic oxide coating in a dielectric binder as described above. The intrinsic oxide has a sufficient thickness to provide M-I-M diodes. In order to vary the characteristics of the parallel paths, these segments can be at different thicknesses to give different diode properties. This provides a different switching voltage for each diode.

[0040] A second electrode 102 such as a chromium layer is printed on top of the tantalum layer. The second electrode 102 is surrounded by an optional dielectric coating 104 to insure that short circuits are avoided. A second conductor 106 is printed on top of the second electrode 102 to connect all the chromium layers together. The second conductor 106 is connected to the opposite pole of the battery from the first conductor 94, either anode or cathode depending on which pole the first conductor 98.

[0041] Referring now to FIG. 10, an example of the multiple resistor battery tester 50’ is shown. The battery tester 50’ is laid-out very similar to the battery tester 50. A transparent conductor 110 is printed in different sections 110a-110d to provide segmentation i.e., the battery charge gauge. The transparent conductor 110 is printed to include a wedge-shaped conductor portion 110e to produce resistors 76a-76e. The wedge-shape conductor portion 110e has a resistance characteristic that varies along the conductor length so that at the narrower end it has a higher resistance while at the wider end it has a lower resistance. The conductor portion 110e could also be a single width where the resistance at any point in the conductor would depend on how far that point was from one pole of the battery. Other arrangements are possible.

[0042] The wedge-shaped conductor portion 110e is connected to both the anode and the cathode of battery 51 such as by gluing or crimping or other arrangements. On top of the transparent conductor 110 is printed the display material 112, e.g., the E-Ink or Gyricron or other voltage sensitive material. Over the display material 112 another conductor 114 is printed. One end of the conductor 114 is connected via resistor 115 to one of the poles of the cells, either the anode or the cathode. On top of that conductor, a tantalum oxide/tantalum metal layer 116 is printed and on top of tantalum oxide/tantalum metal layer 116, the second electrode 118 e.g., a chromium layer is printed. The second electrode 118 is connected to the opposite pole of the cell.

[0043] Since the battery tester 50 or 50’ is a printed device, the non-linear device can be provided with carbon ink based electrodes as described above. The resistors can also be carbon-based with a dielectric filler to reduce the conductivity of the resistors making them more resistive. Ideally the entire battery tester 50 should have a very high total resistance, e.g., on the order of 15 meg-ohms. For a 1.5 volt cell that would provide a tester 50 or 50’ that draws 100 nano-amps which is a low enough current level to have a minimum impact on the lifetime of the battery. For example, for a “double A” cell with a 7 year lifetime, a 100 nano amperere draw would consume only about 0.5 percent of the battery’s capacity.

[0044] Typical thicknesses for the layers in the battery testers can be as follows: The transparent conductor could have a thickness between 0.1 to 0.2 mils; the display medium 1.0 mil; the electrode layers 0.1-0.2 mils; tantalum layer for the M-I-M diode 0.5-1.0 mils and various dielectric layers 0.2-0.5 mils. Other thicknesses could alternatively be used.
[0045] Referring now to FIG. 11, a battery 51' having a battery tester 150 with a segmented display is shown. The battery tester 150 includes a first plurality of segments 154a-154g disposed in a plurality of segments 154a-154g disposed in a second plurality of columns 156a-158g along the length of the battery 51'. The battery tester 150 can be provided by using one tester that is disposed around the battery 51'. In the battery tester 150, the battery tester 150 is turned sideways around the battery 51'. The battery tester 150 is arranged such that successive ones of the segments 154a-154g turn on or off at different voltage levels to give an indication of the power remaining in the battery 51'.

[0046] Thus, as an example, for a given condition of the battery 51', the battery tester 150 can have all segments 154a and 154b in all columns 156a-158g turn on to indicate that the battery has spent "two sevenths" (2/7) of its useful life. The battery tester 150 is incorporated over the entire circumference of the battery 51'. Therefore, a consumer does not have to hold the battery in one orientation to look at the display, since the display is visible from any orientation.

[0047] Referring now to FIG. 12, a battery 51" including a battery tester 162 with a variable display is shown. The battery tester 162 is comprised of individual battery testers 164 that are printed in columns 166a-166g that are disposed around the circumference of the battery 51". Thus, unlike the battery tester 150 (FIG. 11), i.e., a tester that is expanded all around the cell, the battery tester 162 is comprised of a series of battery testers 164 arranged in vertical columns 166a-166g along the height of the battery 51".

[0048] Referring to FIG. 13, an alternative arrangement 170 for a battery 51' having a segmented battery tester display 172 is shown. The segmented battery tester display 172 includes a plurality of segments 174a-174d disposed in a plurality of rows 176a-176d, in a band around an upper portion of the battery 51'. The segmented battery tester display 172 can be provided by using one segmented battery tester 172 that is disposed around the battery 51'. In the segmented battery tester display 172, the segmented battery tester display 172 is turned sideways around the battery 51'. The segmented battery tester display 172 is arranged such that successive ones of the segments 174a-174d turn off at different voltage levels to give an indication of the power remaining in the battery 51'. This arrangement could be used to replace a gold band found around an upper circumference portion of batteries from Duracell® Gillette, Inc. Boston Ma. As the battery capacity is consumed, the gold band could change to a different color or disappear to indicate remaining capacity.

[0049] Referring now to FIG. 14, an electronic device 180 includes a body 182 having a battery compartment 184 with a door 186. A battery, as shown can be placed in the battery compartment. The door 186 has a transparent window 188, through which a consumer can see the battery 51' or 11" and read the display of the battery tester 150 or 162 for those testers that can be considered as passive testers, i.e., those that do not require any action on the part of the consumer to activate 62 (FIG. 6) or 78 (FIG. 7). The electronic device can be any type of consumer device including without limitation, a calculator, cellular telephone, toy, radio and so forth. The transparent window could be part of the door or indeed could be the entire door.

[0050] Alternatively, the battery tester 150 (FIG. 6) or the battery tester 162 (FIG. 7) can be implemented with active battery testers i.e., those that require some consumer action such as manually closing a switch to electrically connect the tester to the battery electrode(s). In order to allow for inspection within the battery compartment of an electronic device, the compartment can be provided with an external lever or linkage (not shown) that would permit the user to test the battery having a manual type of tester.

[0051] While the battery tester displays 150 and 162 were described as being disposed around the entire circumference, other arrangements are possible. For example, they could be disposed in quadrants or even about 2/3 to 3/4 about the entire circumference of a battery. Moreover, to accommodate other information on the label they do not have to extend over the entire or substantially entire length or circumference of the battery, but could be a portion of the length or circumference.

[0052] Moreover, other types of tester could be used. For example, rather than using a tester that gives a gauge effect, a tester that merely gives a good or bad indication could also be used, as will now be described.

[0053] Referring now to FIG. 15, a good/bad indicator battery tester 200 is coupled to a battery 51. The battery tester 200 includes a parallel circuit including a display device 206 disposed between two electrodes 202,204 that are in parallel. Electrode 202 is connected to the circuit 200 at a voltage divider provided by two resistors, 208 and 210. Electrode 204 is connected to the other side of the parallel circuit. The other side of the parallel circuit has a non-linear element, i.e., a switch 212 and a third resistor 214. The display device 206 is an ultra-low current, voltage controlled type of display. The non-linear device 212 is a M-I-M diode as described above.

[0054] The voltage potential at terminal 202 will always have, half of the battery cell voltage across it if the value of resistor 208 equals the value of resistor 20. The potential of the electrode 204 is determined by voltage across the non-linear element 212 and resistor 214. The voltage at terminal 202 will start at a known value depending on the values of resistors 208, 210 and 214. As current is drawn from the battery due to use or leakage, the voltage of electrode 202 will vary with respect to the voltage at electrode 204. Since element 212 is non-linear, at some point it will switch causing the voltage at electrode 202 to become negative with respect to the voltage of electrode 214. When the non-linear element switches, this would flip the polarity on the display causing the display to change color indicating that the battery is no longer within some defined specification. The display can be wired into the circuit so that either color
of the display can indicate that the battery is no longer within some defined specification. In either event the battery tester works on the principle that the display exhibits a change in color when there is a change in the status i.e., good to bad of the battery cells.

Since the battery tester 200 is a printed device, the non-linear device can be provided with carbon ink based electrodes, as described in the above pending application. The resistors can also be carbon based and include a filler to reduce the conductivity of the resistors to make them more resistive. Ideally the entire battery tester 200 should have a very high total resistance, e.g., on the order of 15 meg-ohms. For a 1.5 volt cell that would provide a tester 200 that draws 100 nano-amps (na) of current which is a low enough current level to have a minimum impact on the lifetime of the battery. For example, a "double A" cell with a 7 year lifetime, a 100 na draw would consume only about 0.5 percent of the battery's capacity.

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims

1. A battery tester (50) to be disposed on a battery (51) comprises:
 - a first voltage divider (58, 60); and
 - a plurality of parallel battery tester elements (52a-52e); comprising:
 - a voltage-controlled display (62a-62e) having a first terminal coupled to the first voltage divider; and
 - a second voltage divider (54a-54e, 56a-56e) coupled in parallel with the voltage divider and coupled to a second terminal of the voltage controlled display (62a-62e) with the second voltage divider characterised in that the second voltage divider (56a-56e) comprises
 - a non-linear device (54a-54e) that switches state based on a voltage across the second voltage divider to electrically control switching of the voltage controlled display for the parallel battery tester element, with the non-linear devices having different switching voltage characteristics to switch the voltage controlled display of each parallel battery tester element at a different voltage.

2. A battery tester (50) of claim 1, wherein the voltage controlled display (62a-62e) is an electrophoretic display.

3. A battery tester (50) according to claims 1 or 2, wherein the non-linear device (54a-54e) is a metal-insulator-metal diode, or a transistor.

4. A battery tester (50) according to anyone of the preceeding claims, wherein the first voltage divider (58, 60) includes a pair of resistors having the same resistance.

5. A battery tester (50) according to anyone of the preceeding claims, wherein the second voltage divider (56a-56e) includes a resistor coupled in series with the non-linear device (54a-54e).

6. A battery tester (50) according to anyone of the preceeding claims, wherein the tester in operation is always on.

7. A battery tester (50) according to anyone of the preceeding claims, wherein a voltage potential at the first terminal of the display in each battery tester element is about half of a battery cell voltage and the potential at the second terminal of the display in each battery tester element is determined by voltage across the non-linear element and resistor.

8. A battery tester (50) according to claim 7, wherein as current is drawn from a battery due to use or leakage, the voltage of one of the terminals of the display in each battery tester element will vary with respect to the voltage at the other terminal of the display in each battery tester element.

9. A battery tester (50) according to claim 8, wherein the metal-insulator-metal diode will switch states causing the voltage at one of the terminal of the display in said battery tester element to become negative with respect to the voltage at the other terminal of the display in said battery tester element, to cause a change in color of the display.
to indicate that the battery has lost a predetermined amount of capacity.

10. A battery tester (50) according to anyone of the preceeding claims, wherein the non-linear device will switch states causing the voltage at one of the terminal of the display in each battery tester element to become negative with respect to the voltage at the other terminal of the display in said battery tester element, to cause a change in color of the display to indicate that the battery has lost a predetermined amount of capacity.

11. The battery tester (50) according to claim 10, wherein as current is drawn from a battery due to use or leakage, the voltage of one of the terminals of the display in battery tester element will vary with respect to the voltage at the other terminal of the display in battery tester element.

12. A battery (51) comprising:

a cell having an outer circumference; and

a battery tester (50) according to anyone of the preceeding claims.

Patentansprüche

1. Batterieprüfvorrichtung (50) zur Anordnung an einer Batterie (51), wobei die Vorrichtung folgendes umfasst:

 einen ersten Spannungsteiler (58, 60); und
 eine Mehrzahl paralleler Batterieprüfvorrichtungselemente (52a - 52e); die folgendes umfassen:

 eine spannungsgeregelte Anzeige (62a - 62e) mit einem ersten Anschluss, der mit dem ersten Spannungsteiler gekoppelt ist; und
 einen zweiten Spannungsteiler (54a - 54e, 56a - 56e), der parallel mit dem ersten Spannungsteiler gekoppelt ist und der mit einem zweiten Anschluss der spannungsgeregelten Anzeige (62a - 62e) gekoppelt ist, wobei der zweite Spannungsteiler dadurch gekennzeichnet ist, dass der zweite Spannungsteiler (56a - 56e) folgendes umfasst:

 eine nichtlineare Vorrichtung (54a - 54e), welche den Zustand auf der Basis einer Spannung an dem zweiten Spannungsteiler wechselt, um das Umschalten der spannungsgeregelten Anzeige elektrisch für das parallele Batterieprüfvorrichtungselement zu steuern, wobei die nichtlinearen Vorrichtungen unterschiedliche Schaltspannungsmerkmale für das Umschalten der spannungsgeregelten Anzeige jedes parallelen Batterieprüfvorrichtungselements auf einer unterschiedlichen Spannung aufweisen.

2. Batterieprüfvorrichtung (50) nach Anspruch 1, wobei es sich bei der spannungsgeregelten Anzeige (62a - 62e) um eine elektrophoretische Anzeige handelt.

3. Batterieprüfvorrichtung (50) nach Anspruch 1 oder 2, wobei es sich bei der nichtlinearen Vorrichtung (54a - 54e) um eine Metall-Isolator-Metall-Diode oder einen Transistor handelt.

4. Batterieprüfvorrichtung (50) nach einem der vorstehenden Ansprüche, wobei der erste Spannungsteiler (58, 60) ein Paar von Widerständen mit dem gleichen Widerstandswert aufweist.

5. Batterieprüfvorrichtung (50) nach einem der vorstehenden Ansprüche, wobei der zweite Spannungsteiler (56a - 56e) einen Widerstand aufweist, der in Reihe mit der nichtlinearen Vorrichtung (54a - 54e) gekoppelt ist.

6. Batterieprüfvorrichtung (50) nach einem der vorstehenden Ansprüche, wobei die Prüfvorrichtung im Einsatz stets eingeschaltet ist.

7. Batterieprüfvorrichtung (50) nach einem der vorstehenden Ansprüche, wobei ein Spannungspotenzial an dem ersten Anschluss der Anzeige in jedem Batterieprüfvorrichtungselement etwa der Hälfte der Batteriezellspannung entspricht, und wobei das Potenzial an dem zweiten Anschluss der Anzeige in jedem Batterieprüfvorrichtungselement durch eine Spannung an dem nichtlinearen Element und dem Widerstand bestimmt wird.

8. Batterieprüfvorrichtung (50) nach Anspruch 7, wobei wenn einer Batterie durch Nutzung oder Verlust Strom ent-
zogen wird, die Spannung an einem der Anschlüsse der Anzeige in jedem Batterieprüfvorrichtungselement in
Bezug auf die Spannung an dem anderen Anschluss der Anzeige in jedem Batterieprüfvorrichtungselement vari-
iert.

9. Batterieprüfvorrichtung (50) nach Anspruch 8, wobei die Metall-Isolator-Metall-Diode den Zustand wechselt, was
bewirkt, dass die Spannung an einem der Anschlüsse der Anzeige in jedem Batterieprüfvorrichtungselement
negativ wird in Bezug auf die Spannung an dem anderen Anschluss der Anzeige in dem genannten Batterieprüf-
vorrichtungselement, so dass eine Veränderung der Farbe der Anzeige bewirkt wird, um anzuzeigen, dass die
Batterie eine vorbestimmte Menge ihrer Kapazität verloren hat.

10. Batterieprüfvorrichtung (50) nach einem der vorstehenden Ansprüche, wobei die nichtlineare Vorrichtung den Zu-
stand ändert, was bewirkt, dass die Spannung an einem der Anschlüsse der Anzeige in jedem Batterieprüfvor-
richtungselement negativ wird in Bezug auf die Spannung an dem anderen Anschluss der Anzeige in dem ge-
nannten Batterieprüfvorrichtungselement, so dass eine Veränderung der Farbe der Anzeige bewirkt wird, um an-
zueigen, dass die Batterie eine vorbestimmte Menge ihrer Kapazität verloren hat.

11. Batterieprüfvorrichtung (50) nach Anspruch 10, wobei wenn Strom durch Nutzung oder Verlust einer Batterie ent-
zogen wird, die Spannung eines der Anschlüsse der Anzeige in dem Batterieprüfvorrichtungselement in Bezug
auf die Spannung an dem anderen Anschluss der Anzeige in dem Batterieprüfvorrichtungselement variiert.

12. Batterie (51), die folgendes umfasst:

 - eine Zelle mit einem äußeren Umfang; und
 - eine Batterieprüfvorrichtung (50) nach einem der vorstehenden Ansprüche.

Revendications

1. Contrôleur de batterie (50) à disposer sur une batterie (51), comprenant :
 un premier diviseur de tension (58, 60) ; et
 une pluralité d'éléments de contrôleur de batterie parallèles (52a à 52e), comprenant :
 - un affichage commandé par tension (62a à 62e) comportant une première borne couplée au premier
diviseur de tension ; et
 - un deuxième diviseur de tension (56a à 56e) couplé en parallèle avec le premier diviseur de tension et
couplé à une deuxième borne de l'affichage commandé par tension (62a à 62e) avec le deuxième diviseur
de tension,

 caractérisé en ce que le deuxième diviseur de tension (56a à 56e) comprend
 un dispositif non linéaire (54a à 54e) qui change d'état sur la base d'une tension aux bornes du deuxième
diviseur de tension pour commander électriquement la commutation de l'affichage commandé par tension pour
l'élément de contrôleur de batterie parallèle, les dispositifs non linéaires présentant différentes caractéristiques
de tension de commutation pour commuter l'affichage commandé par tension de chaque élément de contrôleur
de batterie parallèle à une tension différente.

2. Contrôleur de batterie (50) selon la revendication 1, dans lequel l'affichage commandé par tension (62a à 62e)
est un affichage électrophorétique.

3. Contrôleur de batterie (50) selon la revendication 1 ou 2, dans lequel le dispositif non linéaire (54a à 54e) est une
diode métal/ isolant/ métal, ou un transistor.

4. Contrôleur de batterie (50) selon l'une quelconque des revendications précédentes, dans lequel le premier diviseur
de tension (58, 60) comprend une paire de résistances ayant la même résistance.

5. Contrôleur de batterie (50) selon l'une quelconque des revendications précédentes, dans lequel le deuxième di-
viseur de tension (56a à 56e) comprend une résistance couplée en série avec le dispositif non linéaire (54a à 54e).
6. Contrôleur de batterie (50) selon l'une quelconque des revendications précédentes, dans lequel le contrôleur en cours de fonctionnement est toujours activé.

7. Contrôleur de batterie (50) selon l'une quelconque des revendications précédentes, dans lequel un potentiel de tension à la première borne de l'affichage dans chaque élément de contrôleur de batterie correspond à environ la moitié d'une tension de cellule de batterie, et le potentiel à la deuxième borne de l'affichage dans chaque élément de contrôleur de batterie est déterminé par la tension aux bornes de l'élément non linéaire et de la résistance.

8. Contrôleur de batterie (50) selon la revendication 7, dans lequel, au fur et à mesure qu'un courant est prélevé d'une batterie dû à une utilisation ou à une fuite, la tension de l'une des bornes de l'affichage dans chaque élément de contrôleur de batterie varie par rapport à la tension à l'autre borne de l'affichage dans chaque élément de contrôleur de batterie.

9. Contrôleur de batterie (50) selon la revendication 8, dans lequel la diode métal/ isolant/ métal change d'état en amenant la tension à l'une des bornes de l'affichage dans chaque élément de contrôleur de batterie à devenir négative par rapport à la tension à l'autre borne de l'affichage dans ledit élément de contrôleur de batterie, pour provoquer un changement de couleur de l'affichage afin d'indiquer que la batterie a perdu une quantité prédéterminée de capacité.

10. Contrôleur de batterie (50) selon l'une quelconque des revendications précédentes, dans lequel le dispositif non linéaire change d'état en amenant la tension à l'une des bornes de l'affichage dans chaque élément de contrôleur de batterie à devenir négative par rapport à la tension à l'autre borne de l'affichage dans ledit élément de contrôleur de batterie, pour provoquer un changement de couleur de l'affichage afin d'indiquer que la batterie a perdu une quantité prédéterminée de capacité.

11. Contrôleur de batterie (50) selon la revendication 10, dans lequel, au fur et à mesure qu'un courant est prélevé d'une batterie dû à une utilisation ou à une fuite, la tension de l'une des bornes de l'affichage dans l'élément de contrôleur de batterie varie par rapport à la tension à l'autre borne de l'affichage dans l'élément de contrôleur de batterie.

12. Batterie (51), comprenant :

 une cellule présentant une circonférence extérieure ; et
 un contrôleur de batterie (50) selon l'une quelconque des revendications précédentes.
FIG. 3

10''
Connection, 28
14 or 14'
12

FIG. 4

30 Mix tantalum powder with binder 32
34 Print tantalum ink over first conductive electrode 34
36 Dry tantalum ink layer 36
38 Deposit second layer over dried tantalum ink layer 38
40 Dry second layer providing second electrode 40
42 TEST 42
FIG. 5B

MIM Varistors Printed with Different P:B Ratios
Wet Thickness = 15 MIL

Volts

Currents (Amps)

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

45c
45b
45a

P:B = 5, 45a
P:B = 2, 45b
P:B = 1, 45c
Addition of MgCO3 to Varistor

FIG. 5D
FIG. 7