EUROPEAN PATENT SPECIFICATION

Method and apparatus for decreasing combustor emissions

Verfahren und Vorrichtung zur Verminderung des Ausstosses einer Brennkammer

Méthode et appareil pour diminuer les émissions d'une chambre de combustion

Designated Contracting States:

CH DE FR GB IT LI

Priority: 16.08.2000 US 640356

Date of publication of application: 27.02.2002 Bulletin 2002/09

Proprietor: GENERAL ELECTRIC COMPANY
Schenectady, NY 12345 (US)

Inventors:
• Mistry, Jagdish Dullabhbai
  Cincinnati, Ohio 45241 (US)
• Stegmaier, James William
  West Chester, Ohio 45069 (US)

Representative: Goode, Ian Roy et al
London Patent Operation
General Electric International, Inc.
15 John Adam Street
London WC2N 6LU (GB)

References cited:
WO-A-99/54610
US-A- 4 041 695
DE-A- 3 916 477

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] This application relates generally to combustors and, more particularly, to fuel delivery systems for gas turbine engine combustors.

[0002] Air pollution concerns worldwide have led to stricter emissions standards both domestically and internationally. Aircraft are governed by both Environmental Protection Agency (EPA) and International Civil Aviation Organization (ICAO) standards. These standards regulate the emission of oxides of nitrogen (NOx), unburned hydrocarbons (HC), and carbon monoxide (CO) from aircraft in the vicinity of airports, where they contribute to urban photochemical smog problems. Most aircraft engines are able to meet current emission standards using combustor technologies and theories proven over the past 50 years of engine development. However, with the advent of greater environmental concern worldwide, there is no guarantee that future emissions standards will be within the capability of current combustor technologies.

[0003] In general, one class of engine emissions (NOx) are formed because of high flame temperatures within a combustor. Combustor flame temperature is controlled by increasing airflow during periods of increased fuel flow in an effort to evenly meter combustor flame temperature across the combustor. Known combustors inject fuel through a plurality of premixers that are arranged circumferentially at various radial distances from a center axis of symmetry for the combustor. To achieve a full range of engine operability, such combustors include fuel delivery systems that circumferentially stage fuel flows through the premixers to evenly disperse fuel throughout the combustor.

[0004] Such combustors are in flow communication with external boost air systems. As engine power is increased, fuel is injected through premixers at different radial distances. To reduce auto-ignition of fuel, residual fuel is purged from non-flowing premixers with the external boost air system. Because of the various fuel supply and premixer configurations that are used during fuel staging, such external boost air systems are often elaborate and complex. However, despite such complex boost air systems, during fuel stage transitions, pressure decays may occur as a result of the purging. Such pressure decays may cause an overtemperature or over-speed within the turbine.


[0006] DE 3916477 describes a gas turbine fuel injector purging system in which compressed air is released from a storage vessel.

[0007] In an exemplary embodiment of the invention, a combustor for a gas turbine engine includes a fuel delivery system that uses circumferential fuel staging and combustor air pressure for purging residual fuel from non-flowing engine components. The fuel delivery system includes a plurality of fuel supply rings and a backpurge sub-system. The plurality of fuel supply rings are arranged concentrically at various radial distances to supply fuel to a turbine engine combustor through a plurality of combustor manifolds and pigtails. The backpurge system uses combustor air to purge fuel from non-flowing fuel supply rings, combustor pigtails, and combustor manifolds. Additionally, the fuel delivery system includes at least two orifices to minimize pressure decays during filling stages.

[0008] During engine operation, as power is adjusted, fuel delivery system fuel stages supply fuel to the combustor through various combinations of fuel supply rings. The backpurge system drains and dries residual fuel from the non-flowing fuel supply rings and any associated combustor components. Because the backpurge system uses combustor air at a high pressure and temperature, residual fuel is easily removed and auto-ignition of the residual fuel is reduced. As a result, a combustor is provided that is cost-effective and highly reliable.

[0009] An embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:

Figure 1 is a schematic illustration of a gas turbine engine including a combustor; and

Figure 2 is a schematic illustration of a fuel delivery system used with the gas turbine engine shown in Figure 1.

[0010] Figure 1 is a schematic illustration of a gas turbine engine 10 including a low pressure compressor 12, a high pressure compressor 14, and a combustor 16. Engine 10 also includes a high pressure turbine 18 and a low pressure turbine 20.

[0011] In operation, air flows through low pressure compressor 12 and compressed air is supplied from low pressure compressor 12 to high pressure compressor 14. The highly compressed air is delivered to combustor 16. Airflow (not shown in Figure 1) from combustor 16 drives turbines 18 and 20.

[0012] Figure 2 is a schematic illustration of a fuel delivery system 50 for use with a gas turbine engine, similar to engine 10 shown in Figure 1. In one embodiment, the gas turbine engine is an LM6000 engine available from General Electric Company, Cincinnati, Ohio. In an exemplary embodiment, fuel delivery system 50 includes a backpurge sub-system 51 to purge and drain liquid from non-flowing portions of fuel delivery system 50 to meet load and speed variations during engine accelerations and decelerations or fuel transfers. Backpurge sub-system 51, described in more detail below, uses high temperature and pressurized combustor air pressure to drain and purge fuel from non-flowing portions of fuel delivery system 50.

[0013] Flame temperatures within combustor 16 (shown in Figure 1) control liquid fuel emissions and as a result, combustor 16 uses circumferential staging to...
achieve full engine operability. Fuel delivery system 50 includes a plurality of fuel supply manifold rings 52 arranged concentrically with respect to each other. In one embodiment, rings 52 are fabricated from metal. Specifically, fuel supply manifold rings 52 include an "A" ring group or radially outer group 54, a "B" ring group or intermediate group 56, and a "C" ring group or radially inner group 58. In one embodiment, rings 52 are approximately 0.5" (1.27cm) diameter stainless steel tubes. In another embodiment, rings 52 are approximately 0.375" (0.953cm) diameter stainless steel rings. Each group 54, 56, and 58 is connected to a plurality of manifolds (not shown). Each combustor manifold includes a plurality of pigtails (not shown) that connect each manifold to a combustor premixer (not shown). In one embodiment, fuel delivery system 50 is a liquid fuel system for a dual fuel engine. In another embodiment, fuel delivery system 50 is a dry low emission (DRE) liquid fuel system.

[0014] "A" ring group 54 includes four fuel supply manifold rings 52 for supplying fuel to combustor manifolds. Fuel supply manifold rings 52 are concentrically aligned with respect to each other and are positioned substantially co-planar with respect to each other. A smallest diameter manifold ring 62 is known as an A1 ring and is radially inward from a second fuel supply ring 64 known as an A2 ring. A third fuel supply ring 66 is known as an A3 ring and is radially outward from A2 ring 64 and is radially inward from a fourth supply ring 68 known as an A4 ring.

[0015] Each fuel supply ring 62, 64, 66, and 68 includes a temperature/pressure sensor 70, 72, 74, and 76, respectively, connected between each respective manifold ring 60 and a respective purge valve 80, 82, 84, and 86. Purge valves 80, 82, 84, and 86 are commonly connected with piping 88 extending between purge valves 80, 82, 84, and 86, and a heat exchanger 90. A temperature sensor 91 monitors a temperature of combustor air flowing through heat exchanger 90.

[0016] Each fuel supply ring 62, 64, 66, and 68 also includes a staging valve 100, 102, 104, and 106, respectively. Common piping 110, 112, 114, and 116 connect each staging valve 100, 102, 104, and 106, and each respective purge valve 80, 82, 84, and 86, to each "A" group fuel supply ring 62, 64, 66, and 68, respectively. Each staging valve 100, 102, 104, and 106 are commonly connected with piping 120 extending between staging valves 100, 102, 104, and 106 and an "A" group shut-off valve 122. "A" group shut-off valve 122 controls a flow of fuel to staging valves 100, 102, 104, and 106 and is between staging valves 100, 102, 104, and 106 and an "A" group fuel metering valve 124. An "A" drain valve 126 is connected to piping 120 between "A" group shut-off valve 122 and staging valves 100, 102, 104, and 106, and extends to connect with piping 88 between heat exchanger 90 and purge valves 80, 82, 84, and 86. In the exemplary embodiment, back purge sub-system 51 includes "A" drain valve 126, purge valves 80, 82, 84, and 86, and staging valves 100, 102, 104, and 106.

[0018] "B" ring group 56 includes one fuel supply manifold ring 52 for supplying fuel to combustor manifolds. Specifically, a fuel supply manifold ring 162 is known as a "B" ring and is radially inward from "A" group rings 60. Fuel supply ring 162 is connected with piping 164 to a "B" group fuel shut-off valve 166. "B" group fuel shut-off valve 166 controls a flow of fuel to "B" ring group 56 and is between manifold ring 162 and a "B" group fuel metering valve 168. A temperature/pressure sensor 170 is connected between manifold ring 162 and "B" group shut-off valve 166.

[0019] A purge valve 174 is connected with piping 178 to piping 164 between temperature/pressure sensor 170 and "B" group shut-off valve 166. Piping 178 extends from purge valve 174 to a heat exchanger 179. A "B" group drain valve 180 is connected with piping 182 to piping 178 between purge valve piping 178 and heat exchanger 179. Drain valve piping 182 is also connected to purge valve piping 178 between purge valve 174 and heat exchanger 179. A temperature of combustor air flowing through heat exchanger 179 is monitored with a temperature sensor 184. In the exemplary embodiment, back purge sub-system 51 also includes drain valve 180 and purge valve 174.

[0020] "C" ring group 58 includes two fuel supply manifold rings 52 for supplying fuel to combustor manifolds. Manifold rings 52 within "C" ring group 58 are concentrically aligned with respect to each other and are radially inward from "B" ring group manifold ring 162. A smallest diameter manifold ring 202 is known as a C1 ring and is radially inward from a second fuel supply ring 204 known as a C2 ring.

[0021] Each fuel supply ring 202 and 204 includes a temperature/pressure sensor 206 and 208 respectively, connected between each respective manifold ring 200 and a respective purge valve 210 and 212, respectively. Common piping 214, 216, and 218 connect each staging valve 234, 236, and 238, and each respective purge valve 220 and 222. Purge valves 220 and 222 are commonly connected with piping 224 extending between purge valves 220 and 222, and a heat exchanger 230. A temperature sensor 232 monitors a temperature of combustor air flowing through heat exchanger 230.

[0022] Each fuel supply ring 202 and 204 also includes a staging valve 234 and 236, respectively. Common piping 238 and 240 connect each staging valve 234 and 236, and each respective purge valve 220 and 222 to each "C" group fuel supply ring 202 and 204, respectively. Each staging valve 234 and 236 are commonly connected with piping 241 extending between staging valves 234 and 236 and a "C" group shut-off valve 242. A pair of orifices 244 and 245 are between each staging valve 234 and 236 and a "C" group shut-off valve 242.

[0023] "C" group shut-off valve 242 controls a flow of fuel to staging valves 234 and 236 and is between staging valves 234 and 236 and a "C" group fuel metering valve 246. A drain valve 248 is connected to piping 240 be-
between "C" group shut-off valve 242 and staging valves 234 and 236, and, extends to connect with piping 224 between heat exchanger 230 and purge valves 220 and 222. In the exemplary embodiment, back purge sub-system 51 also includes drain valve 248, purge valves 220 and 222, and staging valves 234 and 236.

[0024] Each group fuel metering valve 124, 168, and 246 is commonly connected with piping 250 to a fuel delivery system main shut-off valve 252. A temperature/pressure sensor 253 is connected to piping 250 between fuel metering valves 124, 168, and 246 and fuel delivery system main shut-off valve 252. Fuel delivery system main shut-off 252 is in flow communication with a liquid fuel source 256 and controls a flow of fuel to fuel delivery system supply ring groups 54, 56, and 58.

[0025] Each group heat exchanger 90, 179, and 230 is commonly connected with piping 260 to a fuel/air separator 262 that is in flow communication with a drain tank 264. A temperature sensor 266 is connected to drain tank 264 and monitors a temperature of fluid entering drain tank 264. Drain tank 264 is at ambient pressure. The combination of fuel/air separator 262 and heat exchangers 90, 179, and 230 control a temperature of purge air entering drain tank 264. In one embodiment, purge air temperature entering drain tank 264 is less than approximately 100° F (about 37.8°C).

[0026] During engine operation, fuel delivery system 50 operates with circumferential staging. Initially when engine 10 is being started and increased in power, fuel is supplied to combustor 16 through "B" ring group 56 and A1 ring 62. As power is increased, a next fuel stage supplies fuel to only "B" ring group 56. During engine operations as a fuel flow to various fuel supply rings 52 is shut-off, backpurge sub-system 51 uses combustor air to remove residual liquid fuel from non-flowing supply rings 52 to prevent auto-ignition of the fuel. Because combustor air is provided internally at a higher temperature and pressure than air provided with known purge systems, overtemperatures and overspeeds of turbine 10 are reduced during purging.

[0027] Specifically, during engine start, as fuel staging is changed from supplying fuel to "B" ring group 56 and A1 ring 62 to only supplying fuel to "B" ring group 56, fuel flow to A1 ring group 56 is shut-off and backpurge sub-system 51 removes fuel from A1 premixers, pigtails, and A1 ring 62 by sequencing valves. Initially "A" ring group fuel shutoff valve 122 is closed, and A1 purge valve 80 and "A" drain valve 126 are opened. After approximately two minutes, and A1 purge valve 80, "A" drain valve 126, and A1 staging valve 100 are closed to complete a purging cycle.

[0028] As engine power is further increased, another fuel stage permits fuel is be supplied to "B" ring group 56 and "C" ring 202. During such a fuel stage, fuel is supplied to C1 ring 202 after "C" group shutoff valve 242 and C1 staging valve 234 are opened. As power is further increased, fuel is then supplied to "B" ring group 56 and "C" ring group 58 and C2 ring 204 is filled after C2 staging valve 236 is opened. Because fuel flows through orifices 244 and 245 prior to entering staging valves 234 and 236, respectively, load variations and manifold pressure decay are reduced during such the fuel stage transition.

[0029] As engine power is further increased, a next fuel stage shuts-off fuel flow to "C" ring group 58 and supplies fuel to "A" ring group 54 and "B" ring group 56. During such a fuel stage, "A" group shut-off valve 122 and "A" staging valves 100, 102, 104, and 106 are opened. "C" ring group shut-off valve 242 is then closed, and C1 and C2 purge valves 220 and 222, respectively, and "C" ring group drain valves 248 are opened. Approximately two minutes later, C1 and C2 staging valves 234 and 236, respectively, C1 and C2 purge valves 220 and 222, respectively, and "C" ring group drain valve 248 are closed and purging is complete.

[0030] As power is further increased, fuel is supplied to "A", "B", and "C" ring groups 54, 56, and 58, respectively. During such fuel staging, fuel is supplied to "C" rings 202 and 204 after "C" ring group shutoff valve 242, and C1 and C2 staging valves 234 and 236, respectively, are opened.

[0031] Engine 10 is also operated with circumferential staging as power is decreased from high power operations. Prior to reductions in power, engine 10 operates with fuel supplied to "A", "B", and "C" ring groups 54, 56, and 58, respectively. Depending on particular a particular engine 10, flow rates to "A", "B", and "C" ring groups 54, 56, and 58, respectively, will change depending upon power operating levels of engine 10. As power is decreased, fuel is then initially supplied to only "A" ring group 54 and "B" ring group 56, and fuel is purged from "C" ring group premixers, pigtails, and manifolds 202 and 204 after "C" ring group shutoff valve 242 is closed. C1 and C2 purge valves 220 and 222, respectively, and "C" group drain valve 248 are then opened. Approximately two minutes later, C1 and C2 staging valves 234 and 236, respectively, C1 and C2 purge valves 220 and 222, respectively, and "C" ring group drain valve 248 are closed and purging is complete.

[0032] As power is further decreased, fuel is then supplied through another fuel stage to only "B" ring group 56 and "C" ring group 58. "C" ring group 58 is filled after "C" ring group shutoff valve 242 and C1 and C2 staging valves 234 and 236, respectively, are opened. After "C" ring group 58 is filled, "A" ring group shutoff valve 122 is closed and A1, A2, A3, and A4 purge valves 80, 82, 84, and 86, and "A" ring group drain valve 126 are opened. After approximately two minutes purging is complete, and "A" ring group drain valve 122 and A1, A2, A3, and A4 staging and purge valves 100, 102, 104, and 106, and 80, 82, 84, and 86, respectively, are closed.

[0033] As engine power is further decreased, fuel is supplied to "B" ring group 56 and "C" ring 202 and fuel flow to "C" ring 204 is decreased. During this fuel stage, C2 staging valve 236 is closed and C2 purge valve 222 is opened. After approximately two minutes, purging of C2 ring 204 is complete, and C2 purge valve 222 is
A method for supplying fuel to a gas turbine engine

1. Claims

A method in accordance with Claim 1 purged at part power operations.

Thus, a combustor is provided which may be effectively reduced variations during fuel stage transitions are reduced.

the fuel delivery system includes a pair of orifices, load components are effectively drained and dried. As a result, auto-pressure combustor air, walls within non-

the backpurge system uses high temperature and high pressure to purge fuel from the remaining combustor manifolds.

[0034] Whenever fuel flow to "B" ring group 56 is shut-off, "B" ring group 56 is purged after "B" ring group shut-off valve 166 is closed. "B" ring group drain valve 180 and "B" purge valve 174 are opened for purging. After approximately two minutes, "B" ring group 56 is purged, and "B" ring group drain valve 180 and "B" purge valve 174 are closed.

[0035] The above-described combustor is cost-effective and highly reliable. The combustor includes a fuel delivery system that effectively purges residual fuel from fuel supply rings and combustor pigtails and premixers that are not in use during a particular fuel stage. Because the backpurge system uses high temperature and high pressure combustor air, walls within non-flowing components are effectively drained and dried. As a result, auto-ignition of residual fuel is reduced. Furthermore, because the fuel delivery system includes a pair of orifices, load variations during fuel stage transitions are reduced. Thus, a combustor is provided which may be effectively purged at part power operations.

Claims

1. A method for supplying fuel to a gas turbine engine combustor (16), the gas turbine engine (10) including a fuel delivery system (50) comprising a plurality of concentric fuel supply rings (52) and a backpurge sub-system (51), the fuel supply rings in flow communication with a plurality of combustor manifolds, said method comprising:

   delivering fuel to at least one combustor manifold through at least one of the fuel supply rings; and

   being characterised by:

   supplying combustor air at combustor air pressure to the combustor manifolds not in operation through the backpurge sub-system to purge fuel from the remaining combustor manifolds.

2. A method in accordance with Claim 1 wherein the plurality of fuel supply rings (52) include at least one radially outer fuel ring (54), at least one intermediate fuel ring (56), and at least one radially inner fuel ring (58), the radially outer fuel ring radially outward from the radially inner fuel ring, the intermediate fuel ring between the radially outer and inner fuel supply rings, said step of delivering fuel further comprising the step of supplying fuel to the combustor (16) through at least one of the radially outer fuel supply ring, the radially inner fuel supply ring, and the intermediate fuel supply ring.

3. A method in accordance with Claim 1 or Claim 2 wherein said step of delivering fuel further comprises the step of delivering fuel through at least one orifice (244) prior to delivering fuel to at least one fuel supply ring (52).

4. A fuel delivery system (50) for a gas turbine engine (10), said fuel delivery system comprising:

   a plurality of fuel supply rings (52) for supplying fuel to a plurality of combustor manifolds of combustor of a gas turbine engine; characterised by

   a backpurge sub-system (51) in flow communication with said plurality of fuel supply rings and said combustor to enable combustor air at combustor air pressure to selectively purge fuel from said fuel delivery system, and

   at least one heat exchanger coupled to at least one of the fuel supply rings.

5. A fuel delivery system (50) in accordance with Claim 4 wherein said plurality of fuel supply rings (52) comprise at least one radially outer fuel ring (54), at least one intermediate fuel ring (56), and at least one radially inner fuel ring (58), said at least one outer fuel ring radially outward from said inner fuel ring, said at least one intermediate fuel ring between said at least one radially inward and outward fuel rings.

6. A fuel delivery system (50) in accordance with Claim 4 or Claim 5 wherein said plurality of fuel supply rings (52) comprise at least two orifices (244, 245) configured to reduce fuel pressure decay to at least one of the combustor manifolds.

7. A fuel delivery system (50) in accordance with Claim 4 wherein said backpurge sub-system (51) includes a drain tank (264), said at least one heat exchanger being configured to reduce the temperature of air entering said drain tank.

8. A fuel delivery system (50) in accordance with Claim 4 wherein said backpurge sub-system comprises at least one purge valve for selectively purging fuel during turbine partial power operation.

9. A fuel delivery system (50) in accordance with Claim 4 wherein said backpurge sub-system comprises at least one purge valve to facilitate reducing fuel auto-ignition within said fuel delivery system.
10. A gas turbine engine (10) comprising a combustor (16); and a fuel delivery system (50) in accordance with claim 4.

**Patentansprüche**

1. Verfahren zum Zuführen von Brennstoff zu einer Gasturbinentriebwerksbrennkammer (16), wobei das Gasturbinentriebwerk (10) ein Brennstoffzufuhrsystem (50) mit mehreren konzentrischen Brennstoffzufuhrrippen (52) und ein Rückführersubsystem (51) enthält, wobei die Brennstoffzufuhrrippen mit mehreren Brennkammerkrümmern strömungsmäßig verbunden sind, und das Verfahren umfasst:

   Liefern von Brennstoff zu wenigstens einem Brennkammerkrümmer durch mindestens einem der Brennstoffzufuhrrippen; und dadurch gekennzeichnet, dass den Brennkammerkrümmern, die nicht in Betrieb sind, durch das Rückführersubsystem unter Brennkammerluftdruck stehende Brennkammerluft zugeführt wird, um Brennstoff aus den übrigen Brennkammerkrümmern zu verdrängen.


3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei der Schritt des Liefern von Brennstoff einer den Schritt beinhaltet, vor dem Zuführen von Brennstoff zu wenigstens einem Brennstoffzufuhrrippen (52) Brennstoff durch wenigstens eine Öffnung (244) zu liefern.

4. Brennstoffzufuhrsystem (50) für ein Gasturbinentriebwerk (10), wobei zu dem Brennstoffzufuhrsystem gehören:

   mehrere Brennstoffzufuhrrippen (52) zum Zuführen von Brennstoff zu mehreren Brennkammerkrümmern einer Brennkammer eines Gasturbinentriebwerks; gekennzeichnet durch:

   ein Rückführersubsystem (51), das mit den mehreren Brennstoffzufuhrringen und der Brennkammer strömungsmäßig verbunden ist, um zu ermöglichen, das unter Brennkammerdruck stehende Brennkammerluft selektiv Brennstoff aus dem Brennstoffzufuhrsystem verdrängt, und wenigstens ein Wärmetauscher, der mit mindestens einem der Brennstoffzufuhrrippen verbunden ist.

5. Brennstoffzufuhrsystem (50) nach Anspruch 4, wobei zu den mehreren Brennstoffzufuhrrippen (52) wenigstens ein radial äußerer Brennstoffring (54), wenigstens ein intermediärer Brennstoffring (56) und wenigstens ein radial innerer Brennstoffring (58) gehören, wobei der wenigstens eine äußere Brennstoffring gegenüber dem inneren Brennstoffring, im Wesentlichen radial außen angeordnet ist, und der wenigstens eine intermediäre Brennstoffring zwischen dem wenigstens einen radial inneren und äußeren Brennstoffringen angeordnet ist.

6. Brennstoffzufuhrsystem (50) nach Anspruch 4 oder Anspruch 5, bei dem die mehreren Brennstoffzufuhrrippen (52) mindestens zwei Öffnungen (244, 245) aufweisen, die dazu eingerichtet sind, einen Brennstoffdruckabfall gegenüber mindestens einem der Brennkammerkrümmern zu reduzieren.

7. Brennstoffzufuhrsystem (50) nach Anspruch 4, bei dem das Rückführersubsystem (51) einen Entleerungsbehälter (264) enthält, wobei der wenigstens eine Wärmetauscher dazu eingerichtet ist, die Temperatur von Luft, die in den Entleerungsbehälter eintritt, zu senken.

8. Brennstoffzufuhrsystem (50) nach Anspruch 4, wobei das Rückführersubsystem wenigstens ein Rückblasventil enthält, das dazu dient, während eines Teilleistungsbetriebs der Turbine Brennstoff selektiv zu verdrängen.

9. Brennstoffzufuhrsystem (50) nach Anspruch 4, wobei das Rückführersubsystem wenigstens ein Rückblasventil enthält, um eine Verringerung einer Brennstoffselbstzündung in dem Brennstoffzufuhrsystem zu fördern.

10. Gasturbinentriebwerk (10), zu dem gehören: eine Brennkammer (16); und ein Brennstoffzufuhrsystem (50) nach Anspruch 4.
Revendications

1. Procédé pour fournir du combustible à une chambre de combustion (16) de moteur à turbine à gaz, le moteur à turbine à gaz (10) comprenant un système de distribution de combustible (50) comportant une pluralité de couronnes d’alimentation en combustible concentriques (52) et un sous-système de purge (51), les couronnes d’alimentation en combustible étant en communication d’écoulement avec une pluralité de collecteurs de chambre de combustion, ledit procédé comprenant :

   la distribution de combustible à au moins un collecteur de chambre de combustion via au moins l’une des couronnes d’alimentation en combustible ; et étant caractérisé par :

   l’envoi d’air de chambre de combustion à une pression d’air de chambre de combustion aux collecteurs de chambre de combustion qui ne sont pas en fonctionnement via le sous-système de purge pour purger le combustible des collecteurs de chambre de combustion restants.

2. Procédé selon la revendication 1, dans lequel la pluralité de couronnes d’alimentation en combustible (52) comprend au moins une couronne de combustible radialement extérieure (54), au moins une couronne de combustible intermédiaire (56) et au moins une couronne de combustible radialement intérieure (58), la couronne de combustible radialement extérieure étant radialement à l’extérieur par rapport à la couronne de combustible radialement intérieure, la couronne de combustible intermédiaire étant située entre les couronnes de combustible radialement extérieure et intérieure, ladite étape de distribution de combustible comprenant en outre l’étape consistant à envoyer du combustible à la chambre de combustion (16) via au moins l’une des couronnes d’alimentation en combustible radialement extérieure, radialement intérieure et intermédiaire.

3. Procédé selon la revendication 1 ou 2, dans lequel ladite étape de distribution de combustible comprend en outre l’étape consistant à distribuer du combustible par au moins un orifice (244) avant de distribuer du combustible à au moins une couronne d’alimentation en combustible (52).

4. Système de distribution de combustible (50) pour moteur à turbine à gaz (10), ledit système de distribution de combustible comprenant :

   une pluralité de couronnes d’alimentation en combustible (52) pour fournir du combustible à une pluralité de collecteurs de chambre de combustion de la chambre de combustion d’un moteur à turbine à gaz ; caractérisé par :

5. Système de distribution de combustible (50) selon la revendication 4, dans lequel ladite pluralité de couronnes d’alimentation en combustible (52) comprend au moins une couronne de combustible radialement extérieure (54), au moins une couronne de combustible intermédiaire (56) et au moins une couronne de combustible radialement intérieure (58), ladite au moins une couronne de combustible extérieure étant radialement à l’extérieur par rapport à la couronne de combustible intérieure, ladite au moins une couronne de combustible intermédiaire étant située entre cesdites au moins une couronne de combustible radialement intérieure et extérieure.

6. Système de distribution de combustible (50) selon la revendication 4 ou 5, dans lequel ladite pluralité de couronnes d’alimentation en combustible (52) comprend au moins deux orifices (244, 245) conçus pour réduire l’affaiblissement de la pression de combustible vers au moins l’un des collecteurs de chambre de combustion.

7. Système de distribution de combustible (50) selon la revendication 4, dans lequel ledit sous-système de purge (51) comprend un réservoir de récupération (264), ledit au moins un échangeur de chaleur étant configuré pour réduire la température de l’air entrant dans ledit réservoir de récupération.

8. Système de distribution de combustible (50) selon la revendication 4, dans lequel ledit sous-système de purge comprend au moins une vanne de purge pour purger de manière sélective du combustible pendant le fonctionnement de la turbine à puissance partielle.

9. Système de distribution de combustible (50) selon la revendication 4, dans lequel ledit sous-système de purge comprend au moins une vanne de purge pour faciliter la réduction de l’auto-allumage du combustible dans ledit système de distribution de combustible.

10. Moteur à turbine à gaz (10) comprenant une chambre de combustion (16) et un système de distribution
de combustible (50) selon la revendication 4.