EUROPEAN PATENT SPECIFICATION

METHOD AND APPARATUS FOR MOUNTING AN ELECTRONIC COMPONENT
VERFAHREN UND VORRICHTUNG ZUM MONTIEREN VON ELEKTRONISCHEN BAUTEILEN
TECHNIQUE ET DISPOSITIF DE MONTAGE D’UN COMPOSANT ELECTRONIQUE

Designated Contracting States: DE FR GB

Priority: 30.03.1999 JP 8850099

Date of publication of application: 23.01.2002 Bulletin 2002/04

Proprietor: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. Kadoma-shi, Osaka 571-8501 (JP)

Inventors:
- YABUKI, Koichi, Matsushita Electric Ind. Co., Ltd. Kadoma-shi, Osaka 571-8501 (JP)
- NAGAI, Yoshiyuki, Matsushita Elect. Ind. Co., Ltd. Kadoma-shi, Osaka 571-8501 (JP)
- HANADA, Keiji, Matsushita Electric Ind. Co., Ltd. Kadoma-shi, Osaka 571-8501 (JP)

Representative: Haley, Stephen Gill Jennings & Every LLP Broadgate House 7 Eldon Street London EC2M 7LH (GB)

References cited:
- EP-A- 0 891 129
- JP-A- 6 188 594
- JP-A- 6 244 598

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] The present invention relates to a method and apparatus for mounting electronic components such as a microchip or a semiconductor element onto a substrate. More particularly, the invention relates to a component mounting method and apparatus which employs a suction nozzle for holding and mounting a component onto a given area on a substrate.

BACKGROUND ART

[0002] In a conventional electronic component mounting apparatus, the speed of the mounting operation has been increased by raising the operating speed of the various drive units in order to cope with a demand for high-speed component mounting due to an increase in the number of components to be mounted. For example, in a component mounting apparatus shown in diagrammatic plan view in Figure 6, a component supply table 2 on which a plurality of component supply units 1 are arranged is moved in the direction of arrangement of the component supply units 1, so as to locate a component supply port 3 of a desired component supply unit 1 in position at a first station ST1 for picking up components (not shown). A component supply unit 1, known as a parts cassette, includes a holding tape (not shown) having recesses for storing electronic components, the recesses being arranged at intervals in the length direction of the holding tape, and a cover tape (not shown) stuck onto the upper surface of the holding tape, the cover tape used for preventing the electronic components from falling out, thereby supplying the components to the component supply port 3 continuously.

[0003] The component mounting apparatus also includes a rotary-type mounting head 9. The mounting head 9 includes a rotary drum 8 having a plurality of nozzle units (not shown) equipped with a suction nozzle 7 (ten are shown by way of example in the Figure) at their bottom ends, the nozzle units arranged at equal intervals on the periphery of the drum 8.

[0004] The components are mounted onto a substrate 10 by the following procedure: the rotary drum 8 is intermittently rotated through an angle corresponding to the interval of the nozzle units, whereby the suction nozzles 7 of the nozzle units are successively positioned at first to tenth stations ST1 to ST10. By vertical movement of the nozzle unit, the suction nozzle 7 positioned at the first station ST1 picks up an electronic component from a component supply port 3 of a component supply unit 1. When the component held by the suction nozzle 7 is transported with the rotation of the rotary drum 8 and the nozzle 7 is positioned at a third station ST3 for component recognition, the amount of positional offset of the component with respect to the center of the suction nozzle 7 and the position of the component itself are measured using image data picked up by a recognition camera (not shown) of a component recognition device 11. Then, when the component reaches a fifth station ST5 for position correction, the component is rotated by the nozzle unit by the amount of the offset in order to correct the offset of the component calculated by the image processing described above.

[0005] When the component is positioned in and stopped at a sixth station ST6 for component mounting, a substrate 10 is located by moving a substrate holding table 12 in X and Y directions so that a desired component mounting area of the substrate 10 is positioned directly below the component held by the suction nozzle 7. Then, the nozzle unit moves vertically, whereby the component held by the suction nozzle 7 is mounted onto the desired mounting area on the substrate 10. In the seventh to tenth stations ST7 to ST10, preparation for next component mounting such as replacement of the suction nozzle 7 is performed.

[0006] As typified by cellular phones, recent reduction in weight and thickness of electronic devices necessitates miniaturization of the substrate 10 which is accommodated therein, as well as mounting of smaller components with high density on the substrate. However, reduction of separation of adjacent components is limited by the mechanical structure of the electronic component mounting apparatus. The mounting precision of the electronic component mounting apparatus is scarcely a factor in restricting the reduction of separation of the components, since they are mounted on the substrate 10 after their position has been corrected in the fifth station ST5 in accordance with the correction values calculated from the image data picked up at the third station ST3.

[0007] Figure 7 is a diagrammatic recognition screen 13 which is picked up by the recognition camera of the component recognition device 11 at the third station ST3. Using this recognition screen 13, the amount of offset (Δx, Δy) of the positional coordinates (x1, y1) of the center 17a of the image 17 of the component held by the suction nozzle 7 with respect to the positional coordinates (x, y) of the center 14a of the image 14 of the suction nozzle 7, and the inclination of the electronic component with respect to the suction nozzle 7 are calculated. A correction value is calculated based on the data, and the position of the component is corrected in accordance with the correction value before it is mounted on the substrate 10. Due to the improvement in resolution of the component recognition device, there is no particular problem in reducing the mounting separation of the components.

[0008] However, regarding the mechanical structure of the electronic component mounting apparatus, there is a problem as shown in Figure 8. When the nozzle unit 19 holding a component 18 with a suction nozzle 7, the component 18 being in a positionally offset condition and corrected to face a given component mounting area of the substrate 10, is lowered, the suction nozzle 7 may come into contact with a component 18 that has already been mounted in an adjacent position as shown at portion...
the quality of the substrate 10.

[0009] In order to avoid the problem, a suction nozzle 7 may have an extremely minute shape that it does not contact a previously mounted component 18. However, the smaller the aperture of the suction nozzle 7 becomes, the lower the suctional force on a component 18 is, causing an increase in the rate of failure in picking up a component 18, as well as an increase in the number of components 18 that are discarded due to the failure, and consequent economic loss. What is worse, the strength of the suction nozzle 7 is lowered due to increasing thinness of its outer wall, resulting in an increased frequency of maintenance of the suction nozzle 7 and increased costs.

[0010] The invention has been devised in light of the above problems, and it is an object of the invention to provide a method and apparatus for mounting electronic components realizing the mounting of components at high densities on substrates employing a conventional suction nozzle without lowering the quality of the substrate due to damage of the components.

[0011] EP-A-0891129 discloses an electronic component mounting apparatus for picking up and transporting an electronic component to a substrate using a suction nozzle, determining a difference between the position of an outer edge of a component and that of the suction nozzle, comparing the difference to a pre-set value and determining whether or not mounting of the component on the substrate should proceed.

[0012] To achieve the above object, the present invention provides an electronic component mounting method which comprises:

- picking up an electronic component supplied from a component supply unit;
- transporting the electronic component to above a substrate with a suction nozzle;
- calculating the offset of the electronic component with respect to the suction nozzle on the basis of image recognition of the component while held by the nozzle during the process of transporting;
- calculating a range of the substrate, the range being faced by the suction nozzle if the electronic component held by the suction nozzle is mounted onto the substrate, based on the amount of offset of the electronic component;
- determining the feasibility of mounting the electronic component held by the suction nozzle onto the substrate in accordance with whether or not the range overlaps an electronic component that is already mounted in a position adjacent to the position where the electronic component held by the suction nozzle is to be mounted; and
- mounting the electronic component onto a substrate only if the result of the feasibility determination is positive.

initially negative and the electronic component does not have polarity, the method further comprises:

- calculating the amount of offset of the electronic component with its direction rotated through 180° with respect to the suction nozzle;
- determining the feasibility of mounting the electronic component onto the substrate in accordance with whether or not the range overlaps an electronic component that is already mounted in a position adjacent to the position where the electronic component held by the suction nozzle is to be mounted;
- rotating the electronic component through 180°;

[0013] The component mounting method of the invention has advantages in that damage caused by contact of a suction nozzle with an already-mounted component is prevented, thereby ensuring high quality of a substrate and the control processing of mounting is simplified.

[0014] An electronic component mounting apparatus includes a mounting head for picking up and transporting an electronic component supplied from a component supply unit with a suction nozzle, the mounting head used for mounting the electronic component onto a substrate, an image data pick-up device for generating image data, an offset calculating device for calculating the amount of offset of the electronic component with respect to the suction nozzle by image recognition of the electronic component from the image data, a mounting feasibility determining device for calculating a range of the substrate based on the amount of offset of the component, the range being faced by the suction nozzle when the electronic component held by the suction nozzle is mounted onto the substrate, and for determining the feasibility of mounting the electronic component held by the suction nozzle onto the substrate in accordance with whether or not the range overlaps an electronic component that is already mounted in a position adjacent to the position where the electronic component held by the suction nozzle is to be mounted and means for mounting the electronic component onto the substrate only in respect of which the result of the determination is positive.

[0015] The electronic component mounting apparatus realizes the component mounting method of the invention and achieves the benefits of the component mounting method due to the provision of the feasibility determining device which determines the feasibility of mounting the component held by the suction nozzle onto the substrate.
The control unit 21 includes an offset calculating mechanism 22.

Preferred modes for carrying out the invention.

[0016] Preferred modes for carrying out the invention are described with reference to the drawings. Figure 1 is a block diagram illustrating the construction of main parts of an electronic component mounting apparatus for realizing the method of mounting electronic components according to the present invention;

Figure 2 is a flow chart illustrating the control processing of mounting electronic components according to an illustrative example;

Figure 3 is a diagram of a recognition image obtained in the illustrative example;

Figure 4 is a flow chart illustrating the control processing of mounting electronic components according to an embodiment of the invention;

Figure 5 is a flow chart illustrating the control processing of mounting electronic components according to a further illustrative example;

Figure 6 is a diagrammatic plan view of an electronic component mounting apparatus having a rotary-type mounting head;

Figure 7 is an explanatory view diagrammatically showing a recognition image obtained by a component recognition device of the electronic component mounting apparatus; and

Figure 8 is a side view illustrating the problem of the conventional method of mounting electronic components.

The control unit 21 includes an offset calculating device 24 which calculates the amount of offset of the center of an electronic component 18 with respect to the center of the suction nozzle 7 by using an image data picked up by a recognition camera of the component recognition device 11 at the third station ST3 shown in Figure 6, and a mounting feasibility determining device 27 which determines, whether it is possible to mount the component 18 held by the suction nozzle 7 onto a substrate 10, based on the amount of offset calculated by the device 24. The conventional component recognition device 11 may double as the offset calculating device 24.

Next, the flow chart of Figure 2, illustrating control processing of mounting electronic components according to an illustrative example, not forming part of the invention defined by the claims, will be described with reference to the diagram of Figure 3. When a suction nozzle 7 has been moved to the third station ST3 after picking up a component 18 at the first station ST1 shown in Figure 6, the offset calculating device 24 recognizes an image 17 of the component 18 from its image data picked up by the recognition camera of the component recognition device 11 (step S1). Then, using the recognition results, the offset calculating device 24 calculates the positional coordinates (x1, y1) of the center 17a of the image 17 of the component 18 held by the suction nozzle 7, as shown in Figure 7 (step S2). The positional coordinates (x, y) of the center 14a of the suction nozzle 7 are recognized beforehand for each suction nozzle 7 and registered in the offset calculating device 24. The offset calculating device 24 calculates the amount of offset (Δx, Δy) of the positional coordinates (x1, y1) of the center 17a of the image 17 with respect to the positional coordinates (x, y) of the center 14a of the image 14 of suction nozzle 7, as shown in Figure 7, by performing the calculation (x-x1) and (y-y1) (step S3).

Next, the mounting feasibility determining device 27 determines a range 29 of the substrate 10 that is faced by the suction nozzle 7 when the component 18 is mounted (step S4), based on the amount of offset (Δx, Δy) calculated by the device 24, the coordinates (X1, Y1) of the center of the range 28 on the substrate 10 shown in Figure 3 where a next component is to be mounted, and the area of the suction port of the suction nozzle 7. Further, the mounting feasibility determining device 27 determines a range 30 of a component 18 already mounted adjacent to the range 28 of the component 18 from the positional coordinates (X2, Y2) of the center thereof (step S5).

Next, the mounting feasibility determining device 27 compares the range 29 of the substrate 10 which is faced by the suction nozzle 7 and the range 30 of the already-mounted component 18 (step S6), and determines whether or not there is partial overlap of the two ranges 29 and 30 i.e. whether or not the suction nozzle 7 would come into contact with the already-mounted component 18 when a mounting operation is performed (step S7). If it determines that contact would not take place, the suction nozzle 7 is moved to the sixth station.
ST6 of Figure 6, the component 18 held by the suction nozzle 7 is mounted on the substrate 10 (step S8). If it is determined that contact would take place, vertical movement of the nozzle unit 19 is inhibited at the sixth station ST6, and the suction nozzle 7 is moved towards the subsequent stations ST7 to ST10 with the component 18 being held, and this component 18 is discarded by releasing the suction of the suction nozzle 7 at a prescribed position. Damage caused by the suction nozzle 7 coming into contact with an already-mounted component 18 during the mounting operation is thus prevented, thereby ensuring high quality of the substrates 10.

[0022] Figure 4 is the flow chart showing the control processing of mounting electronic components according to an embodiment of the present invention; the method of mounting will now be described. When the suction nozzle 7 has moved to the third station ST3 after it has picked up a component 18, the offset calculating device 24 recognizes an image of the component 18 from its image data obtained by the component recognition device 11 (step S11). Next, the offset calculating device 24 calculates the positional coordinates \((x_1, y_1)\) of the center of the component 18 held by the suction nozzle 7, using the recognition result (step S12). The offset calculating device 24 calculates the offset \((\Delta x, \Delta y)\) of the positional coordinates \((x_1, y_1)\) of the center of the component 18 with respect to the positional coordinates \((x, y)\) of the center of the suction nozzle 7 by calculating \((x-x_1)\) and \((y-y_1)\) (step S13).

[0023] Next, the mounting feasibility determining device 27 determines the range 29 of the substrate 10 which is faced by the suction nozzle 7 when the component 18 is mounted (step S14), based on the offset \((\Delta x, \Delta y)\) calculated by the offset calculating device 24, the coordinates \((X_1, Y_1)\) of the center of the range 28 where the component 18 is to be mounted, and the area of the suction port of the suction nozzle 7. Further, the mounting feasibility determining device 27 determines a range 30 of the component 18 that is already mounted adjacent to the range 28 of the component 18 (step S15), based on the positional coordinates \((X_2, Y_2)\) of its center.

[0024] Next, the mounting feasibility determining device 27 compares the range 29 with the range 30 of the already-mounted component 18 (step S16), in order to determine whether or not there is partial overlap of the two ranges 29, 30 i.e. whether the suction nozzle 7 would come into contact with the already-mounted component 18 when a mounting operation is performed (step S17). If it is determined that no contact would take place, when the suction nozzle 7 is moved to the sixth station ST6, the component 18 held by the suction nozzle 7 is mounted on the substrate 10 (step S18). The above control processing is identical with that of the first embodiment.

[0025] However, if it is determined that contact would take place (step S17), it is found that whether or not the component 18 held by the suction nozzle 7 is of a type having polarity (step S19). If the component 18 does not have polarity, being able to be mounted with its direction reversed, a range of the substrate 10 that would be faced by the suction nozzle 7 when mounting the component 18 is again determined (step S20), based on the offset \((-\Delta x, -\Delta y)\) in a condition in which the offset \((\Delta x, \Delta y)\) calculated by the device 24 is rotated by 180°, the coordinates \((X_1, Y_1)\) of the center of the range 28 where the next component 18 is to be mounted, and the area of the suction port of the suction nozzle 7.

[0026] Then, the mounting feasibility determining device 27 compares the range determined at step S20 with the range 30 of the already-mounted component 18 (step S21), in order to determine whether or not there is partial overlap of the two ranges and so whether the suction nozzle 7 would come into contact with the already-mounted component 18 when a mounting operation is performed (step S22). If it is determined that no contact would take place, the suction nozzle 7 is rotated through 180° so that the component 18 is reversed (step S23) and the suction nozzle 7 is then moved to the sixth station ST6, whereupon the component 18 held by the suction nozzle 7 is mounted on the substrate 10 (step S18). If it is determined that contact would take place or that the component 18 has polarity, vertical movement of the nozzle unit 19 is inhibited at the sixth station ST6, and the nozzle unit 19 is moved to the further stations ST7 to ST10 with the suction nozzle 7 holding the component 18, and at a prescribed position, suction nozzle 7 releases the suction on the component 18, thereby discarding the component 18 (step S24).

[0027] According to the control processing of mounting electronic components described above, damage caused by the suction nozzle 7 coming into contact with an already-mounted component 18 is prevented as in the first embodiment. Moreover, provided that the component 18 does not have polarity, and that the suction nozzle 7 would not come into contact with an already-mounted component 18, mounting is performed after rotating the component 18 through 180°, whereby the number of discarded components 18 is greatly reduced, and lower costs is realized.

[0028] Figure 5 is the flow chart illustrating the control processing of mounting electronic components according to a further illustrative example, not forming part of the invention defined by the claims the method of mounting will now be described. When the suction nozzle 7 has moved to the third station ST3 after it has picked up a component 18 at the first station ST1, the offset calculating device 24 recognizes an image of the component 18 from its image data picked up by the recognition camera of the component recognition device 11 (step S31). Next, the offset calculating device 24 calculates the positional coordinates \((X_1, Y_1)\) of the center of the component 18 held by the suction nozzle 7, using the recognition result (step S32). The offset calculating device 24 calculates the offset \((\Delta x, \Delta y)\) of the positional coordinates \((X_1, Y_1)\) of the center of the component 18 with respect to the positional coordinates \((x, y)\) of the center of the suction nozzle 7 by calculating \((x-x_1)\) and \((y-y_1)\) (step S33).
1. An electronic component mounting method comprising:

- picking up an electronic component (18) supplied from a component supply unit (1);
- transporting the electronic component (18) to above a substrate (10) with a suction nozzle (7);
- calculating the offset of the electronic component (18) with respect to the suction nozzle (7) on the basis of image recognition of the component while held by the nozzle during the process of transporting;

after calculating a range (29) of the substrate (10), the range (29) being faced by the suction nozzle (7) if the electronic component (18) held by the suction nozzle (7) is mounted onto the substrate (10), based on the amount of offset of the electronic component (18);

determining the feasibility of mounting the electronic component (18) held by the suction nozzle (7) onto the substrate (10) in accordance with whether or not the range (29) overlaps an electronic component (18) that is already mounted in a position adjacent to the position where the electronic component (18) held by the suction nozzle (7) is to be mounted; and

mounting the electronic component (18) only if the result of the determination of the feasibility of mounting the electronic component is positive onto the substrate (10), characterised in that when the result of the feasibility determination is initially negative and the electronic component does not have polarity, the method further comprises:

calculating the amount of offset of the electronic component with its direction rotated through 180° with respect to the suction nozzle;

calculating a range of the substrate, the range being faced by the suction nozzle when the electronic component held by the suction nozzle is mounted onto the substrate, based on the amount of offset; determining the feasibility of mounting the electronic component onto the substrate in accordance with whether or not the range overlaps an electronic component that is already mounted in a position adjacent to the position where the electronic component held by the suction nozzle is to be mounted; rotating the electronic component through 180°; and

mounting the electronic component onto the substrate only if the result of the feasibility determination is positive.

Revendications

1. Procédé de montage de composants électroniques comprenant les étapes consistant à:

prendre un composant électronique (18) fourni à partir d’une unité (1) d’alimentation de composants ;
transporter le composant électronique (18) jusqu’au-dessus d’un substrat (10) avec une buse d’aspiration (7) ;
calculer le décalage du composant électronique (18) par rapport à la buse d’aspiration (7) sur la base d’une reconnaissance de l’image du composant pendant qu’il est porté par la buse durant le processus de transport ;
calculer une plage (29) du substrat (10), la plage (29) étant située face à la buse d’aspiration (7) si le composant électronique (18) porté par la buse d’aspiration (7) est monté sur le substrat (10), sur base de l’amplitude du décalage du composant électronique (18) ;
déterminer la faisabilité d’un montage du composant électronique (18) porté par la buse d’aspiration (7) sur le substrat (10) conformément au fait que la plage (29) recouvre ou non un composant électronique (18) qui est déjà monté dans une position adjacente à la position où doit être monté le composant électronique (18) porté par la buse d’aspiration (7) ; et
donner le composant électronique (18) seulement si le résultat de la détermination de la faisabilité de montage du composant électronique est positif sur le substrat (10), caractérisé en ce que :

lorsque le résultat de la détermination de faisabilité est initialement négatif et que le composant électronique n’a pas de polarité, le procédé comprend en outre les étapes consistant à :

calculer l’amplitude du décalage du composant électronique avec sa direction tournée de 180° par rapport à la buse d’aspiration ;
calculer une plage du substrat, la plage étant située face à la buse d’aspiration lorsque le composant électronique porté par la buse d’aspiration est monté sur le substrat, sur base de l’amplitude du décalage ;
déterminer la faisabilité de montage du composant électronique sur le substrat conformément au fait que la plage recouvre ou non un composant électronique qui est déjà monté dans une position adjacente à la position où doit être
monté le composant électronique porté
par la buse d’aspiration ;
faire tourner le composant électronique
de 180° ; et
monter le composant électronique sur
le substrat seulement si le résultat de
la détermination de faisabilité est posi-
tif.
Fig. 1

- Offset calculating device 24
- Mounting feasibility determining device 27
- Components 20, 22, 23, 24, 27
Fig. 2

1. **S1** Recognize image of electronic component held by suction nozzle
2. **S2** Calculate coordinates of the center of electronic component
3. **S3** Calculate amount of offset of the center of component with respect to the center of suction nozzle
4. **S4** Determine range of substrate faced by suction nozzle when mounting component
5. **S5** Determine range of already-mounted component adjacent to position where component is to be mounted
6. **S6** Compare two ranges
7. **S7** Contact occur? If yes, go to **S9**; if no, go to **S8**
 - **S8** Mount electronic component
 - **S9** Discard electronic component
8. **END**
Fig. 4

START

S11 Recognize image of electronic component held by suction nozzle

S12 Calculate coordinates of the center of electronic component

S13 Calculate amount of offset of the center of component with respect to the center of suction nozzle

S14 Determine range of substrate faced by suction nozzle when mounting component

S15 Determine range of already-mounted component adjacent to position where component is to be mounted

S16 Compare two ranges

S17 Contact occur? YES

S18 Mount electronic component

S19 Component has polarity? YES

S20 NO

S21 Determine range of substrate faced by suction nozzle when mounting component with its direction reversed

S22 Contact occur? YES

S23 NO

S24 Rotate component through 180°

END

Discard electronic component
Fig. 5

START

S31 Recognize image of electronic component held by suction nozzle

S32 Calculate coordinates of the center of electronic component

S33 Calculate amount of offset of the center of component with respect to the center of suction nozzle

S34 Compare amount of offset with pre-set value

S35 Amount of offset < Pre-set value ?

NO

S36 Mount electronic component

YES

Discard electronic component

END
Fig. 6