(54) SOYBEAN PROTEIN NUTRACEUTICALS
NÄHRSTOFFE AUS SOJABOHNE-NPROTEIN
ALIMENTS FONCTIONNELS A BASE DE PROTEINE DE SOJA

(45) Date of publication and mention of the grant of the patent:
11.10.2006 Bulletin 2006/41

(21) Application number: 00930241.5

(22) Date of filing: 30.04.2000

(51) Int Cl.:
C07K 14/415 (2006.01)
C07K 16/00 (2006.01)
A61K 38/00 (2006.01)

(86) International application number:
PCT/US2000/011657

(87) International publication number:

(54) SOYBEAN PROTEIN NUTRACEUTICALS
NÄHRSTOFFE AUS SOJABOHNE-NPROTEIN
ALIMENTS FONCTIONNELS A BASE DE PROTEINE DE SOJA

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

(30) Priority: 30.04.1999 US 303814

(43) Date of publication of application:
23.01.2002 Bulletin 2002/04

(73) Proprietor: The Regents of the University of California
Oakland, California 94607-5200 (US)

(72) Inventors:
• DE LUMEN, Benito O.
 Berkeley, Berkeley, CA 94720-3104 (US)
• GALVES, Alfredo, F.
 Albany, CA 94706 (US)

(74) Representative: Sexton, Jane Helen
J.A. KEMP & CO.
14 South Square
Gray’s Inn
London WC1R 5JJ (GB)

(56) References cited:
WO-A-97/35023

• Yavelow et al: 'Nanomolar concentrations of Bowman-Birk soybean protease inhibitor suppress x-ray-induced transformation in vitro' PROC. NATL. ACAD. SCI. USA, vol. 82, August 1985, pages 5395 - 5399, XP002929886
• Morita et al: 'Partial purification and characterization of a novel soybean protease which is inhibited by Kunitz and Bowman-Birk trypsin inhibitors' J. BIOCHEM., vol. 119, 1996, pages 711 - 718, XP002929887

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

INTRODUCTION

Field of the Invention

[0001] The field of the invention is soybean proteins having chemopreventive effects.

Background

[0002] The concept that dietary factors play an important role in the etiology of different kinds of cancer is well supported by epidemiological data (World Cancer Fund, 1997). For instance, there is much evidence to suggest that diets containing large amount of soybean products are associated with overall low cancer mortality rates, particularly for cancers of the colon, breast and prostate, which has given impetus towards identifying specific compounds in soybean that could be responsible for its cancer preventive effects (Messina and Barnes, 1991; Kennedy, 1995).

[0003] A soybean-derived protease inhibitor, Bowman-Birk inhibitor (BBI) has been shown to be a particularly effective chemopreventive agent (Kennedy, 1998). BBI has been characterized as a protein of 8 kD of defined sequence and structure (reviewed by Birk, 1985), however most studies demonstrating the efficacy of BBI have used BBIC, a soybean extract enriched in BBI. BBIC is highly effective in suppressing carcinogenesis (1) induced by several different carcinogens, (2) in three different animal model systems (rats, mice and hamsters) and in in vitro transformation systems (Kennedy et al, 1993), (3) in several tissues/organs (colon, liver, lung, esophagus and oral epithelium, (4) when administered to animals in several different routes (ip, iv, topical, dietary), (5) involving different kinds of tumors (squamous cell carcinomas, adrenocarcinomas, angiosarcomas, etc, (6) in different cell types (epithelial cells in liver, colon, lung, esophagus and cheek pouch as well as connective tissue cells (fibroblasts both in vitro as well as in liver) which give rise to angiosarcomas. Thus, the chemopreventive ability of BBIC has been demonstrated in a variety of different carcinogenesis assay systems, achieving Investigational New Drug status from the FDA in 1992 (IND no.34671) and now in human clinical trials.

Literature Cited

[0004]

SUMMARY OF THE INVENTION

The invention provides use of a lunasin polypeptide in the manufacture of formulations for delivering effective amounts of lunasin as a nutraceutical. In particular, the invention provides use of a lunasin polypeptide comprising the amino acid sequence of SEQ ID NO:1 or an active fragment thereof comprising at least the Arg-Gly-Asp motif followed by at least an hexa-Asp/Glu motif in the manufacture of a formulation for cancer chemoprevention, wherein said formulation comprises at least 50% by polypeptide weight said lunasin polypeptide and less than 10% by polypeptide weight Bowman-Birk Inhibitor polypeptide. In other embodiments, the composition comprises at least 70%, preferably at least 90%, more preferably at least 98%, most preferably 100% by polypeptide weight said lunasin polypeptide and less than 2%, preferably less than 0.5%, more preferably less than 0.1%, most preferably 0% by polypeptide weight Bowman-Birk Inhibitor polypeptide. The formulations may be delivered or administered by any of a wide variety of convenient delivery methods well known in the art, including oral ingestion, by topically contacting skin using well known techniques for dermal delivery, by introducing into retained physiological fluids such as blood, synovial fluid, interstitial fluid, etc.

In other embodiments, the formulation is for:

- oral administration of a lunasin polypeptide;
- topical administration of a lunasin polypeptide by contacting skin with said formulation; or
- introduction of said formulation into a retained physiological fluid for administration of a lunasin polypeptide.

Methods for making the subject formulations by purifying lunasin polypeptides to the requisite purity, and combining said lunasin polypeptide with a pharmaceutically acceptable excipient in an orally active unit dosage are also disclosed herein. The lunasin source material may be soybeans, a recombinant lunasin polypeptide expression system, a synthetically produced lunasin, or extract or fraction thereof. Suitable excipients and dosages are readily determined empirically as guided by existing BBIC data.

DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS OF THE INVENTION

The following descriptions of particular embodiments and examples are offered by way of illustration and not by way of limitation. Unless contraindicated or noted otherwise, in these descriptions and throughout this specification, the terms “a” and “an” mean one or more, the term “or” means and/or and polynucleotide sequences are understood to encompass opposite strands as well as alternative backbones described herein.

We have shown that a small subunit peptide of a 2S albumin isolated from soybean seed, which we named lunasin, has an antimitotic effect when expressed in mammalian cells (Galvez AF and de Lumen BO, 1999 and USSN 08/938,675). Unlike other antimitotic agents that disrupt microtubule function, we have shown that when the lunasin gene is transfected and expressed inside the cell, lunasin preferentially binds to hypoacyetylated chromatin in lunasin-transfected cells, leading to the displacement of kinetochore proteins during mitosis.
The lunasin polypeptide also contains a functional RGD (arg-gly-asp) motif. When exogenously applied to mammalian cell cultures, lunasin through the RGD tripeptide binds to cell membrane integrins and subsequently gets into the cytoplasm through membrane turnover. The relatively small amounts of lunasin that get into the nucleus by passive diffusion and at prometaphase (when nuclear membrane breakdown occurs) are sufficient to effectively bind regions of hypoacetylated chromatin. However, unlike lunasin-transfected cells that constitutively express lunasin in high amounts, internalized lunasin appears not to affect kinetochore assembly as the cells undergo normal mitosis. Instead, lunasin inhibits the transformation of normal embryo fibroblast cells into cancerous tumors by carcinogenic agents. The binding affinity of lunasin to regions of deacetylated nucleosomes is consistent with an anticarcinogenic role of lunasin as a surrogate tumor suppressor by preventing chromatin acetylation and oncogene activation in cells with mutated tumor suppressor genes. The cell adhesion property of lunasin also confers an added benefit of preventing the spread of cancer by competitively binding to membrane integrins required by metastatic cells for attachment to the extracellular matrix and for proliferation.

Accordingly, as used herein the term lunasin refers to compounds comprising the natural soybean lunasin polypeptide (coincidentally purified and sequenced by Odani et al., 1987 (Ser Lys Trp Gln His Gln Gin Asp Ser Cys Arg Lys Gin Leu Gin Gly Val Asn Leu Thr Pro Cys Glu Lys His Ile Met Glu Lys Ile Gln Gly Arg Gly Asp Asp Asp Asp Asp) that lunasin is an, if not the, active anticarcinogenic constituent of BBIC.

We also demonstrated that the protease inhibitor Bowman-Birk Inhibitor (BBIC) derived from soybean, which has been shown to be chemopreventive against different types of cancers in in vitro and in vivo animal models, contains lunasin as a major component. In fact, the removal of lunasin from BBIC by immuno-depletion significantly reduced the ability of BBIC to inhibit carcinogen-mediated transformation of C3H cells. In addition, using equimolar amounts, lunasin was found to be more effective than BBIC in preventing carcinogen-induced tumor formation. These findings indicate that lunasin is an, if not the, active anticarcinogenic constituent of BBIC.

Exemplary lunasin-del compounds (again using N→C nomenclature convention) shown to be effective at inhibiting carcinogenesis in in vitro and animal models include:

- lunasin-del-1: MRG - residues 32-43 of SEQ ID NO:1 fusion
- lunasin-del-2: α-tubulin - residues 32-43 of SEQ ID NO:1 fusion
- lunasin-del-3: β-tubulin - residues 27-42 of SEQ ID NO:1 fusion
- lunasin-del-4: MAP2 - residues 5-43 of SEQ ID NO:2 fusion
- lunasin-del-5: Mapmodulin - residues 32-43 of SEQ ID NO:1 fusion
- lunasin-del-6: GFP - residues 32-43 of SEQ ID NO:1 fusion
- lunasin-del-7: MAP4 - residues 23-42 of SEQ ID NO:1 fusion
- lunasin-del-8: FLAGG - residues 9-43 of SEQ ID NO:1 fusion
- lunasin-del-9: CYCLIN A - residues 32-43 of SEQ ID NO:1 fusion
- lunasin-del-10: CYCLIN B1 - residues 32-43 of SEQ ID NO:1 fusion
- lunasin-del-11: CYCLIN B2 - residues 19-42 of SEQ ID NO:1 fusion
- lunasin-del-12: CYCLIN B3 - residues 13-43 of SEQ ID NO:1 fusion
- lunasin-del-13: SH2 - octa-aspartate fusion
- lunasin-del-14: SH3 - octa-aspartate fusion
- lunasin-del-15: SEQ ID NO:1; residues 27-34 - MRG-octa-aspartate fusion
- lunasin-del-16: SEQ ID NO:1; residues 27-34 - SEQ ID NO:1; residues 27-34 - octa-aspartate fusion
- lunasin-del-17: MRG-tetra-aspartate-tetra glutamate fusion

Lunasin Peptide Inhibits Carcinogen-mediated Transformation of C3H 10T1/2 Mouse Fibroblast Cells Into Tumor Cells. Experiments done using the same in vitro transformation assay used to determine the chemopreventive property of BBIC showed that the exogenous application of the lunasin peptide to as low as 10 nM (10 nM to 10mM) inhibits the transformation of normal mouse embryo fibroblast cells (C3H 10T1/2) into tumorous foci by carcinogenic agents, MCA (3-methylcholanthrene) and DMBA (7,12-dimethylbenz[a]anthracene). Deletion of the acidic carboxyl end (lunasin-del-C) and the RGD cell adhesion motif (lunasin-GRG) removes the inhibition effect indicating that these domains are essential.

Lunasin is a Major Component of the Bowman-Birk Protease Inhibitor (BBIC) from Soybean, a Known Cancer Preventive Substance. Protease inhibitors, unlike other potential classes of cancer preventive that have been studied, have several features that we found to be also true for lunasin. The most dramatic difference is their ability to affect carcinogenesis in an irreversible way. When the administration of BBIC is stopped in either in vitro or in vivo experiments, malignant cells or tumors do not arise in the assay systems used (Kennedy, 1994). In contrasts, chemopreventive agents such as vitamin E, β-carotene and retinoids have a reversible effect on in vitro systems - transformed cells do arise when these chemopreventive agents are removed from carcinogen-treated cultured cells. Protease inhibitors are also...
unlike other chemopreventive agents in that they are effective at extremely low levels (nM) while the other agents are
effective only at very high levels (mM). The dose response of BBIC suppression of carcinogenesis is unusual in that
dose levels of BBIC have the same suppressive effects over a range varying over several orders of magnitude. Thirdly,
the striking ability of protease inhibitors to suppress so many different cancers makes them different from most chem-
oprventive agents. Their anticancer properties are not restricted to specific organs/tissues.

[0015] Lunasin, like BBIC, belongs to the same class of 2S albums family and both are prepared in similar ways.
We found by Western blot analysis that lunasin is a major component of commercially available BBIC preparations (Sigma). In an exemplary blot, lane 3 which contained a crude preparation of trypsin inhibitor (Sigma T 9128, Type II-S Soybean soluble powder) showed a major protein band at 16 kDa that lighted up in the immunoblot. BBI is an 8 kDa protein that is known to dimerize in solution. Lane 4 containing BBIC (Sigma T9777, Bowman-Birk Inhibitor, from soybean lyophilized powder) showed two protein bands, 8 kDa and 16 kDa, which both lighted up in immunoblot. Lunasin which has 2 cysteine residues can form disulfide linkages with BBI (as a monomer and a dimer) which has 14 cysteine residues.
This clearly shows that lunasin is found in BBIC as a major component. Furthermore, we showed that removal of lunasin from BBIC by lunasin antibody affinity column and by resin treatment significantly reduced the ability of BBIC to inhibit transformation of C3H cells. This evidence together with the ability of lunasin to inhibit carcinogen-mediated transform-
ation of C3H cells indicates that lunasin is a major if not the major active chemopreventive molecule in BBIC. In fact,
our data indicate that BBIC may act to protect lunasin from being digested in the gastrointestinal tract. The ability of
lunasin to get inside mammalian cells then modulate chromatin function now provides a rational mechanism to explain
the chemopreventive property of BBIC as well as guidance for the use in lunasin as a neutraceutical or nutritional
supplement, in particular as an anticarcinogenic agent. For example, substituting lunasin for BBI at comparable dosages
and routes of administration provides efficacy in cell and animal studies (see, US Pat Nos.5,618,679; 5,616,492;
5,614,198; 5,505,946; 5,376,373; 5,338,547).

[0016] Chromatin Modification and Tumor Suppression. Our hypothesis is that the chromatin-binding ability of lunasin
is the underlying mechanism behind the antimitotic property of the lunasin gene and the cancer preventive property of
lunasin peptide. A series of studies strongly suggest that chromatin modification is linked with tumor suppression path-
ways. (DePinho,1998; Brehm et al,1998; Magnaghi-Jaulin,1998; Pazin and Kadonaga,1997; Hassig et al,1997; Laherty
et al,1997). For instance, the retinoblastoma protein Rb is complexed with E2F (a family of transcription factors controlled
by Rb) and HDAC1 (the major mammalian histone deacetylase which modulates chromatin structure) in mammalian
cells. Rb represses E2F-regulated promoter by recruiting HDAC1 which deacetylates core histones causing a tighter
association between DNA and nucleosomes, thus impairing the binding of transcription factors to recognition elements
in DNA. The Rb/HDAC/E2F complex could be the target for transforming viruses leading to the release of suppression
and a fully transformed state. The binding of lunasin to the hypoacetylated region of chromatin may suppress tumori-
genesis in a different context. While deacetylation causes tighter association of DNA with nucleosomes in condensed
chromosomes leading to a change in higher order structure, it also exposes positive charges on lysine residues that
would allow lunasin to bind to histone terminal sequences and prevent the reversible acetylation/deacetylation process.
Consequently, gene expression is more or less permanently repressed. Animal studies show that lunasin effectively
survives digestion, gets absorbed and ends up in the tissues. Our evidence shows that lunasin gets internalized in the
cell via the RGD motif (i.e. there is no internalization when the -RGD- motif is deleted) and gets inside the nucleus
through passive diffusion because of its 4kDa size and at prometaphase when the nuclear envelope breaks down.
Eventually, lunasin binds to the core histones of the nucleosomes and inhibits transformation of the cell in the presence
of carcinogens by repressing transcription as described above.

SEQUENCE LISTING

[0017]
<110> de Lumen, Benito O.
Galvez, Alfredo F.
<120> Soybean Protein Nutraceuticals
<130> B99-089
<140> 09/303,814
<141> 1999-04-30
<160> 1
<170> Patent In Ver. 2.0
<210> 1
<211> 43
<212> PRT
<213> soybean
Claims

1. Use of a lunasin polypeptide comprising the amino acid sequence of SEQ ID NO: 1 or an active fragment thereof comprising at least the Arg-Gly-Asp motif followed by at least an hexa-Asp/Glu motif in the manufacture of a formulation for cancer chemoprevention, wherein said formulation comprises at least 50% by polypeptide weight said lunasin polypeptide and less than 10% by polypeptide weight Bowman-Birk Inhibitor polypeptide.

2. Use according to claim 1, wherein the composition comprises at least 90% by polypeptide weight said lunasin polypeptide and less than 1% by polypeptide weight Bowman-Birk Inhibitor polypeptide.

3. Use according to claim 1 or 2, wherein the lunasin polypeptide comprises residues 33-43 of SEQ ID NO: 1.

4. Use according to claim 1 or 2, wherein the lunasin polypeptide comprises residues 21-43 of SEQ ID NO: 1.

5. Use according to claim 1 or 2, wherein the lunasin polypeptide comprises residues 10-43 of SEQ ID NO: 1.

6. Use according to claim 1 or 2, wherein the lunasin polypeptide comprises residues 1-43 of SEQ ID NO: 1.

7. Use according to claim 1 or 2, wherein the lunasin polypeptide consists of residues 1-43 of SEQ ID NO: 1.

8. Use according to any one of claims 1 to 7 wherein said formulation is for oral administration of a lunasin polypeptide.

9. Use according to any one of claims 1 to 7, wherein said formulation is for topical administration of a lunasin polypeptide by contacting skin with said formulation.

10. Use according to any one of claims 1 to 7, wherein said formulation is for introduction of said formulation into a retained physiological fluid for administration of a lunasin polypeptide.

Patentansprüche

2. Verwendung gemäß Anspruch 1, wobei die Zusammensetzung mindestens 90% des Polypeptidgewichts an dem Lunasin-Polypeptid und weniger als 1% des Polypeptidgewichts an Bowman-Birk-Inhibitor-Polypeptid umfasst.

3. Verwendung gemäß Anspruch 1 oder 2, wobei das Lunasin-Polypeptid 33-43 von SEQ ID NO: 1 umfasst.
4. Verwendung gemäß Anspruch 1 oder 2, wobei das Lunasin-Polypeptid die Reste 21-43 von SEQ ID NO:1 umfasst.

5. Verwendung gemäß Anspruch 1 oder 2, wobei das Lunasin-Polypeptid die Reste 10-43 von SEQ ID NO:1 umfasst.

6. Verwendung gemäß Anspruch 1 oder 2, wobei das Lunasin-Polypeptid die Reste 1-43 von SEQ ID NO:1 umfasst.

7. Verwendung gemäß Anspruch 1 oder 2, wobei das Lunasin-Polypeptid aus den Resten 1-43 von SEQ ID NO:1 besteht.

8. Verwendung gemäß einem der Ansprüche 1 bis 7, wobei die Formulierung zur oralen Verabreichung eines Lunasin-Polypeptids dient.

9. Verwendung gemäß einem der Ansprüche 1 bis 7, wobei die Formulierung der topischen Verabreichung eines Lunasin-Polypeptids durch Inkontaktbringen von Haut mit der Formulierung dient.

10. Verwendung gemäß einem der Ansprüche 1 bis 7, wobei die Formulierung der Einführung der Formulierung in eine einbehaltene physiologische Flüssigkeit zur Verabreichung eines Lunasin-Polypeptids dient.

Revendications

1. Emploi d’un polypeptide de type lunasine, comprenant la séquence d’acides aminés appelée “Séquence n° 1” ou un fragment actif de celle-ci, qui comprend au moins le motif Arg-Gly-Asp suivi d’au moins un motif de six résidus Asp/Glu, dans la fabrication d’une formulation destinée à la chimio-prévention d’un cancer, dans laquelle formulation il y a dudit polypeptide de type lunasine, en une quantité représentant au moins 50 % du poids de polypeptides, et du polypeptide inhibiteur de Bowman-Birk, en une quantité représentant moins de 10 % du poids de polypeptides.

2. Emploi conforme à la revendication 1, dans lequel la formulation contient dudit polypeptide de type lunasine, en une quantité représentant au moins 90 % du poids de polypeptides, et du polypeptide inhibiteur de Bowman-Birk, en une quantité représentant moins de 1 % du poids de polypeptides.

3. Emploi conforme à la revendication 1 ou 2, dans lequel le polypeptide de type lunasine comprend les résidus 33 à 43 de la Séquence n° 1.

4. Emploi conforme à la revendication 1 ou 2, dans lequel le polypeptide de type lunasine comprend les résidus 21 à 43 de la Séquence n° 1.

5. Emploi conforme à la revendication 1 ou 2, dans lequel le polypeptide de type lunasine comprend les résidus 10 à 43 de la Séquence n° 1.

6. Emploi conforme à la revendication 1 ou 2, dans lequel le polypeptide de type lunasine comprend les résidus 1 à 43 de la Séquence n° 1.

7. Emploi conforme à la revendication 1 ou 2, dans lequel le polypeptide de type lunasine est constitué des résidus 1 à 43 de la Séquence n° 1.

8. Emploi conforme à l’une des revendications 1 à 7, dans lequel ladite formulation est conçue pour l’administration par voie orale d’un polypeptide de type lunasine.

9. Emploi conforme à l’une des revendications 1 à 7, dans lequel ladite formulation est conçue pour l’administration topique d’un polypeptide de type lunasine, par mise de la peau en contact avec ladite formulation.

10. Emploi conforme à l’une des revendications 1 à 7, dans lequel ladite formulation est conçue pour être introduite dans un fluide physiologique confiné, en vue de l’administration d’un polypeptide de type lunasine.