(45) Date of publication and mention of the grant of the patent: 30.04.2008 Bulletin 2008/18

(21) Application number: 01114319.5

(22) Date of filing: 13.06.2001

(51) Int Cl.: B31B 1/84 (2006.01) B31B 19/84 (2006.01)

(54) Spout insertion apparatus
Vorrichtung zum Anbringen einer Ausgiesstülle an einem Behälter
Dispositif d'insertion d’un bec verseur dans un récipient

(56) References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a spout insertion apparatus according to the preamble of claim 1. Such a spout insertion apparatus is a part of a spout-equipped bags manufacturing apparatus that attach spouts to the mouths of bags. More particularly, the invention relates to a spout insertion apparatus that is used to insert spouts into specified positions inside the bags in cases where such spouts are sealed or temporarily sealed to the mouths of the bags.

2. Prior Art

Japanese Patent Application Laid-Open (Kokai) No. H11-333950, for example, discloses a spout insertion means that inserts spouts into specified positions inside bags. In this prior art, spouts are inverted and supplied to holding sections that protrude downward from the circumferential edge of an intermittently rotating main rotor, bags are caused to face downward and are lowered from above, and the mouths of the bags are then opened and fitted over the spouts. In this apparatus, however, various devices with movable components such as a spout supply device, a bag supply device, an opening and lowering device, etc. are installed above the spouts held by the holding sections. As a result, there is a considerable chance that dirt, oil droplets, etc. dropping from such devices will adhere to the spouts and/or bags. Furthermore, since no means for accurately positioning the supplied bags at the centers of the spouts beforehand is provided, the positional deviation of the bags and spouts.

The above object is accomplished by a unique structure of the present invention for a spout insertion apparatus which inserts spouts into specified positions inside bags, and the unique structure for the spout insertion apparatus is comprises the features of claim 1.

Accordingly, the unique spout insertion apparatus includes a plurality of spout holding members disposed at equal intervals on a circumference of a continuously rotating rotor so as to hold supplied spouts vertically in specified positions; a plurality of spout holding members disposed at equal intervals on a circumference of a continuously rotating rotor so as to hold supplied spouts vertically in specified positions; and a chucking member which is disposed beneath each of said spout holding members, said chucking member opening mouths of said bags by applying suction from both sides; wherein said mouths of said supplied bags being held by said holding member are opened from both sides by an application of suction by said chucking member, and said bags are raised vertically with said mouths of said bags in an open state, so that said bags are raised to upper ends of sealing portions of spouts and said spouts are thus inserted into specified positions inside said bags.
a pair of holding members which are disposed beneath each of said spout holding members, said pair of holding members being openable and closable in a direction of width of said bags and positioning and holding both side edges of supplied bags when said holding members are opened, and

a bag bottom receiving stand, which is disposed beneath each of said spout holding members and is suited to support lower ends of said bags; so that said mouths of said bags, which are held at both side edges thereof by said holding members and supported at lower ends thereof by said bag bottom receiving stand, are opened from both sides by the application of suction by said chucking member; and

a raising-and-lowering means which raise and lower either one of said bag bottom receiving stand or said chucking member, or both of them, and wherein said bag bottom receiving stand and/or said chucking member are raised vertically with said mouths of said bags in an open state, so that said bags are raised to upper ends of sealing portion of spouts.

In the above spout insertion apparatus, either the bag bottom receiving stand which supports the lower ends of the bags or the chucking member which chucks both surfaces of the bags, or both of them, are raised in order to raise the bags to the upper ends of the sealing portions of the spouts. When the chucking member is raised, the bags can be raised in an open state by the chucking member. On the other hand, when only the bag bottom receiving stand is raised, the chucking member must be removed from the surfaces of the bags after the mouths of the bags are opened; therefore, it is desirable that a means for maintaining the open state of the bags effect by the chucking member while the bags are raised be separately installed, such a means for maintaining the open state of the bags being, for instance, an air nozzle which rotates together with a rotor and blows air into the bags form above.

Furthermore, in cases where the spouts are long so that the amount by which the bags must be raised is a considerable amount, it is desirable to arrange so that the holding members is also raised and lowered, and the holding members are raised as well when the bag bottom receiving stand and/or the chucking member are vertically raised with the bags in an open state.

In the above spout insertion apparatus, the following structures may be cited as desirable working configurations:

1. A raising-and-lowering means which raises and lowers the bag bottom receiving stand is provided, so that the mouths of the bags are opened from both sides by the chucking member after the bag bottom receiving stand that supports the lower ends of the bags has been raised a specified distance and the mouths of the bags are raised to the position of the chucking member;

2. Raising-and-lowering means which raise both the bag bottom receiving stand and the chucking member are provided for these components, a contact member which contacts the upper ends of the raised bags is disposed in the lower portions of the spout holding members, the bag bottom receiving stand elastically supports the bags, and the suction chucking of the chucking member is stopped immediately before the bags reach the upper end;

3. When the chucking member opens the mouths of the bags by applying suction from both sides, the pair of holding members narrow the gap between the holding members by a specified distance;

4. The holding members have a substantially V shape when viewed from above and have a specified length in the vertical direction. The holding members are attached to the tip ends of respective pivoting arms and are disposed so as to face each other. In addition, the holding members open and close by swinging through a specified range so that they receive bags when opened and hold both side edges of the bags when closed; and

5. A common raising-and-lowering means is provided so as to raise and lower the holding members and the chucking member at the same time.

The spout holding members in the present invention can be of various configurations. They can be of the type that holds the groove portions located between the flanges of the spouts. They can hold the flanges or the head portions of the spouts.

In the spout insertion apparatus of the present invention, after the spouts have been inserted into specified positions in the bags, the sealing portions of the spouts and bags are sealed or temporarily sealed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic top view of the insertion apparatus of the present invention and related devices; Figure 2A shows a front view of one of the spouts, Figure 2B is a side view thereof; Figure 3 is a sectional view of the transfer device; Figure 4 is a sectional view of the insertion apparatus; Figure 5 is an enlarged sectional view of the insertion apparatus; Figure 6A is a partial top view which illustrates the opening-and-closing mechanism of the holding members, and Figure 6B is a partial top view which illustrates the opening-and-closing mechanism of
the suction plates;
Figure 7A is a schematic top view of the transfer of spouts by the spout supply device, and Figure 7B is a sectional view thereof;
Figure 8A is an explanatory top view of the temporary-sealing apparatus, and Figure 8B is an explanatory sectional view thereof;
Figure 9 illustrates the operation of the spout insertion apparatus; and
Figures 10A(a) through 10B(c) illustrate the operation of the holding members used in the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] The spout insertion apparatus of the present invention will be described in concrete terms with reference to the accompanying drawings.

[0016] Figure 1 is a top view of the spout insertion apparatus and surrounding devices. Bags are supplied to the spout insertion apparatus 2 from a continuous bag-supplying apparatus 1, and spouts S (see Figures 2A and 2B) are supplied to the spout insertion and temporary-sealing apparatus 4 from a spout-supplying apparatus 3. Inside the spout insertion apparatus 2, the bags are fitted over the spouts (in other words, the spouts are inserted into the bags), the sealing portions are temporarily sealed by a temporary-sealing apparatus 4, and the bags and spouts are joined to each other. Then, the bags with attached spouts are transferred to a main-sealing apparatus (not shown) via an intermediate rotor 5. Furthermore, in the spouts S, a, b and c indicate flanges, and one or the other of the groove portions d and e between the flanges is clamped by the spout holding members 26 described below. The groove portions d and e are formed entirely from flat surfaces. In addition, f refers to sealing portions.

[0017] The continuous bag-supplying apparatus 1 may be the same as the continuous bag-supplying apparatus described in the U.S. Patent 6,499,280 filed by the applicant of the present application. The continuous bag-supplying apparatus 1 comprises a bag conveying device 6, bag supply devices 7 and a transfer device 8. The bag conveying device 6 conveys a plurality of bag holding members disposed at equal intervals in one direction along an annular track that has a pair of parallel sections. In this case, on one side of the parallel sections, the bag holding members are conveyed intermittently, with each conveying movement being for a distance that is an integral multiple of the attachment spacing of the bag holding members, while on the other side of the parallel sections, the bag holding members are continuously conveyed at a constant speed. A plurality of bag supply devices 7 are lined up in a row on the upstream side of the bag conveying device 6 (i.e., on the first side of the parallel sections); the bag supply devices intermittently supply a plurality of bags to the bag holding members at the same time. The transfer device 8 is disposed on the downstream side of the bag conveying device (i.e., on the second side of the parallel sections); the transfer device 8 continuously receives bags from the bag holding members, and continuously supplies the bags to the bag holding means (holding members and bag bottom receiving stand described later) of the spout insertion apparatus 2. Known continuous bag-supplying apparatuses other than the continuous bag-supplying apparatus 1 may be used in order to supply bags continuously to the bag holding means of the spout insertion apparatus 2.

[0018] Here, the continuous bag-supplying apparatus 1 will be described with reference only to the transfer device 8 which has a direct connection with the spout insertion apparatus 2.

[0019] As shown in Figure 3, the transfer device 8 is a rotary type transfer device equipped with a plurality of transfer means 9 disposed at equal intervals (intervals that are the same as the attachment spacing of the bag holding members of the bag conveying device 6) on the outer circumference of the transfer device 8. The transfer device 8 is equipped with a supporting stand 12 which is installed in an upright position on a base 11, and a rotor 13 which is caused to rotate continuously by a driving motor (servo motor) that is not shown. Transfer means 9 that chuck bags W by means of vacuum suction are formed on the circumferential surface of the rotor head 14, and vacuum passages 15 formed in the rotor head 14 open in the side surfaces of the transfer means 9. From a position facing the bag conveying device 6 to a position in which the rotor has completed 5/8 of a revolution, the vacuum passages 15 communicate with a vacuum pump (not shown) via a vacuum port 16 formed in the supporting stand 12; then, at the position where the rotor has completed 5/8 of a revolution, the vacuum passages 15 communicate with an atmosphere release port 17.

[0020] The transfer means 9 of the transfer device 8 continuously rotate in the horizontal plane at the same speed and timing as the bags W that are continuously conveyed along the second side of the parallel sections of the bag conveying device 6. Bags W are chucked and continuously received by the transfer means 9 and are then transferred to the spout insertion apparatus 2 when 5/8 of a revolution has been completed.

[0021] The insertion apparatus 2 is a rotary type apparatus. As seen from Figures 4 through 6, a table rotating shaft 22 is supported inside a supporting stand 21 which is rotatably installed in an upright position on a base 11. A rotating table (rotor) 23 is fastened to the table rotating shaft 22, and spout holding member 26 are attached to the outer circumference at equal intervals (intervals that are the same as the installment spacing of the transfer means 9 of the transfer device 8) via upright attachment supporting columns 24 and attachment plates 25. The rotating table 23 rotates continuously, and is set so that the spout holding member 26 and transfer means 9 rotate at the same speed and timing. As best seen from Figures 7A and 7B, the spout holding member
26 are fork-shaped members which have a clamping groove 26a that faces outward in the radial direction, and that clamps the groove portion between the flanges of the corresponding spout S. A tapered surface that opens outward is formed at the entry point of the clamping groove 26a. The attachment plates 25 are annular members; recessed parts 25a are formed in the attachment plates 25 so that the attachment plates 25 do not interfere with the clamping of the spouts in the areas of the spout holding members 26. Furthermore, the attachment plates 25 also function as stopper members that are contacted by the upper ends of the bags so that the rising ends of the bags are checked.

A pair of holding members 31, a bag bottom receiving stand 32 and a pair of suction plates 33 are respectively disposed beneath each spout holding member 26.

The holding members 31 are substantially V-shaped when viewed in a plan view. Each of the holding members 31 is comprised of an inner claw 31a and an outer claw 31b. The holding members 31 have a specified length in the vertical direction and are attached to the tip ends of respective pivoting holding arms 34 and 35. The holding members 31 open and close by swinging along a specified range. In an open state, the holding members 31 receive the bags W; and the holding members 31 then close so as to hold both side edges of the bags W. The inner claws 31a have rectilinear holding surfaces that run more or less along the tangent of the rotational track of each inner claw 31a, while the outer claws 31b have holding surfaces that face slightly outward. The pairs of claws are installed facing each other, and the spacing between the inner claws 31a of the respective holding members 31 is set so that this spacing is narrower than the spacing of the outer claws 31b. Furthermore, the holding members 31 have cut-outs in two places, i.e., above and below; and bag introduction guides 36 and 37 which are disposed above and below the transfer means 9 of the transfer device 8 are positioned at the cut-outs.

Gears 38 and 39 are interposed between the holding arms 34 and 35 so that the holding arms 34 and 35 simultaneously pivot in an opening and closing action.

The holding arm 34 is pivotedly held on a raising-and-lowering holder 41 via a bearing 42 (inner race 42a and outer race 42b), and an arm-swinging fulcrum shaft 43 is inserted into the inner race 42a. Longitudinal ribs are formed on the outer circumferential surface of the arm-swinging fulcrum shaft 43, and longitudinal grooves which accommodate the longitudinal ribs so that the ribs are free to slide are formed on the inner circumferential surface of the inner race 42a, thus allowing the bearing 42 (raising-and-lowering holder 41) to rise and fall relative to the arm-swinging fulcrum shaft 43. On the other hand, the holding arm 35 is arranged so that it can to pivot with respect to the raising-and-lowering holder 41 via an arm-swinging fulcrum shaft 44.

A raising-and-lowering slider 45 is fastened to the inside-diameter side of the raising-and-lowering holder 41 (center side of the rotating table 23). The raising-and-lowering slider 45 slides along a raising-and-lowering rail 47 that is vertically installed on a bracket 46 attached to the undersurface of the rotating table 23. Furthermore, a cam roller 48 is disposed on the inside of the slider 45. As the rotating table 23 rotates, the cam roller 48 runs through the cam groove of an annular raising-and-lowering cam 49 that is attached to the supporting stand 21. As a result, the raising-and-lowering holder 41 is (along with the holding members 31) raised and lowered.

The arm-swinging fulcrum shaft 43 is pivotally supported by a bearing 51 in the vicinity of the lower end of the arm-swinging fulcrum shaft 43. The bearing 51 is attached to a supporting plate 52 which is fastened to the lower end of the bracket 46. A swinging arm 53 is fastened to the lower end of the swinging-arm fulcrum shaft 43, and the swinging arm 53 is connected via a connecting rod (not shown) to one end of a cam lever 55 which is shaft-supported on a bracket 54 on the undersurface of the supporting plate 52 so that the cam lever 55 can swing (in a relationship which is such that swinging arm 53 swings in the horizontal plane when the cam lever 55 swings). A cam roller 56 is disposed on the other end portion of the cam lever 55, and the cam roller 56 runs through the cam groove of an annular opening-and-closing cam 57 as the rotating table 23 rotates. As a result, the swinging arm 53 swings and the arm-swinging fulcrum shaft 43 pivots so that the holding arms 34 and 35 swing and the holding members 31 open and close.

The opening-and-closing cam 57 is fastened to the outer circumference of an annular attachment bracket 58. A plurality of female screw members 59 are disposed on the circumference of the attachment bracket 58, and rotating shafts 62 which are rotatably supported on a stand 61 disposed on the base 11 are engaged with the female screw members 59, so that the attachment bracket 58 is supported in a horizontal position. Gears 63 are attached to the lower ends of the rotating shafts 62, and the gears engage with the outer circumference of an intermediate gear 64 which is rotatably attached to the table rotating shaft 22. A sprocket 65 is fastened to one of the gears 63. The sprocket 65 is connected via a chain 66 and sprocket 67 to a rotating shaft 69 which is rotatably supported on a stand 68 disposed on the base 11. Accordingly, when a handle 71 fastened to the rotating shaft 69 is turned, the plurality of rotating shafts 62 are rotated by the same amount, and the bracket 58 and opening-and-closing cams 57 are raised and lowered while maintaining a horizontal attitude. The height of the opening-and-closing cams 57 is adjusted in accordance with the width of the bags.

A bag bottom receiving stand 32 is disposed beneath each pair of holding members 31. The bag bottom receiving stand 32 has a receiving section which is substantially V-shaped as seen in a side view, and is elastically supported on a receiving stand holder 72 via a supporting shaft 73 and compression spring 74; the
receiving stand holder 72 is fastened to a receiving stand attachment plate 75 by a high adjustment screw 76. A raising-and-lowering slider 77 is fastened to the receiving stand attachment plate 75. Furthermore, a raising-and-lowering rail 79 is fastened in a vertical position to a bracket 78 which is attached to the raising-and-lowering holder 41, and the raising-and-lowering slider 77 slides along the raising-and-lowering rail 79. A cam roller 81 is attached to the lower end of the receiving stand attachment plate 75. As the rotating table 23 rotates, the cam roller 81 runs over an annular receiving stand raising-and-lowering cam 83 that is attached to the base 11 via a bracket 82. As a result, the bag bottom receiving stand 32 is raised and lowered.

[0030] In the meantime, when bags of different lengths are processed, it is necessary to adjust the height of the bag bottom receiving stand 32. This adjustment can be done by means of the height adjustment screw 76. Variation in the length of bags that have the same nominal length is absorbed by elastic deformation of the compression spring 74.

[0031] A pair of suction plates 33 are positioned above the holding members 31. The respective suction plates 33 are attached facing the tip ends of opening arms 86 and 87 that are free to swing in the horizontal plane about respective swinging fulcrum shafts 84 and 85, and the suction plates 33 simultaneously pivot in an opening-and-closing action via gears 88 and 89. The swinging fulcrum shafts 84 and 85 are fastened to an attachment base 91 that is disposed on the upper end of the bracket 78, so that the suction plates 33 are raised and lowered together with the raising-and-lowering holder 41 (and with the holding members 31). The opening arms 86 and 87 are constantly driven in the opening direction by a compression spring 92, and the opening distance of the opening arms 86 and 87 is restricted by a stopper 93 that is attached to the attachment base 91. Meanwhile, a cam roller 94 is attached to the opening arm 86. The cam roller 94 contacts an opening arm swinging cam 95 which is disposed over a specified distance along the outer circumference of the rotating table 23, and it closes the opening arms 86 and 87 and suction plates 33.

[0032] A rotary valve is disposed on the upper portion of the table rotating shaft 22. The rotary valve is comprised of a rotating valve 96 which is fastened to the rotating table shaft 22 and a fixed valve 97 which is rotatably attached to the table rotating shaft 22. The fixed valve 97 is fixed in place by means of rotation-stopping rod 98, etc. and is elastically pressed against the rotating valve 96 by a pressing plate 99; furthermore, the fixed valve 97 is connected to a vacuum source in a connecting part 101. Furthermore, the suction plates 33 are connected to respective vacuum ports 102 of the rotating valve 96; as the rotating table 23 rotates, the vacuum ports 102 are placed in communication with vacuum ports formed in the fixed valve 97 and then released from communication with the vacuum ports. Furthermore, a table rotating gear 103 which is connected to a driving source (not shown) is fastened to the lower portion of the table rotating shaft 22.

[0033] In addition, though not shown in Figures 4 and 5, a temporary-sealing back-up device (described later) is installed on the rotating table 23.

[0034] Next, the spout supply device 3 will be described with reference to Figures 7A and 7B.

[0035] The spout supply device 3 is a rotary type supply device in which a plurality of gripping members 105 (only the gripping claws 105a are shown in Figure 7A) that are free to open and close are installed at equal intervals on the outer circumference of a rotating table 104. The rotating table 104 is disposed on a rotating shaft 107 which rotates inside a supporting stand 106 that is installed in an upright position on the base 11, and a push-in guide 108 which pushes spouts out toward the grooves 26a of the spout holding members 26 is disposed on the supporting stand 106. Furthermore, the gripping members 105 are opened and closed at a specified timing by a mechanism that is not shown as the rotating table 104 rotates.

[0036] In this spout supply device 3, spouts S are guided in a single row over spout supplying rails 110 from a parts feeder 109, and the leading spout S is stopped and positioned at the exit point of the spout supplying rails 110. The rotating table 104 rotates intermittently a specified angle (60°) at a time in a cycle consisting of stopping, acceleration, constant speed, deceleration and stopping. When the rotating table 104 stops, the spout gripping members 105 stop in the receiving position A of the positioned spout S, and the head portion h of the positioned leading spout S is gripped between the gripping claws 105a and the outer circumference of the rotating table 104.

[0037] Meanwhile, the conveying track T₁ of the centers of the spout holding positions of the spout gripping members 105 is set so that it approaches the conveying track T₂ of the centers of the spout holding positions of the spout holding members 26. It is arranged so that the rotating table 104 rotates at a constant speed in the vicinity of the transfer position B where the spouts are transferred to the spout holding members 26 (i.e., the position where both conveying tracks are in closest proximity to each other) and so that the spout gripping members 105 rotate at the same speed as the spout holding members 26 with the spout gripping members 105 and the spout holding members 26 running side by side. During this period of constant-speed rotation, the spouts S gripped by the spout gripping members 105 are introduced into the clamping grooves 26a (tapered portions) of the spout holding members 26. After the spouts S have been introduced into the clamping grooves 26a of the spout holding members 26 (i.e., at the spout transfer position B or slightly before the spout transfer position B), the spout gripping members 105 open and release the spouts S.

[0038] The spouts S held by the spout holding members 26 contact the push-in guide 108 at a point prior to
the cam rollers 131 are pushed by the back-
taining plates 124 reach the temporary-
rotate into the temporary-
cumferential surface of the back-
table 23 rotates, the cam rollers 131 run along the cir-
up cam 137 attached to the frame 112, etc. As the rotating
ence, etc. The common section is comprised of a back-
the intermediate plate 128 toward the inner circumfer-
135 for the slider 133, and a tension spring 136 that drives
that is disposed on the undersurface of the intermediate
ment plate 125 and the supporting shaft 129, a slider 133
is equipped with a back-
sealing portions 122 installed at equal intervals
around its circumference and is heated by a heater (not
shown). As the temporary-sealing body 121 rotates, the
temporary-sealing portions 122 rotate with a timing that
is matched to the spout holding members 26 of the ro-
tating table 23, and the temporary-sealing portions 122
are pressed against the sealing portions of the spouts S
held by the spout holding members 26. At this position,
bags W are fitted over the spouts S, and the sealing por-
tions of the bags W and sealing portions of the spouts S
are temporarily sealed.

Furthermore, the temporary-sealing apparatus
is equipped with a back-up device 123 which supports
from the inside the spouts S that are pushed inward by
the temporary-sealing portions 122.

The back-up device 123 comprises individual
sections and a common section. The individual sections
are disposed on the rotating table 23 so as to positionally
correspond to the respective spout holding members 26.
Each of the individual sections comprises: a retaining
plate 124 that backs up the corresponding spout, an at-
chament plate 125 for the retaining plate 124, a slider
126 that is disposed on the undersurface of the attach-
ment plate 125, a slide rail 127 for the slider 126, an
intermediate plate 128 to which the slide rail 127 is at-
tached, a supporting shaft 129 and cam roller 131 that
are disposed on the intermediate plate 128, a compres-
sion spring 132 that is interposed between the attach-
ment plate 125 and the supporting shaft 129, a slider 133
that is disposed on the undersurface of the intermediate
plate 128, a slide rail 134 for the slider 133, a stopper
135 for the slider 133, and a tension spring 136 that drives
the intermediate plate 128 toward the inner circumfer-
ence, etc. The common section is comprised of a back-
up cam 137 attached to the frame 112, etc. As the rotating
table 23 rotates, the cam rollers 131 run along the cir-
cumferential surface of the back-up cam 137.

The respective retaining plates 124 are pulled
inward by the action of the tension springs 136 until they
rotate into the temporary-sealing position. When the re-
taining plates 124 reach the temporary-sealing position, the cam rollers 131 are pushed by the back-up cam 137,
Furthermore, if the bag width should be widened from the state shown in Figures 10A(a) through 10A(c), the opening and closing action is performed in a state in which the spacing of the holding members 31 is widened as shown in Figures 10B(a) through 10B(c). The degree of this opening and closing (margin in the direction of width) is more or less fixed regardless of the bag width.

(7 ~ 9) The raising-and-lowering holder 41 and the receiving stand holder 72 begin to rise at the same time, and the holding members 31, suction plates 33 and bag bottom receiving stand 32 begin to rise at the same time. As a result, both side edges of bags W whose mouths have begun to be opened are held by the holding members 31, and the bags W are raised vertically in a state in which the center of the bag in the direction of width is positioned at the center of the spout S, so that the bag is fitted over the spout S. During this period, the suction plates 33 cease to apply suction at the point where the upper end of the bag W crosses the lower end of the sealing portions f of the spout S, so that the bag W is released. Furthermore, an insertion apparatus in which the holding members are not raised and lowered is also conceivable; in this case, the holding members function as guides that guide the raising and lowering of the bags. The raising-and-lowering holder 41 and the receiving stand holder 72 rise and stop in a set position; this position is set so that the upper end of the bag W contacts the attachment plate 25 (which functions as a contact member that restricts the rising end of the bag) and stops immediately prior to the stopping of the abovementioned parts. When the bag W stops, the bag bottom receiving stand 32 simultaneously ceases any further rise; on the other hand, the raising-and-lowering holder 41 and receiving stand holder 72 continue to rise slightly to a set position, and the rise of the receiving stand holder 72 is absorbed by the compression spring 74. The reason for using such an arrangement is to allow accurate positioning of the upper end of the bag W at the upper end of the sealing portions of the spout S even if there is some variation in the length of the bags W. Such variation in the length of the bags W is absorbed by the elastic deformation of the compression spring 74.

(10) The bags W and spouts S are rotationally conveyed to the temporary-sealing apparatus 4 in a positioned state.

[0045] As seen from the above, according to the present invention, movable components are disposed beneath the spouts, and only a few movable components are disposed above the spouts; accordingly, the adhesion of falling dirt and oil droplets to the spouts and/bags can be prevented. In addition, accurate positioning of the bags and spouts can be accomplished, and positional deviation during sealing and temporary sealing can be prevented.

5

Claims

1. A spout insertion apparatus (2) comprising:

a plurality of spout holding members (26) disposed at equal intervals on a circumference of a continuously rotating rotor (23) so as to hold supplied spouts vertically in specified positions; and

a chucking member (33) which is disposed beneath each of said spout holding members (26), said chucking member (33) opening mouths of said bags by applying suction from both sides; wherein

said mouths of said supplied bags being held by said holding member (31) are opened from both sides by an application of suction by said chucking member, and

said bags are raised vertically with said mouths of said bags in an open state, so that said bags are raised to upper ends of sealing portions of spouts and said spouts are thus inserted into specified positions inside said bags, characterized in that

said spout insertion apparatus (2) further comprises:

a pair of holding members (31) which are disposed beneath each of said spout holding members (26), said pair of holding members (31) being openable and closable in a direction of width of said bags and positioning and holding both side edges of supplied bags when said holding members (31) open, and

a bag bottom receiving stand (32), which is disposed beneath each of said spout holding members (26) and is suited to support lower ends of said bags;

so that said mouths of said bags, which are held at both side edges thereof by said holding members (31) and supported at lower ends thereof by said bag bottom receiving stand (32), are opened from both sides by the application of suction by said chucking member (33); and

a raising-and-lowering means (77, 79, 81, 83; 41, 91) which raise and lower either one of said bag bottom receiving stand or said chucking member, or both of them, and wherein

said bag bottom receiving stand (32) and/or said chucking member (33) are raised vertically with said mouths of said bags in an open state, so that said bags are raised to upper ends of sealing portion of spouts.
2. The spout insertion apparatus according to Claim 1, further comprising a raising-and-lowering means (41, 42) which raises and lowers said holding members (31), wherein said mouths of said bags with side edges of said bags being held by said holding members and lower ends of said bags being supported by said bag bottom receiving stand (32) are opened from both sides by an application of suction by said chucking member (33), and said holding members (31) and said bag bottom receiving stand (32) and/or said chucking member (33) are raised vertically with said mouths of said bags in an open state, so that said bags are raised to upper ends of said sealing portions of said spouts.

3. The spout insertion apparatus according to Claim 2, wherein a common raising-and-lowering means (41) is provided which simultaneously raises and lowers said holding members (31) and said chucking member (33).

4. The spout insertion apparatus according to any of Claims 1 through 3, wherein a raising-and-lowering means (77, 79, 81, 83) is provided which raises and lowers said bag bottom receiving stand (32), and wherein said mouths of said bags are opened from both sides by said chucking member (33) after said bag bottom receiving stand (32) that supports said lower ends of said bags has been raised a specified distance so as to raise said mouths of said bags to a position of said chucking member.

5. The spout insertion apparatus according to any of Claims 1 through 4, wherein:

raising-and-lowering means (77, 79, 81, 83; 41, 91) which raise said bag bottom receiving stand (32) and said chucking member (33) are provided for both of them, and wherein a contact member which contacts upper ends of raised bags is disposed in lower portions of said spout holding members, said bag bottom receiving stand elastically supports said bags, and a suction chucking of said chucking member is stopped immediately before said bags reach said upper end.

6. The spout insertion apparatus according to any of Claims 1 through 5, wherein when said chucking member (33) opens said mouths of said bags by applying suction from both sides, said pair of holding members (31) narrow a gap between said holding members by a specified distance.

7. The spout insertion apparatus according to any of Claims 1 through 6, wherein:
said holding members (31) have a substantially V shape as seen in a plan view and have a specified length in a vertical direction, and wherein said holding members (31) are attached to tip ends of respective pivoting arms (34, 35) and are disposed facing each other, open and close by swinging through a specified range, and receive bags when said holding members (31) are open and then close to hold both side edges of said bags.

Patentansprüche

1. Vorrichtung (2) zum Anbringen einer Ausgießtülle an einem Behälter umfassend:

 eine Vielzahl am Umfangsrand eines stetig drehenden Läufers (23) gleichbeabstandet derartig angeordneter Ausgießtüllenhalteglieder (26), dass sie zugeführte Ausgießtüllen vertikal in vorgegebenen Stellungen halten, sowie ein unterhalb jedes dieser Ausgießtüllenhalteglieder (26) angeordnetes Spannglied (33), wobei dieses Spannglied (33) durch Ausübung einer Saugkraft von beiden Seiten die Öffnungen der Behälter öffnet, wobei die Öffnungen der zugeführten von dem Halteglied (31) gehaltenen Behälter durch Ausübung einer Saugkraft durch das Spannglied von beiden Seiten aufgehalten werden und die Behälter bei geöffnetem Zustand der Behälteröffnungen vertikal angehoben werden, so dass die Behälter auf obere Ränder von Versiegelungsabschnitten von Ausgießtüllen gehoben werden und die Ausgießtüllen auf diese Weise in vorgegebene Stellungen innerhalb der Behälter eingeführt werden
dadurch gekennzeichnet,
dass die Vorrichtung (2) zum Anbringen einer Ausgießtülle an einem Behälter weiterhin umfasst:
ein Paar unterhalb jedes der Ausgießtüllenhalteglieder (26) angeordnete Halteglieder (31), wobei dieses Paar Halteglieder (31) in einer Breiterichtung der Behälteröffnungen vertikal angehoben werden, so dass die Behälter auf obere Ränder von Versiegelungsabschnitten von Ausgießtüllen gehoben werden und die Ausgießtüllen auf diese Weise in vorgegebene Stellungen innerhalb der Behälter eingeführt werden
dadurch gekennzeichnet,
dass die Vorrichtung (2) zum Anbringen einer Ausgießtülle an einem Behälter weiterhin umfasst:

 ein Paar unterhalb jedes der Ausgießtüllenhalteglieder (26) angeordnete Halteglieder (31), wobei dieses Paar Halteglieder (31) in einer Breiterichtung der Behälteröffnungen vertikal angehoben werden, so dass die Behälter auf obere Ränder von Versiegelungsabschnitten von Ausgießtüllen gehoben werden und die Ausgießtüllen auf diese Weise in vorgegebene Stellungen innerhalb der Behälter eingeführt werden
dadurch gekennzeichnet,
dass die Vorrichtung (2) zum Anbringen einer Ausgießtülle an einem Behälter weiterhin umfasst:

 ein Paar unterhalb jedes der Ausgießtüllenhalteglieder (26) angeordnete Halteglieder (31), wobei dieses Paar Halteglieder (31) in einer Breiterichtung der Behälteröffnungen vertikal angehoben werden, so dass die Behälter auf obere Ränder von Versiegelungsabschnitten von Ausgießtüllen gehoben werden und die Ausgießtüllen auf diese Weise in vorgegebene Stellungen innerhalb der Behälter eingeführt werden
dadurch gekennzeichnet,
hälterbodenaufnahmesitz (32) abgestützt werden, durch Ausübung einer Saugkraft durch das Spannglied (33) von beiden Seiten geöffnet werden, sowie ein Hebe- und Senkmittel (77, 79, 81, 83; 41, 91), das jeweils den Hälterbodenaufnahmesitz oder das Spannglied, oder beide, hebt und senkt, und wobei der Hälterbodenaufnahmesitz (32) und/oder das Spannglied (33) bei geöffnetem Zustand der Hälteröffnungen vertikal angehoben sind, so dass die Hälter zu oberen Rändern der Versiegelungsabschnitte von Ausgießtüllen gehoben sind.

2. Vorrichtung zum Anbringen einer Ausgießtülle an einem Behälter nach Anspruch 1, weiterhin umfassend: ein Hebe- und Senkmittel (41, 42), welches die Hälterglieder (31) hebt und senkt, wobei die Öffnungen der Behälter, die an beiden Seiten des Behälters von den Hältergliedern gehalten werden und bei denen die unteren Enden der Hälter durch den Hälterbodenaufnahmesitz (32) abgestützt werden, durch Ausübung einer Saugkraft von beiden Seiten durch das Spannglied (33) geöffnet sind, und die Hälterglieder (31) und der Hälterbodenaufnahmesitz (32) und/oder das Spannglied bei geöffnetem Zustand der Hälter vertikal angehoben sind, so dass die Hälter auf die oberen Enden der Versiegelungsabschnitte der Ausgießtüllen gehoben werden.

3. Vorrichtung zum Anbringen einer Ausgießtülle an einem Behälter nach Anspruch 2, wobei ein gemeinsames Hebe- und Senkmittel (41) vorgesehen ist, welches die Hälterglieder (31) und das Spannglied (33) gleichzeitig hebt und senkt.

4. Vorrichtung zum Anbringen einer Ausgießtülle an einem Behälter nach einem der Ansprüche 1 bis 3, wobei ein Hebe- und Senkmittel (77, 79, 81, 83) vorgesehen ist, welches den Hälterbodenaufnahmesitz (32) hebt und senkt, und wobei die Öffnungen der Behälter durch das Spannglied (33) von beiden Seiten geöffnet werden nachdem der Hälterbodenaufnahmesitz (32), der die unteren Enden der Behälter abstützt über einen vorgegebenen Abstand angehoben wurde, um die Öffnungen der Behälter auf eine Stellung des Spannglieds zu haben.

5. Vorrichtung zum Anbringen einer Ausgießtülle an einem Behälter nach einem der Ansprüche 1 bis 4, wobei ein Kontaktglied, das die oberen Enden der angehobenen Behälter berührt, in unteren Abschnitten der Ausgießtüllenhalteglieder vorgese-
2. Appareil d’insertion de bec verseur selon la revendication 1, comprenant, en outre, des moyens de soulevement et abaissement (41, 42) qui soulèvent et abaissent lesdits éléments de retenue (31), dans lequel lesdites embouchures desdits sacs, avec les bords de côté desdits sacs retenus par lesdits éléments de retenue et les extrémités inférieures desdits sacs supportées par ledit chevalet de réception de fond de sac (32), sont ouvertes par les deux côtés par application d’une aspiration par ledit élément formant mandrin (33), et lesdits éléments de retenue (31) et ledit chevalet de réception de fond de sac (32) et ou ledit élément formant mandrin (33) sont soulevés verticalement avec lesdites embouchures desdits sacs dans un état ouvert, de telle sorte que lesdits sacs soient soulevés jusqu’aux extrémités supérieures desdites parties de scellage desdits becs verseurs.

3. Appareil d’insertion de bec verseur selon la revendication 2, dans lequel un moyen de soulevement et abaissement commun (41) est prévu, qui soulève et abaisse simultanément lesdits éléments de retenue (31) et ledit élément formant mandrin (33).

4. Appareil d’insertion de bec verseur selon l’une quelconque des revendications 1 à 3, dans lequel un moyen de soulevement et abaissement (77, 79, 81, 83) est prévu, qui soulève et abaisse ledit chevalet de réception de fond de sac (32), et dans lequel lesdites embouchures desdits sacs sont ouvertes par les deux côtés par ledit élément formant mandrin (33) après que ledit chevalet de réception de fond de sac (32) qui supporte lesdites extrémités inférieures desdits sacs a été soulevé d’une distance spécifiée de façon à soulever lesdites embouchures desdits sacs jusqu’à une certaine position dudit élément formant mandrin.

5. Appareil d’insertion de bec verseur selon l’une quelconque des revendications 1 à 4, dans lequel :

- les moyens de soulevement et abaissement (77, 79, 81, 83 ; 41, 91) qui soulèvent ledit chevalet de réception de fond de sac (32) et ledit élément formant mandrin (33) sont prévus pour ces deux dispositifs, et dans lequel un élément de contact qui entre en contact avec les extrémités supérieures des sacs soulevés est disposé dans des parties inférieures desdits éléments de retenue de bec verseur, ledit chevalet de réception de fond de sac supporte lesdits sacs d’une manière élastique, et un mandrin d’aspiration dudit élément formant mandrin est stoppé immédiatement avant que lesdits sacs atteignent ladite extrémité supérieure.

6. Appareil d’insertion de bec verseur selon l’une quelconque des revendications 1 à 5, dans lequel, lorsque ledit élément formant mandrin (33) ouvre lesdites embouchures desdits sacs en appliquant une aspiration par les deux côtés, les deux éléments de retenue (31) rétrécissent un écartement entre lesdits éléments de retenue d’une distance spécifiée.

7. Appareil d’insertion de bec verseur selon l’une quelconque des revendications 1 à 6, dans lequel :

- lesdits éléments de retenue (31) ont une forme essentiellement en V, en vue de dessus, et ont une longueur spécifiée dans une direction verticale, et dans lequel lesdits éléments de retenue (31) sont attachés aux bouts d’extrémité de bras pivotants respectifs (34, 35) et sont disposés en regard l’un de
l'autre, s'ouvrent et se ferment par basculement sur une distance spécifiée, et reçoivent des sacs lorsque lesdits éléments de retenue (31) sont ouverts, puis se ferment pour retenir les deux bords de côté desdits sacs.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP H11333950 A [0002]
• JP H1177860 B [0003]
• JP H10202768 B [0004]
• US 6499280 B [0017]