EUROPEAN PATENT SPECIFICATION

ROSIN AMINE ANTI-FOULING AGENTS

ROSIN AMINE DERIVATES AND THEIR USE AS ANTI-FOULING AGENT

ROSIN AMINES AND THEIR APPLICATION AS ANTI-FOULING AGENTS

(54) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

(30) Priority:
16.03.1999 EP 99105349

(43) Date of publication of application:

(73) Proprietors:
• Bayer Chemicals AG
51368 Leverkusen (DE)

• UNIVERSITE LIBRE DE BRUXELLES
1050 Bruxelles (BE)

• Nederlandse Organisatie voor Toegepaste Natuurwetenschappelijk Onderzoek
5600 HE Eindhoven (NL)

• SIGMA COATINGS B.V.
1422 AD Uithoorn (NL)

(72) Inventors:
• KUNISCH, Franz
D-51519 Odenthal (DE)

• KUGLER, Martin
D-42799 Leichlingen (DE)

• BRAEKMAN, Jean, Claude
B-1640 Rhode Saint Genese (BE)

• PLEHIER, Mark
B-1000 Bruxelles (BE)

• FERRARI, Gabriele M.
NL-5612 AV Eindhoven (NL)

• VOS, Marcel
NL-1275 AD Huizen (NL)

(74) Representative:
Zobel, Manfred, Dr. et al
BAYER AG
Konzernbereich RP
Patente und Lizenzen
51368 Leverkusen (DE)

(56) References cited:
EP-A- 0 364 271
EP-A- 0 473 004
EP-A- 0 877 061
WO-A-91/15546

BRIAN E CROSS ET AL: "Preparation of the 15,6alpha-Lactone from 8beta,13beta-
Tetrahydroabietic acid" JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, vol. 12, 1981, pages 3158-3160, XP002100081


Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Field of invention

[0001] The invention relates to new and known compounds as well as methods for preventing the attachment of aquatic organisms to surfaces which are submerged for extensive periods of time in water. More particularly, this invention relates to the protection of submerged surfaces with new isonitrile, formamide, isocyanate and isothiocyanate anti-fouling agents.

Background of the invention

[0002] The ever recurring growth of fouling organisms on underwater structures such as ships, docks, piers, pilings, fishnets, heat exchangers, dams, piping structures, intake screens, cooling towers and the like is a costly and hazardous problem in both marine and freshwater endeavors. The presence of fouling organisms such as barnacles, zebra mussels, algae, diatoms, hydroids, bryozoa, ascidians, tubeworms, Asiatic clams and the like causes economic damage in various ways: for example, attachment to the hulls of ships reduces fuel efficiency and causes loss of profitable sailing time because of the need to clean the hulls. Similarly, the attachment of these organisms to cooling water equipment decreases heat conductivity which eventually reduces or block the cooling power of the equipment and drives up cost.

[0003] A variety of agents useful for controlling fouling organisms in fresh water or sea water have been used to prevent the attachment and overgrowth of these organisms. A common method of controlling the presence or attachment of fouling organisms is to coat or permeate the underwater structure with a composition which comprises mixtures of toxic compounds such as tri-n-butyl tin or copper compounds. Anti-fouling agents in the form of a paint can contain up to 60% by weight of the active ingredients and can be used to paint surfaces such as the hull of ships. The paint prevents attachment and growth of fouling organisms by continuously releasing anti-fouling agents underwater. The disadvantage of many of the present anti-fouling agents is that they are persistent in the environment, are often acutely toxic and degrade too slowly in aquatic environments and are, therefore, ecologically harmful. Hazardous anti-fouling agents can eventually bioaccumulate and enter the food chain and therefore represent a threat to marine and human life.

[0004] For example, it is well established that heavy metal compounds, especially organotin compounds that are widely used as anti-fouling agents, accumulate in mussels.

[0005] It is an object of this invention to provide an environmentally and ecologically sound method of combatting or controlling marine and freshwater fouling organisms.

[0006] It is another object of this invention to provide an effective method for protecting aquatic structures against fouling by marine or freshwater fouling organisms.

[0007] It is a further object of this invention to provide antifoulant compositions which comprises certain derivatives of rosin compounds as the active agents.

Summary of the Invention

[0008] The present invention provides new and known compounds and a method to prevent settlement on surfaces by marine or freshwater fouling organism which comprises contacting said organism or the locus thereof with an anti-fouling-effective amount of at least one compound of formula II-113
wherein
R\textsuperscript{1} represents NR\textsuperscript{2}R\textsuperscript{3} wherein

R\textsuperscript{2} represents a hydrogen atom, C\textsubscript{1} - C\textsubscript{8}-alkyl and
R\textsuperscript{3} represents C=OR\textsuperscript{4} wherein
R\textsuperscript{4} represents a hydrogen atom or one of the groups OR\textsuperscript{5} or NHR\textsuperscript{5} wherein
R\textsuperscript{5} designates C\textsubscript{1} - C\textsubscript{8}-alkyl or aryl, each optionally substituted by halogen; or

R\textsuperscript{1} represents N=CR\textsuperscript{6}R\textsuperscript{7} wherein

R\textsuperscript{6} represents a hydrogen atom, C\textsubscript{1} - C\textsubscript{6}-alkyl or aryl, and
R\textsuperscript{7} represents C\textsubscript{1} - C\textsubscript{6}-alkyl or aryl, each optionally substituted by halogen; or

R\textsuperscript{1} represents an isonitrile, isocyanate, isothiocyanate or a guanidino group; and
n represents 0 or 1.

[0009] In the specification and claims the term:

halogen has the meaning of Cl, Br, I or F;
alkyl has the meaning of straight-chain or branched alkyl with 1 to 8, preferably 1 to 4 carbon atoms;
aryl has the meaning of aromatic, mono- or polycyclic hydrocarbon rings such as for example and preferred: naphthyl, anthranyl, phenanthryl, especially phenyl.

[0010] Preferred are compounds of formula I\textsubscript{1} - I\textsubscript{13} wherein

R\textsuperscript{1} represents NR\textsuperscript{2}R\textsuperscript{3} wherein

R\textsuperscript{2} represents a hydrogen atom or C\textsubscript{1} - C\textsubscript{4}-alkyl and
R\textsuperscript{3} represents C=OR\textsuperscript{4} wherein
R\textsuperscript{4} represents a hydrogen atom or one of the groups OR\textsuperscript{5} or NHR\textsuperscript{5} wherein
R\textsuperscript{5} represents C\textsubscript{1} - C\textsubscript{4}-alkyl or aryl, each optionally substituted by halogen; or

R\textsuperscript{1} represents N=CR\textsuperscript{6}R\textsuperscript{7} wherein

R\textsuperscript{6} represents a hydrogen atom, methyl or optionally halogen substituted aryl, and
R\textsuperscript{7} represents C\textsubscript{1} - C\textsubscript{4}-alkyl or optionally halogen substituted aryl; or

R\textsuperscript{1} represents an isonitrile, isocyanate, isothiocyanate or guanidino moiety.

[0011] Especially preferred are compounds of formula I\textsubscript{1} - I\textsubscript{13} wherein

R\textsuperscript{1} represents NR\textsuperscript{2}R\textsuperscript{3} wherein
R\textsuperscript{2} represents a hydrogen atom and
R\textsuperscript{3} represents C=OR\textsuperscript{4} wherein
R\textsuperscript{4} represents a hydrogen atom.

[0012] Especially preferred are also compounds of formula I\textsubscript{1} - I\textsubscript{13} wherein

R\textsuperscript{1} represents NR\textsuperscript{2}R\textsuperscript{3} wherein
R\textsuperscript{2} represents a hydrogen atom and
R\textsuperscript{3} represents C=OR\textsuperscript{4} wherein
R\textsuperscript{4} represents OR\textsuperscript{5} or NHR\textsuperscript{5} wherein
R\textsuperscript{5} represents methyl, ethyl, n- or i-propyl or n-,s-,i- or t-butyl, or phenyl which is optionally substituted by halogen.

[0013] Especially preferred are also compounds of formula I\textsubscript{1} - I\textsubscript{13} wherein

R\textsuperscript{1} represents N=CR\textsuperscript{6}R\textsuperscript{7} wherein
R\textsuperscript{6} represents methyl, ethyl, n- or i-propyl, n-,s-,i- or t-butyl, or preferred a hydrogen atom or and
R\textsuperscript{7} represents methyl, ethyl, n- or i-propyl, n-,s-,i- or t-butyl or phenyl.
R¹ represents an isonitrile, isocyanate, isothiocyanate or guanidino moiety.

[0014] Preferred are compounds wherein n represents 1.
[0015] Preferred are compounds of the formula I8.
[0016] The compounds of the formulae I1 to I13 in which R¹ has the above given general and preferred meanings are new and further subject of the present invention, with the exception of the compounds

[0019] WO 00/07982 discloses saturated and unsaturated abietane derivatives of a general formula and their use in diagnostic compositions.
[0020] The structures of dehydroabietyl-isothiocyanate, dehydroabietyl-isocyanate and dehydroabietyl-isonitrile are known from Chemical Abstracts Registry Numbers CA 115269-93-7, CA 63692-75-1 and 121282-63-1.
[0021] The aforementioned compounds are accessible by standard procedures of organic chemistry which can be adapted to the rosin moiety. The starting rosin derived from Tall Oil, Gum or Wood is commercially available; for example rosin amine as Hercules® Amine D. An overview on the different isomers of abietic acid as well as their preparation is given by Gang-Fung Chen in Progress in Organic Coatings 20, 1992, 139-167. In the following general schemes the synthesis of the different rosin amine derivatives is outlined. For reasons of simplification, the synthesis routes are outlined for substructure I8 with n = 1. The reaction sequences can be adapted easily to the other pure isomers and rosin oxidation/reduction products and also to mixtures of them.

Scheme 1

Scheme 2

Ureas of formula III can be synthesized by reacting rosin amine with an isocyanate in an inert solvent (benzene, toluene, hydrocarbons etc.); see: Houben-Weyl Vol. E4, 1983, 352-357 or alternatively via reaction of rosin isocyanate (s. below) with an aliphatic or aromatic amine.

Scheme 3

Schiff-bases of rosin amine are accessible via condensation of rosin amine with an aldehyde or ketone (Houben-Weyl Vol. 11/2, 1958, 74-85).
The synthesis of rosin isocyanide has been published (T. Ohsawa et al., Tetrahedron Lett., 1989, 845-846).
Rosin isothiocyanate (CAS-Nr.: 115 269-93-7) can be synthesized from rosin amine through reaction with thiophosgene (see analogous sequence with phosgene: Ozaki, Chem Rev. 72, 457-460), or alternatively with a thiophosgene substitute, namely thiocarbonyl-dimidazole (see example 3).
The preparation of rosin isocyanate has been described (E.Corey et al., Tetrahedron Lett. 1981, 299-302).
In the case of compounds of formula 1 with n = 0, the required starting material dehydroabietan-1-yl-amine can be obtained according to Stockel et al., Can.J.Chem. 1963, 834-836.
All other derivatives (formula I, n=0) can be synthesized in analogous manner as described for rosin amine.

**Detailed Description of the Preferred Embodiment**

A fouling organism which may be combatted or controlled by the method of the invention can be any marine or freshwater organism which can attach to an inner or outer surface of a structure which is submerged or in continual contact with water. Exemplary organisms include algae, including members of the phyla Chlorophyta, Phaeophyta and Rhodophyta; tunicates, including members of the class Ascidiacea such as *Ciona intestinalis*, *Diplosoma listerianum* and *Botryllus schlosseri*, and members of the class Hydrozoa including *Clava squamata*, *Hydractinia echinata*, *Obelia geniculata* and *Tubularia larynx*;
Bivalves including *Mytilus edulis*, *Cassostrea virginica*, *Ostrea edulis*, *ostrea chilensis*, *Lasaea rubra* and members of the family Dreissenidae (or zebra mussels) and members of the family Corbuculidae (or Asiatic clams), bryozoans including *Electra pilosa*, *Conopeum reticulatum*, *Bugula neritina* and *Bowerbankia gracilis*;
Polychaete worms including *Hydroides norvegica*, *Pomatoceros triqueter*, *Mercierella enigmata* and *Spirorbis spp.*;
Sponges and members of the class Cirripedia (barnacles) such as *Balanus amphitrite*, *Lepas anatrala*, *Balanus balanus*, *Balanus balanoides*, *Balanus hameri*, *Balanus creatus*, *Balanus improvisus*, *Balanus gebaletus*, *Elminius modestus*, *Balanus tulipiformis* and *Balanus perforatus*;
Organisms of the genus Balanus are frequent foulers of aquatic structures. Specific fouling organisms to which this invention is especially directed include barnacles, zebra mussels, algae, diatoms, hydroids, bryozoan, ascidians, tube worms and asiaclams, but also the bacterial slime.
Among the aquatic structures which may be protected by the method of invention are any submerged or partially submerged structure, either mobile or stationary, such as a fishnet, boat, ship, piling, cooling tower, pipeline, standpipe, heat exchanger, dam, intake screen or the like.
In actual practice compound of formula I1 - I13 may be brought into contact with a fouling organism by:
- coating the aquatic structure to be protected with an antifouling-effective amount of said rosin amine derivative such that the antifouling compound is released at the to be protected surface area into the aquatic environment immediately.
- including an antifouling-effective amount of the rosin amine derivative within material formed into an aquatic structure which then releases said compound,
releasing an antifouling-effective amount of said compound directly into the aquatic environment surrounding the structure to be protected,

or any other method wherein the rosin amine derivative comes in contact with the fouling organism.

The amount of rosin amine derivative to be used in the method of invention will vary according to the specific compound used, the identity of the fouling organism to be controlled, degree of fouling pressure of the surrounding aquatic environment, the water temperature, the mode of contact and the like.

The rosin amine derivatives can be used as individual active compounds or else in combination with active compounds usually employed in the anti-fouling sector. These can preferably be heavy metals, such as Cu, or heavy metal compounds, such as, for example, bis(trialkyltin) sulphides, tri-n-butyl laurate, tri-n-butyl chloride, copper(I) oxide, triethyltin chloride, tri-n-butyl(2-phenyl-4-chlorophenoxy)-tin, tributyltin oxide, molybdenum disulphide, antimony oxide, polymeric butyl titanate, phenyl-(bispyridine)-bismuth chloride, tri-n-butyltin fluoride, manganese ethylenbisdithiocarbamate, zinc dimethylidithiocarbamate, zinc ethylenbisdithiocarbamate, the zinc salt or copper salt of 2-pyridinethiol-1-oxide, bisdimethylidithiocarbamoyl-zinc ethylenbisdithiocarbamate, zinc oxide, copper(I) ethylene-dithiocarbamate, copper thiocyanate, copper naphthenate and tributyltin halides.

The action spectrum of the rosin amine derivatives is extended further or particular effects are achieved by these combinations of active compounds. Synergistic effects are obtained in many cases. The synergistic effect manifests itself particularly clearly if the active compound combinations are present in certain weight ratios. However, the weight ratios of the active compounds in the active compound combinations can vary within a relatively wide range.

Preferred combination partners for the rosin amine derivatives are alginates, such as diuron, dichlorophen, endothal, fentin acetate or quinoamide, molluscicides, such as fentin acetate, metaldehyde, methiocarb, niclosamide, thiodicarb and trimethacarb, fungicides, such as dichlofluanid, tolyfluanid, iodopropargyl butylcarbamate, fluor-fopel and azoles, such as propiconazole, metconazole, cyproconazole and tebuconazole or conventional antifouling active compounds, such as 2-(N,N-dimethylthiocarbamoylthio)-5-nitrothiazyl, tetrabutylthiannoxane, 2-tert-butylamino-4-cyclopentamino-6-methylthio-1,3,5-triazine, 4,5-dichloro-2-n-ocyl-4-isothiazolin-3-one, 2,4,5,6-tetrachloroisophtalodinitrile, tetramethylthiuram disulphide, 2,4,6-trichlorophenylmaleimide, 2,3,5,6-tetrachloro-4-(methylsulphonyl)-pyridine, diiodomethylparatyl sulphone, thiabendazol, tetraphenyl-boron-pyridin salt, and the copper and sodium salt of 2-pyridinethiol-1-oxide.

The anti-fouling composition preferably comprises the rosin amine derivatives in concentrations of 0.5 to 60% by weight, preferably between 1 to 25% by weight.

Compositions of the invention comprise an aquatically acceptable inert carrier and an antifouling-effective amount of a rosin amine derivative of formula I. For application onto structural surfaces, preferred compositions of the invention include a film-forming component such as a polymer resin solution. Exemplary polymer resins include unsaturated polyester resins formed from: a) unsaturated acids or anhydrides, such as maleic anhydride, fumaric acid, itaconic acid and the like; b) saturated acids or anhydrides, such as phthalic anhydride, isophthalic anhydride, terephthalic anhydride, tetrahydrophthalic anhydride, adipic acid, suberic acid, and the like; c) glycols, such as ethylene glycol, and the like; d) vinyl monomers, such as styrene, vinyl toluene, chlorostyrene, bromostyrene, acrylates like methylmethacrylate, ethylene glycol dimethacrylate and the like. Other suitable resins include vinyl ester-, vinyl acetate-, and vinyl chloride-based resins, elastomeric components, vulcanized rubbers, rosins, metaltiresines and urethane-based resins.

Example 1

N-Formyl-rosin amine (1)

The starting material rosin amine (Hercules® Amine D) is a mixture of primary amines derived from modified rosin. It is described as dehydroabietylamine of technical grade and was used in the following syntheses without further purification.

To a solution of rosin amine in ethyl acetate 5 equiv. of ethyl formate are added at room temperature under continuous stirring. After 16h at rt, the solvent is evaporated to dryness and the residue is filtered through a short column of silica gel to furnish N-formyl rosin amine under the form of a compact resin (yield: 86%).

Characterisation: visqueous oil; $^1$H-NMR, δ(ppm): 7.94-8.23(1H); 7.15 (1H); 6.99 (1H); 6.89 (1H); 6.89 (1H); 5.46 (1H); 2.76-3.27 (5H); 1.22 (6H); 1.21 (3H); 0.95 (3H).
Example 2

Rosin isocyanide (2)

[0044] Disopropylamine (2.7 equiv.) and phosphorous oxychloride (1.1 equiv.) were successively added dropwise to a stirred solution of N-formyl rosin amine in dichloromethane at 0°C under an atmosphere of dry nitrogen. After 1h at 0°C, a 20% solution of sodium carbonate was added and the reaction mixture was allowed to reach room temperature for 1h. 20% sodium carbonate and water were added, extraction of the aqueous phase with dichloromethane followed by filtration of the residue through a column of silica gel furnished rosin isocyanide as a colourless oil (yield: 85%). Characterisation: visqueous oil; 1H NMR, δ(ppm): 7.16 (1H); 7.00 (1H); 6.88 (1H); 2.76-3.34 (5H); 1.22 (6H); 1.21 (3H); 0.98 (3H).

Example 3

Rosin isothiocyanate (3)

[0045] A solution of thiocarbonyl diimidazole (1.5 equiv.) in dichloromethane was added to a stirred solution of rosin amine in dichloromethane at 0°C under an atmosphere of dry nitrogen. After the addition was complete, the reaction mixture was heated at 45°C during 16h. The solvent was evaporated and the solid residue filtered through a column of silica gel to furnish rosin isothiocyanate as an oil (yield: 87%). Characterisation: oil; 1H-NMR, δ(ppm): 7.16 (1H); 6.99 (1H); 6.89 (1H); 3.37 (2H); 2.90 (2H); 2.82 (1H); 1.22 (6H); 1.21 (3H); 0.96 (3H).

Evaluation of Marine Antifouling Activity of Test Compounds

[0046] The rate of settlement of laboratory reared cyprid larvae of the barnacle Balanus amphitrite was determined for testing the activity of candidate anti-fouling compounds.

Settlement Assay

[0047] Tests are carried out in four replicates in sterile polystyrene multi well plates. Between 25 and 40 cyprid larvae are injected in the dishes containing either 2ml of test solution (see below), solvent control or a positive control (Dichloro-n-octyl-isothiazolinone).

[0048] Dishes are incubated for 24h at a temperature of 27°C ± 2. After incubation the cyprids are screened for signs of toxicity. Larvae are classified in three categories: A) alive and swimming; B) alive but not active; C) dead. The test is terminated by addition of a drop of 20% formaldehyde and the numbers of settled and non-settled larvae are counted.

[0049] Settlement is evaluated as follows: 1) Non settled: not attached free swimming cyprids; 2) settled cyprids: attached, but not metamorphosed cyprids; 3) barnacles: attached juvenile barnacles. Categories 2 and 3 are considered to be settled. Percentage settlement in test solution is compared with controls. Estimates of the median effect concentration (EC-50) after 50 hrs. are calculated using the Spearman-Kärber method.

[0050] All seawater used is of natural origin and filtered unto 0.2 micron. Stock solutions of test compounds are prepared by dissolving an amount of test substance in a suitable solvent and subsequent addition of seawater. The stock solutions are used to prepare several dilution series in seawater. Controls are made of seawater, or, if appropriate, in a mixture of seawater and solvent. The solvent concentration in the controls is equal to the highest concentration in the test solution. As an internal standard (positive control) a concentration range of 0 to 5ppm dichloro-n-octylisothiazolinone will is included in each test.

<table>
<thead>
<tr>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>reference*</td>
</tr>
</tbody>
</table>

* = 4,5-dichloro-n-octylisothiazolinone
Claims

1. Compounds of the formula I

wherein

\( R^1 \) represents \( NR^2R^3 \) wherein
R² represents a hydrogen atom, C₁ - C₈-alkyl and
R³ represents C=OR⁴ wherein
R⁴ represents a hydrogen atom or one of the groups OR⁵ or NHR⁵ wherein
R⁵ designates C₁ - C₈-alkyl or aryl, each optionally substituted by halogen; or

R¹ represents N=CR⁶R⁷ wherein
R⁶ represents a hydrogen atom, C₁ - C₆-alkyl or aryl, and
R⁷ represents C₁ - C₆-alkyl or aryl, each optionally substituted by halogen; or

R¹ represents an isonitril, isocyanate, isothiocyanate or guanidino group; and
n represents 0 or 1,

with the exception of the compounds

2. Compounds of the formula I according to claim 1, wherein

R¹ represents NR²R³ wherein
R² represents a hydrogen atom or C₁ - C₄-alkyl and
R³ represents C=OR⁴ wherein
R⁴ represents a hydrogen atom or one of the groups OR⁵ or NHR⁵ wherein
R⁵ represents C₁ - C₄-alkyl or aryl, each optionally substituted by halogen; or

R¹ represents N=CR⁶R⁷ wherein
R⁶ represents a hydrogen atom, methyl or optionally halogen substituted aryl, and
R⁷ represents C₁ - C₄-alkyl or optionally halogen substituted aryl; or

R¹ represents an isonitrile, isocyanate, isothiocyanate or guanidino moiety.

3. Compounds of the formula I according to claim 1, wherein

R¹ represents NR²R³ wherein
R² represents a hydrogen atom and
R³ represents C=OR⁴ wherein
R⁴ represents a hydrogen atom.

4. Method for controlling or combating a marine or freshwater fouling organism which comprises contacting said organism or the locus thereof with an anti-fouling-effective amount of at least one compound of formula I.
R\textsuperscript{1} represents \textit{NR}\textsuperscript{2}R\textsuperscript{3} wherein

- R\textsuperscript{2} represents a hydrogen atom, C\textsubscript{1} - C\textsubscript{8}-alkyl and
- R\textsuperscript{3} represents C=OR\textsuperscript{4} wherein
- R\textsuperscript{4} represents a hydrogen atom or one of the groups OR\textsuperscript{5} or NHR\textsuperscript{5} wherein
- R\textsuperscript{5} designates C\textsubscript{1} - C\textsubscript{8}alkyl or aryl, each optionally substituted by halogen; or

R\textsuperscript{1} represents N=CR\textsuperscript{6}R\textsuperscript{7} wherein
R⁶ represents a hydrogen atom, C₁ - C₆-alkyl or aryl, and
R⁷ represents C₁ - C₆-alkyl or aryl, each optionally substituted by halogen; and
R¹ represents an isonitrile, isocyanate, thiocyanate or guanidino group; and
n represents 0 or 1.

5. Agents, characterized in that the comprise an antifouling-effective amount of at least one compound of formula I as defined in claim 4 and an aquatically acceptable inert carrier.

6. Use of compounds of formula I as defined in claim 4 or agents as defined in claim 5 to control and combat marine and/or freshwater fouling organisms.

7. Process for the preparation of anti-fouling agents, characterized in that compounds of formula I as defined in claim 4 are mixed with an aquatically acceptable inert carrier.

Preferred are compounds wherein n represents 1.
Preferred are compounds of the formula I.

The compounds of the formulae I₁ to I₁₃ in which R¹ has the above given general and preferred meanings are new and further subject of the present invention, with the exception of the compounds


WO 00/07982 discloses saturated and unsaturated abietane derivatives of a general formula and their use in diagnostic compositions.

The structures of dehydroabietyl-isothiocyanate, dehydroabietyl-isocyanate and dehydroabietyl-isonitrile are known from Chemical Abstracts Registry Numbers CA 115269-93-7, CA 63692-75-1 and 121282-63-1.
wobei

\[ R^1 \text{ NR}^2 R^3 \text{ darstellt, wobei} \]

\[ R^2 \text{ ein Wasserstoffatom, C}_1^-\text{C}_8^-\text{Alkyl darstellt, und} \]
\[ R^3 \text{ C=OR}^4 \text{ darstellt, wobei} \]
\[ R^4 \text{ ein Wasserstoffatom oder eine der Gruppen OR}^5 \text{ oder NHR}^5 \text{ darstellt, wobei} \]
\[ R^5 \text{ C}_1^-\text{C}_8^-\text{Alkyl oder Aryl bezeichnet, die jeweils gegebenenfalls mit Halogen substituiert sind, oder} \]

\[ R^1 \text{ N=CR}^6 R^7 \text{ darstellt, wobei} \]

\[ R^6 \text{ ein Wasserstoffatom, C}_1^-\text{C}_8^-\text{Alkyl oder Aryl darstellt, und} \]
2. Verbindungen der Formel I gemäß Anspruch 1, wobei

\[ R^1 \quad NR^2 R^3 \quad \text{darstellt, wobei} \]
\[ R^2 \quad \text{ein Wasserstoffatom, C}_1\text{-C}_4\text{-Alkyl darstellt, und} \]
\[ R^3 \quad C=OR^4 \quad \text{darstellt, wobei} \]
\[ R^4 \quad \text{ein Wasserstoffatom oder eine der Gruppen OR^5 oder NHR^5 darstellt, wobei} \]
\[ R^5 \quad \text{C}_1\text{-C}_4\text{-Alkyl oder Aryl darstellt, die jeweils gegebenenfalls mit Halogen substituiert sind, oder} \]
\[ R^1 \quad N=CR^6 R^7 \quad \text{darstellt, wobei} \]
\[ R^6 \quad \text{ein Wasserstoffatom, Methyl oder gegebenenfalls Halogen-substituiertes Aryl darstellt, und} \]
\[ R^7 \quad \text{C}_1\text{-C}_4\text{-Alkyl oder gegebenenfalls Halogen-substituiertes Aryl darstellt, oder} \]
\[ R^1 \quad \text{eine Isonitril-, Isocyanat-, Isothiocyanat- oder Guanidinogruppe darstellt.} \]
das In-Kontakt-Bringen des Organismus oder des Ortes desselben mit einer fäulnisverhindern den wirksamen Men-
ge wenigstens einer Verbindung der Formel I:

wobei

\[ R_1 \text{ NR}_2 R_3 \] darstellt, wobei

\[ R_2 \text{ ein Wasserstoffatom, } C_1-C_8-Alkyl \text{ darstellt, und} \]

\[ R_3 \text{ C=OR}^4 \text{ darstellt, wobei} \]

\[ R_4 \text{ ein Wasserstoffatom oder eine der Gruppen OR}^5 \text{ oder NHR}^5 \text{ darstellt, wobei} \]

\[ R_5 \text{ C}_1-C_8-\text{Alkyl oder Aryl darstellt, die jeweils gegebenenfalls mit Halogen substituiert sind, oder} \]
R<sup>1</sup> N=CR<sup>6</sup>R<sup>7</sup> darstellt, wobei

R<sup>6</sup> ein Wasserstoffatom, C<sub>1</sub>-C<sub>6</sub>-Alkyl oder Aryl darstellt, und
R<sup>7</sup> C<sub>1</sub>-C<sub>6</sub>-Alkyl oder Aryl darstellt, die gegebenenfalls mit Halogen substituiert sind, oder

R<sup>1</sup> eine Isonitril-, Isocyanat-, Isothiocyanat- oder Guanidinogruppe darstellt, und
n 0 oder 1 darstellt.

5. Mittel, <strong>dadurch gekennzeichnet, dass</strong> sie eine fäulnisverhindernde, wirksame Menge wenigstens einer Verbindung der Formel I gemäß Anspruch 4 und einen aquatisch annehmbaren inerten Träger umfassen.


7. Verfahren zur Herstellung von Antifoulingmitteln, <strong>dadurch gekennzeichnet, dass</strong> Verbindungen der Formel I gemäß Anspruch 4 mit einem aquatisch annehmbaren Träger vermisch werden.

**Revidications**

1. Composés de formule I:
dans laquelle
R¹ représente NR²R³ dans laquelle
   R² représente un atome d'hydrogène, un alkyle en C₁-C₈ et
   R³ représente C=OR⁴ dans laquelle
   R⁴ représente un atome d'hydrogène ou un des groupements OR⁵ ou NHR⁵ dans laquelle
   R⁵ désigne un alkyle en C₁-C₈ ou aryle, chacun facultativement substitué par un halogène ; ou
R¹ représente N=CR⁶R⁷ dans laquelle
   R⁶ représente un atome d'hydrogène, un alkyle en C₁-C₆ ou aryle, et
   R⁷ représente un alkyle en C₁-C₈ ou aryle, chacun facultativement substitué par un halogène ; ou
R¹ représente un groupement isonitrile, isocyanate, isothiocyanate ou guanidino ; et
n représente 0 ou 1
avec l'exception des composés
2. Composés de formule I selon la revendication 1 dans laquelle
   \( R^1 \) représente \( NR^2 R^3 \) dans laquelle
   - \( R^2 \) représente un atome d'hydrogène, un alkyle en \( C_1-C_4 \) et
   - \( R^3 \) représente \( C=OR^4 \) dans laquelle
   - \( R^4 \) représente un atome d'hydrogène ou un des groupements \( OR^5 \) ou \( NHR^5 \) où
     - \( R^5 \) désigne un alkyle en \( C_1-C_4 \) ou aryle, chacun facultativement substitué par un halogène ; ou
   - \( R^1 \) représente \( N=CR^6 R^7 \) dans laquelle
     - \( R^6 \) représente un atome d'hydrogène, un méthyle ou un aryle facultativement substitué par un halogène et
     - \( R^7 \) représente un alkyle en \( C_1-C_4 \) ou aryle facultativement substitué par un halogène ; ou
   - \( R^1 \) représente une partie isonitrile, isocyanate, isothiocyanate ou guanidino.

3. Composés de formule I selon la revendication 1 dans laquelle
   - \( R^1 \) représente \( NR^2 R^3 \) dans laquelle
     - \( R^2 \) représente un atome d'hydrogène et
     - \( R^3 \) représente \( C=OR^4 \) dans laquelle
       - \( R^4 \) représente un atome d'hydrogène.

4. Procédé pour contrôler ou combattre un organisme d'encrassement des eaux marines ou des eaux continentales
   qui comprend la mise en contact dudit organisme ou du locus de celui-ci avec une quantité efficace d'anti-encras- sement d'au moins un composé de formule I.
R\(^1\) représente NR\(^2\)R\(^3\) dans laquelle
   - R\(^2\) représente un atome d'hydrogène, un alkyle en C\(_1\)-C\(_8\) et
   - R\(^3\) représente C=OR\(^4\) dans laquelle
   - R\(^4\) représente un atome d'hydrogène ou un des groupements OR\(^5\) ou NHR\(^5\) où
     - R\(^5\) désigne un alkyle en C\(_1\)-C\(_8\) ou aryle, chacun facultativement substitué par un halogène ; ou
   - R\(^1\) représente N=CR\(^6\)R\(^7\) dans laquelle
     - R\(^6\) représente un atome d'hydrogène, un alkyle en C\(_1\)-C\(_6\) ou aryle, et
     - R\(^7\) représente un alkyle en C\(_1\)-C\(_8\) ou aryle, chacun facultativement substitué par un halogène ; ou
   - R\(^1\) représente un groupement isonitrile, isocyanate, isothiocyanate ou guanidino ; et
   - n représente 0 ou 1.

5. Agents, caractérisés en ce qu'ils comprennent une quantité efficace d'anti-encrassement d'au moins un composé de formule I comme défini dans la revendication 4 et un support inerte acceptable au niveau aquatique.

6. Utilisation des composés de formule I comme défini dans la revendication 4 ou agents comme défini dans la revendication 5 pour contrôler et combattre un organisme d'encrassement des eaux marines et/ ou des eaux continentales.

7. Procédé pour la préparation d'agents d'anti-encrassement caractérisé en ce que les composés de formule I comme défini dans la revendication 4 sont mélangés avec un support inerte acceptable au niveau aquatique.