Pharmaceutical compositions comprising faropenem sodium and a diamineacetate compound for improving gastrointestinal absorption

Pharmazeutische Zusammensetzungen, die Faropenem Natrium und eine Diamineacetat Verbindung zur Verbesserung der Magen-Darm Trakt Absorption enthalten

COMPOSITIONS pharmaceutiques comprenant du faropenem sodium et un diamine acétate pour améliorer l’absorption gastrointestinale

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE LI LU MC NL PT SE

Priority: 17.09.1999 JP 26463799

Date of publication of application: 10.10.2001 Bulletin 2001/41

Proprietor: Daiichi Asubio Pharma Co., Ltd. Minato-ku, Tokyo 107-8541 (JP)

Inventors:
NOMURA, Masaaki
Ohra-gun, Gunma 370-0708 (JP)

SUGITA, Osamu
Tatebayashi-shi, Gunma 374-0019 (JP)

Representative: HOFFMANN EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)

References cited:
EP-A- 0 121 502
EP-A- 0 497 353
EP-A1- 0 121 502
EP-A1- 0 399 781
EP-A2- 0 497 353
WO-A1-99/36098
DD-A- 29 756
GB-A- 990 365
GB-A- 1 061 426
JP-A- 7 069 887
JP-A- 8 012 675

DATABASE WPI Section Ch, Week 199937

SUZUKA T ET AL: "EFFECT OF SALICYLATE AND DISODIUM EDTA ON THE RAT INTESTINAL ABSORPTION OF CEFMETAZOLE" CHEMICAL & PHARMACEUTICAL BULLETIN (TOKYO), vol. 33, no. 10, 1985, pages 4600-4605, XP001069054 ISSN: 0009-2363

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
FIELD OF THE INVENTION

[0001] The present invention relates to pharmaceutical antibacterial compositions containing faropenem sodium as an active ingredient, which are stable and show good gastrointestinal absorption.

PRIOR ART

[0002] Penem compounds are non-natural β-lactam compounds the design of which is based on the concept of fusing the structures of penicillin and cephalosporin (for example, see Woodward, R. B., In Recent Advances in the Chemistry of β-Lactam Antibiotics, Elks, J., Ed., The Chemical Society, London, 1977, Spec. No. 28, pp. 167-180; Japanese Patent Public Disclosure(Kokai) Nos. 207387/86, 162694/88, 222486/85 and 119486/79). They are a novel type of antibiotic having both the wide antibacterial spectrum and high safety of penicillin and cepham antibiotics belonging to β-lactam antibiotics, as well as the potent antibacterial activity and high β-lactamase stability of carbapenem antibiotics. Sodium (+)-(5R, 6S)-6-[(R)-1-hydroxyethyl]-7-oxo-3-[(R)-2-tetrahydrofuryl]-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate 5/2 hydrate (faropenem sodium, hereinafter referred to as compound 1) is currently used as an oral drug for various infectious diseases and is reported to show potent antibacterial activity against not only methicillin-sensitive Staphylococcus aureus (MSSA), Streptococcus pyogenes and Streptococcus pneumoniae but also gram-positive bacteria for which conventional β-lactam drugs have proved ineffective such as penicillin-resistant pneumococci (PRSP), oral staphylococci and enterococci, also showing a wide antibacterial spectrum covering gram-negative bacteria such as Haemophilus influenzae and anaerobic bacteria such as the genus Bacteroides, which activity is due to its novel skeleton penem ring ((Kagaku Ryoho no Ryoiki The Field of Chemotherapy), Vol. 13, No. 10, pp. 74-80, 1997). This compound is also reported to have potent antibacterial activity against pathogenic bacteria of periodontis such as Porphyromonas gingivalis (CHEMOTHERAPY, Vol. 42, S-1, pp: 38-50, 1994) as well as potent antibacterial activity against bacterial strains from dental infectious diseases which have recently become more and more resistant (Journal of Japan Chemotherapy Society, Vol. 45, No. 11, pp. 965-971, 1997).

[0003] However, penem compounds are chemically unstable materials susceptible to hydrolysis, oxidation, photoisomerization and the like, in much the same way as other β-lactam compounds.

[0004] Moreover, water-soluble β-lactam compounds are known to show poor gastrointestinal absorption as compared with fat-soluble compounds (Akinobu Otsuka et al., Pharmaceuticals, Revised 2nd Edition., Nankodo). Such drugs tend not to produce a reliable therapeutical effect, and, antibacterial compounds such as penem compounds also have a tendency to affect the flora of enteric bacteria thereby inducing loose stools or diarrhea.

[0005] Thus, the application range, administration route and dosage form of penem compounds have been limited due to their instability and poor gastrointestinal absorption.

[0006] Syrup is a dosage form which is easy to swallow even for seniors and children. It is a dosage form with excellent characteristics which masks a bitter or unpleasant taste of drugs with the sweetening effect and consistency of sugars and various flavoring agents, and improves palatability with suitable colorants giving a pleasant color and the like. Dry syrups to be dissolved or suspended before use have been studied in the case of active ingredients unstable in water.

[0007] Several dry syrup formulations have been developed for antibiotics which are generally unstable in water. Examples include macrolide antibiotic formulations such as josamycin propionate (Josamy Dry Syrup® from Yamanouchi Pharmaceutical) or erythromycin ethylsuccinate (Erythrocin Dry Syrup® from Dainippon Pharmaceutical) and cephalosporin antibiotic formulations such as cefpodoxime proxetil (Banan Dry Syrup® from Sankyo), all of which are used as suspensions in water added before use.

[0008] When dry syrups are used as suspensions in hospitals, for example, they are often combined with water and kept to stand before they are taken by inpatients. Also at home, dry syrups are mostly taken in divided portions after being dispersed or dissolved in water. In these cases, suspensions are allowed to stand and insoluble ingredients precipitate to affect homogeneity of active ingredients and therefore the dosage regimen is not faithfully followed.

[0009] From the viewpoint of palatability, patients’ rejection of medication must be avoided, especially in the case of children having a disease. However, suspensions are not only disliked for their texture but are also responsible for oral or digestive discomfort due to the presence of insoluble ingredients, leading to children to reject second and subsequent doses. In seniors, insoluble ingredients may enter the gaps between false teeth to cause pain. This decreases patient compliance and therefore the dosage regimen is not faithfully followed.

[0010] It is known that α,ω-diamineacetate compounds form complexes with a metal ion such as copper or iron, and thus inhibit decomposition reactions which are catalyzed by heavy metals, making them suitable for use as stabilizers against components susceptible to such reactions such as fats and the active ingredients of some drugs.

intestinal absorption can be imparted to these compounds by incorporating an
have found that penem compounds are stable in solvents comprising water and, more surprisingly, improved gastroin-
pharmaceutical antibacterial compositions, the present invention has been accomplished. Specifically, the inventors
intestinal absorption of penem compounds with a view to developing a technique for administering penem compounds as
As a result of careful studies of formulation techniques focusing on stability in aqueous solution and gastroin-
[0019] SUMMARY OF THE INVENTION
As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.

[0018] As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.

[0017] Among α,ω-diamineacetate compounds, disodium ethylenediaminetetraacetate is thought to increase pene-
tration into intercellular spaces by forming a complex with a calcium ion thereby retaining the structure of intracellular
spaces of gastrointestinal mucosa (Ryuji Iga et al., Recent Advances in Biopharmacy, 1994, Yakujinippo).

[0016] EP 0 497 353 A2 discloses an oral antibacterial composition comprising a penem or carbapenem antibiotic
and as an absorption improver a substance selected from a dipeptidase inhibitor, cilastatin, glutathione and
N-acetyl-L-cysteine.

[0015] TAKUMI SUZUKA et al. (Chem. Pharm. Bull., 1985, 33(10) 4600-4605) discloses the use of EDTA for improving the
intestinal absorption of Cefmetazole.

[0014] DD 29756 A discloses a purification and stabilizing process for antibiotic agents. In particular, remaining inor-
ganic compounds and colouring heavy metal ions are removed in the final steps of producing antibiotic agents, such as
penicillin and streptomycin, by adding disodium ethylenediaminetetraacetate.

[0013] WO 99/36098 describes a composition comprising a penem antibiotic or its salt, such as faropenem sodium,
and a nonaqueous base, which is used as a topical antibacterial agent. It is disclosed in said document that penem
antibiotics are usually chemically unstable towards hydrolysis, oxidation and photoisomerization.

[0012] WO 99/36098 describes a composition comprising a penem antibiotic or its salt, such as faropenem sodium,
and its pharmaceutically acceptable salts and metabolizable esters. Specifically, an injectable solution containing said
compound and disodium edetate is described.

[0011] DD 29756 A discloses a purification and stabilizing process for antibiotic agents. In particular, remaining inor-
ganic compounds and colouring heavy metal ions are removed in the final steps of producing antibiotic agents, such as
penicillin and streptomycin, by adding disodium ethylenediaminetetraacetate.

[0010] WO 99/36098 describes a composition comprising a penem antibiotic or its salt, such as faropenem sodium,
and its pharmaceutically acceptable salts and metabolizable esters. Specifically, an injectable solution containing said
compound and disodium edetate is described.

[0009] As a result of careful studies of formulation techniques focusing on stability in aqueous solution and gastroin-
estestinal absorption of penem compounds with a view to developing a technique for administering penem compounds as
pharmaceutical antibacterial compositions, the present invention has been accomplished. Specifically, the inventors
have found that penem compounds are stable in solvents comprising water and, more surprisingly, improved gastroin-
estestinal absorption can be imparted to these compounds by incorporating an α,ω-diamineacetate compound into the
composition.

[0008] Accordingly, the present invention provides pharmaceutical oral antibacterial compositions containing faropen-
em sodium as an active ingredient, which is formulated as a dry syrup which allows highly water-soluble faropenem
sodium to be administered to seniors and children as clear aqueous solutions with good compliance.

[0007] As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.

[0006] As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.

[0005] As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.

[0004] As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.

[0003] As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.

[0002] As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.

[0001] As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.

[0000] As described above, there are demands for widely applying penem compounds having high safety and potent
antibacterial activity as pharmaceutical antibacterial compositions, but the actual demands have not been sufficiently
satisfied because any techniques for formulating them into various dosage forms such as oral formulations or solutions
have not been developed. For children and seniors, safe and effective antibacterial compositions which ensure proper
patient compliance and require only an easy-to-follow dosage regimen would be especially desirable.
on the nature of the compound, but can be determined by evaluating the stability in solvents comprising water and the gastrointestinal absorption of the penem compound. Normally, they are contained at 0.1-100%, preferably 0.1-20% relative to active ingredients as free anhydrides.

[0027] In the present invention, stability of faropenem sodium is improved. Therefore, pharmaceutical antibacterial compositions of the present invention can be used as formulations to be administered in the state where they are dissolved or suspended in a solvent comprising water, i.e., formulations to be dissolved or suspended before use. As used herein, formulations to be dissolved or suspended before use mean formulations which are shipped in a solid form but dissolved or suspended between opening and application. Normally, they are dissolved or suspended immediately before application.

[0028] In the present invention, pharmaceutical antibacterial compositions having good gastrointestinal absorption can be obtained by incorporating an α,ω-diamineacetate compound. Thus, pharmaceutical antibacterial compositions of the present invention are useful as oral formulations.

[0029] These formulations can be prepared by incorporating an active ingredient, an α,ω-diamineacetate compound and other additives via the routine process.

[0030] Pharmaceutical antibacterial compositions of the present invention are useful as oral formulations to be dissolved or suspended before use, specifically dry syrups because the stability in the state where they are dissolved or suspended in a solvent comprising water and the gastrointestinal absorption of penem compounds are improved in the present invention.

[0031] Dry syrups means syrups to be dissolved or suspended before use, but the present invention also preferably encompasses similar powdery oral formulations such as granules, fine granules or powders containing a high ratio of sucrose and substantially suitable to be dissolved or suspended before use as embodiments of the present invention.

[0032] As used herein, dry syrups to be dissolved in water mean those which become clear and leave no trace of precipitated ingredients when mixed with an appropriate amount of water. Generally, the amount of water in which dry syrups are dissolved or suspended is determined taking into account (1) the influence of the concentration on the stability of the active ingredient, (2) ease of handling in the medical field, and (3) palatability for patients. For example, Josamy Dry Syrup (Yamanouchi Pharmaceutical) and Erythrocin Dry Syrup W (Dainippon Pharmaceutical) among commercially available dry syrups are shown to prepare suspensions at concentrations of 30, 40 and 100 mg (potency) /mL in the package inserts. Pharmaceutical compositions of the present invention can be used as dry syrups to be homogeneously dissolved in water within a wide concentration range of active ingredients, specifically at a concentration of 5-200 mg (potency) /mL, for example, 40 mg (potency) /mL, because the stability in solution or suspension in aqueous solvents and the gastrointestinal absorption of penem compounds are improved in the present invention. This is an especially preferred embodiment for faithfully following the dosage regimen and improving compliance in seniors and children.

[0033] Dry syrups can be prepared by incorporating an active ingredient, an α,ω-diamineacetate compound and other additives via the routine process. Such other additives include (1) excipients such as sucrose, lactose, fructose, mannitol, dextrose, (2) binders such as hydroxypropylcellulose or polyvinylpyrrolidone, (3) disintegrating agents such as starches, (4) plasticizers such as Macrogols, polyethylene glycol and triethyl citrate, (5) corrigents such as aspartame and citrate, (6) coating bases such as hydroxypropylmethylcellulose or Eudragit, as well as flavoring agents and colorants. The amounts of these additives can be determined as required depending on the desired pharmaceutical characteristics or other factors.

[0034] Formulations prepared are packaged in the form suitable for each dosage form, such as bottling, divided powder, press through packaging, ampoules, vials. The dose of thus obtained formulations is typically 50-1500 mg (potency), preferably about 100-1000 mg (potency) daily per adult (60 kg) depending on the route of administration, the disease to be treated, the condition of the disease, the age and other factors. For children, the dose can be calculated on the basis of body weight.

EXAMPLES

[0035] The following examples further illustrate the present invention without, however, limiting the scope of the invention thereto.

Example 1 Evaluation of the stability of compound 1 in the solid state

[0036] The effect of disodium ethylenediaminetetraacetate on the stability of compound 1 in the solid state was evaluated. A glass bottle containing a mixed powder or a compression molding having the composition shown in Table 1 was tightly sealed in the absence or presence of a desiccant and stored at 60°C for 7 days to observe the appearance. None of the compositions showed any change in appearance (Table 1). Therefore, disodium ethylenediaminetetraacetate was incorporated into compositions of various dosage forms in the following examples.
Example 2 Evaluation of the stability of a compression molding (tablet) containing compound 1

The effect of disodium ethylenediaminetetraacetate on the stability of a compression molding (tablet) containing compound 1 in the solid state was evaluated. A glass bottle containing tablets having the composition shown in Table 2 prepared by the process described later (Preparation example 2 of tablet of Example 6) was tightly sealed in the absence of a desiccant and stored at 40°C for one month to observe the appearance and determine the content of compound 1.

The content of compound 1 in tablets was determined by high-performance liquid chromatography as follows. A stainless steel high-performance liquid chromatography column packed with octadecylsilyl silica gel was used. The column temperature was 40°C. The mobile phase consisted of a binder of 870 mL of a solution containing 45 mM potassium dihydrogenphosphate, 5 mM sodium monohydrogenphosphate and 5 mM tetra-n-butylammonium bromide and 130 mL of acetonitrile. The flow rate was controlled to adjust the retention time of compound 1 to 11 min. For detection, a UV absorption spectrometer was used at a wavelength of 305 nm. The content of compound 1 was determined by the same method in Example 3 and 4 below.

Neither tablet showed any change in appearance, and the residual content of compound 1 was comparable irrespective of the presence or absence of disodium ethylenediaminetetraacetate (Table 2).

Table 1

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>1-1</th>
<th>1-2</th>
<th>1-3</th>
<th>1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition (weight in mg per tablet)</td>
<td>Faropenem sodium</td>
<td>247</td>
<td>247</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Disodium ethylenediaminetetraacetate</td>
<td>-</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>Solid form</td>
<td>Mixed powder</td>
<td>Mixed powder</td>
<td>Compression molding</td>
<td>Compression molding</td>
</tr>
<tr>
<td>Stability test results</td>
<td>Desiccant</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Initial appearance</td>
<td>White powder</td>
<td>White powder</td>
<td>White compression molding</td>
<td>White compression molding</td>
</tr>
<tr>
<td>Appearance after storage at 60°C/7 days</td>
<td>White powder</td>
<td>White powder</td>
<td>White compression molding</td>
<td>White compression molding</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>2-1</th>
<th>2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition (weight in mg per tablet)</td>
<td>Faropenem sodium</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Microcrystalline cellulose</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Hydroxypropylcellulose</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Magnesium stearate</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Glutathione</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Disodium ethylenediaminetetraacetate</td>
<td>-</td>
</tr>
<tr>
<td>Solid form</td>
<td>Compression molding</td>
<td>Compression molding</td>
</tr>
<tr>
<td>Stability test results</td>
<td>Desiccant</td>
<td>No</td>
</tr>
<tr>
<td>Initial appearance</td>
<td>White tablet</td>
<td>White tablet</td>
</tr>
</tbody>
</table>
Example 3 Evaluation of the stability of compound 1 in aqueous solution

[0040] The effect of disodium ethylenediaminetetraacetate on the stability of compound 1 in aqueous solution was evaluated. A glass bottle containing 5 mL of an aqueous solution having the composition shown in Table 3 containing 49.4 mg/mL (40.0 mg (potency)/mL) of compound 1 was tightly sealed and stored at room temperature for 7 days to observe the appearance and determine the content of compound 1.

[0041] As a result, the presence of disodium ethylenediaminetetraacetate had the effect of resisting change in appearance and loss of the residual content of compound 1 at concentrations of both 0.4 mg/mL and 2 mg/mL as compared with the control (without disodium ethylenediaminetetraacetate) (Table 3).

Example 4 Evaluation of the stability of compound 1 in suspension

[0042] The effect of disodium ethylenediaminetetraacetate on the stability of compound 1 in suspension was evaluated. A glass bottle containing 5 mL of a suspension having the composition shown in Table 4 containing 49.4 mg/mL of compound 1 in the presence of water-insoluble magnesium aluminometasilicate was tightly sealed and stored at 25°C for 7 days to observe the appearance and determine the content of compound 1.

[0043] All the compositions were initially white suspensions after being combined with water. This is because magnesium aluminometasilicate is water-insoluble. After storage, the presence of disodium ethylenediaminetetraacetate had the effect of resisting change in appearance and loss of the residual content of compound 1 at any concentration of 0.4 mg/mL, 2 mg/mL or 4 mg/mL as compared with the control (without disodium ethylenediaminetetraacetate) (Table 4).
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>4-1</th>
<th>4-2</th>
<th>4-3</th>
<th>4-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faropenem sodium</td>
<td>49.4</td>
<td>49.4</td>
<td>49.4</td>
<td>49.4</td>
</tr>
<tr>
<td>Sucrose</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>D-mannitol</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Magnesium aluminometasilicate</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Disodium ethylenediaminetetraacetate</td>
<td>-</td>
<td>0.4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stability test results</th>
<th>Initial appearance</th>
<th>Storage at 25°C/7 days</th>
<th>Appearance</th>
<th>Potency retention (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White suspension</td>
<td>White suspension</td>
<td>Yellow suspension</td>
<td>Pale greenish yellow suspension</td>
<td>Pale greenish yellow suspension</td>
</tr>
<tr>
<td>Pale greenish yellow suspension</td>
<td>Pale greenish yellow suspension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.7</td>
<td>93.2</td>
<td>98.2</td>
<td>96.3</td>
<td></td>
</tr>
</tbody>
</table>
Examples 3 and 4 showed that disodium ethylenediaminetetraacetate improves the stability of compound 1 in aqueous solution or suspension.

Example 5 Improvement of gastrointestinal absorption of compound 1

Seven-week old male Sprague-Dawley rats orally received 70.5 mg/kg (57.1 mg (potency) /kg) of compound 1 and 57.1 mg/kg of disodium ethylenediaminetetraacetate. Controls orally received 70.5 mg/kg of compound 1 alone. At 0.1 - 10 hours after administration, blood was collected. The concentration of compound 1 as free acid in plasma was determined by high-performance liquid chromatography. For determination, plasma was used after pretreatment. That is, 0.2 mL of plasma was stirred with 0.2 mL of acetonitrile and then centrifuged at 4°C, 12000 rpm for 15 min. Two hundreds μL of this supernatant was diluted in 800 μL of 10 mM phosphate buffer, and 200 μL of this dilution was applied on a high-performance liquid chromatography column. The chromatography conditions were as follows. A stainless steel high-performance liquid chromatographic column packed with octadecylsilil silica gel was used. The column temperature was room temperature. The mobile phase consisted of a binder containing 680 mL of a 20 mM aqueous sodium dihydrogenphosphate solution adjusted at pH 2 with phosphoric acid and 320 mL of acetonitrile. The flow rate was controlled at 1 mL/min. For detection, a UV absorption spectrometer was used at a wavelength of 318 nm.

The results of analysis showed that the area under the plasma level-time curve (AUC) was approximately doubled in the group coadministered with disodium ethylenediaminetetraacetate as compared with the control group, demonstrating that disodium ethylenediaminetetraacetate has the excellent effect of improving gastrointestinal absorption of compound 1 (Table 5).

<table>
<thead>
<tr>
<th></th>
<th>AUC (μg.hr/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>12.6 ± 5.7</td>
</tr>
<tr>
<td>Disodium ethylenediaminetetraacetate group</td>
<td>24.8 ± 9.3</td>
</tr>
</tbody>
</table>

Example 6 Preparation examples of formulations

Preparation examples of formulations containing compound 1 as an active ingredient together with an α,ω-di-amineacetate compound are shown below.

Preparation example 1 of dry syrup

A dry syrup having the composition above was prepared as follows. Compound 1, sucrose, polyethylene glycol and disodium ethylenediaminetetraacetate were mixed in an agitating granulator. This mixture was granulated by agitation while spraying it with a solution of Yellow No. 5 in water. These granules were dried in a fluidized bed granulator and then sprayed with orange essence. The granules were further dried in the same apparatus and then removed and screened through a 30-mesh sieve to give a desired dry syrup.
A dry syrup having the composition above was prepared as follows. Compound 1, sucrose, D-mannitol, saccharin sodium and disodium ethylenediaminetetraacetate were mixed in an agitating granulator. This mixture was granulated by agitation while spraying it with a binder of hydroxypropylcellulose and Yellow No. 5 in water. These granules were granulated by extrusion through a 42-mesh screen in an extrusion granulator. The granules were dried in a fluidized bed granulator and then sprayed with orange essence. The granules were further dried in the same apparatus and then removed and screened through a 30-mesh sieve to give a desired dry syrup.

When purified water was added to the resulting dry syrup at a concentration of compound 1 of 49.4 mg/mL, the dry syrup rapidly dissolved in it to give a clear orange solution.

Preparation example 3 of dry syrup

A dry syrup having the composition above was prepared as follows. Compound 1, sucrose, D-mannitol and disodium calcium ethylenediaminetetraacetate were mixed in a V model mixer. Separately, hydroxypropylcellulose and Yellow No. 5 were dissolved in water to prepare a binder. The mixed powder was granulated while spraying it with the binder in a fluidized bed granulator. The granules were sprayed with orange essence and then dried in the same apparatus. The granules were removed and screened through a 30-mesh sieve to give a desired dry syrup.

When purified water was added to the resulting dry syrup at a concentration of compound 1 of 49.4 mg/mL, the dry syrup rapidly dissolved in it to give a clear orange solution. After the solution was stored at 10°C for 6 days, no change in appearance was observed and the residual retention to the initial potency was 98.3%, showing good stability attributed to the effect of disodium calcium ethylenediaminetetraacetate.

Claims

1. A pharmaceutical oral antibacterial composition formulated as a dry syrup comprising faropenem sodium as an active ingredient, and an α,ω-diamineacetate compound.

2. The composition of claim 1 wherein the α,ω-diamineacetate compound is selected from the group consisting of ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid and salts thereof.
3. The composition of claim 2 wherein the \(\alpha,\omega\)-diamineacetate compound is ethylenediaminetetraacetic acid or a salt thereof.

4. The composition of any one of claims 1 to 3 which is prepared via a state in which the active ingredient is in contact with water.

5. The composition of any one of claims 1 to 4 which is in a solid state and is dissolved or suspended in a solvent comprising water before use.

6. The composition of any one of claims 1 to 5, wherein said dry syrup forms a clear solution when water is added to said dry syrup.

7. The composition of any one of claims 1 to 6 which dissolves homogeneously in water at a concentration of the active ingredient of 5 to 200 mg (potency)/ml.

Patentansprüche

1. Pharmazeutische orale antibakterielle Zusammensetzung, die als Trockensirup formuliert ist und Faropenem-Natrium als aktiven Bestandteil und eine \(\alpha,\omega\)-Diaminoacetatverbindung umfaßt.

2. Zusammensetzung gemäß Anspruch 1, worin die \(\alpha,\omega\)-Diaminoacetatverbindung ausgewählt ist aus Ethylenediamintetraessigsäure, Hydroxyethylethylendiamintriessigsäure, Dihydroxyethylethylendiamindiessigsäure, 1,3-Propan-diamintetraessigsäure, Diethylentripentaaessigsäure, Triethylenetetraminhexaessigsäure und Salzen davon.

3. Zusammensetzung gemäß Anspruch 2, worin die \(\alpha,\omega\)-Diaminoacetatverbindung Ethylenediaminetetraessigsäure oder ein Salz davon ist.

5. Zusammensetzung gemäß mindestens einem der Ansprüche 1 bis 4, die in festem Zustand vorliegt und vor der Verwendung in einem wasserhaltigen Lösungsmittel aufgelöst oder suspendiert wird.

7. Zusammensetzung gemäß mindestens einem der Ansprüche 1 bis 6, die bei einer Konzentration des aktiven Bestandteils von 5 bis 200 mg (Potenz)/ml in Wasser homogen aufgelöst wird.

Revendications

1. Composition pharmaceutique orale antibactérienne formulée sous forme d’un sirop sec contenant du faropenem sodium comme ingrédient actif, et un composé \(\alpha,\omega\)-diamine-acétate.

3. Composition selon la revendication 2 dans laquelle le composé \(\alpha,\omega\)-diamine-acétate est l’acide éthylène-diamine tétra-acétique ou un sel de celui-ci.

4. Composition selon l’une quelconque des revendications 1 à 3 qui est préparée via un état dans lequel l’ingrédient actif est en contact avec de l’eau.

5. Composition selon l’une quelconque des revendications 1 à 4 qui est préparée à l’état solide et est dissous ou mis
en suspension dans un solvant contenant de l'eau avant utilisation.

6. Composition selon l'une quelconque des revendications 1 à 5, dans laquelle ledit sirop sec forme une solution limpide lorsque de l'eau est ajoutée audit sirop sec.

7. Composition selon l'une quelconque des revendications 1 à 6 qui se dissout de manière homogène dans de l'eau à une concentration en ingrédient actif de 5 à 200 mg (activité)/ml.