Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
DESCRIPTION OF THE STATE OF THE ART

[0002] The term TGF was first used for describing the activity produced by a cell line transformed with the murine sarcoma virus (deLarco JE and Todaro GJ (1978) Proc. Natl. Acad. Sci. 75:4001-4005; Mizel SB et al. (1980) Proc. Natl. Acad. Sci. 77:2205-2208). The supernatant of these cells was able to induce normal growth, in soft agar, of cells that require a solid support for growth. More specific studies demonstrated two classes of TGF, called TGFα and TGFβ, which in turn comprise families of related proteins. The TGFβ family consists of 5 isoforms (Brand T. and Schneider MD (1995) J. Mol. Cell Cardiol. 27:5-18) of dimeric structure (Schlunegger MP and Grutter MG (1992) Nature 358:430-434; Brand T. and Schneider MD (1995) J. Mol. Cell Cardiol. 27:5-18). Investigations of the mature proteins, purified from a single species, demonstrated a high degree of identity between their sequences (Table 1).

Table 1. Homology among different types of TGFβs. TGFβ1, TGFβ2 and TGFβ3 derived from humans, TGFβ4 derived from chicken and TGFβ5 from frog. (Roberts AB and Sporn MB, 1990).

<table>
<thead>
<tr>
<th>% of</th>
<th>TGFβ1</th>
<th>TGFβ2</th>
<th>TGFβ3</th>
<th>TGFβ4</th>
<th>TGFβ5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGFβ1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>TGFβ2</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>TGFβ3</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>TGFβ4</td>
<td>82</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>TGFβ5</td>
<td>76</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
</tbody>
</table>

[0003] TGFβ1 is synthesized as a precursor of 390 amino acids called Pre-Pro-TGFβ1. In a first hydrolysis there is release of a hydrophobic fragment of 29 amino acids, which gives rise to Pro-TGFβ1. Then the mature TGFβ2 is released by another cut in a region that precedes the terminal amino of TGFβ1 and that consists of two arginines, giving rise to a protein of 112 amino acids with a molecular weight of 12 kDa. To produce the biologically active form, two of these monomers join together by means of disulphide bridges, yielding a dimer of 25 kDa. Alterations of this structure cause loss of biological function (Barnard JA et al. (1990) Biochim. Biophys. Acta 1032:79-87).

[0004] Various domains are known to exist within the structure of TGFβ1. One of these domains is found to be located between amino acids 40 and 82 and is involved in the binding of TGFβ1 to its cell receptors (Quian SW et al. (1992) Proc. Natl. Acad. Sci. 89:6290-6294; Burmester JK et al. (1993) Proc. Natl. Acad. Sci. 90:8628-8632).

Receptors of TGFβ1 and other binding proteins

[0006] RII would be the one with the task of binding TGFβ 1 and presenting it to RII which in turn would form a complex with RI (Yamashita et al. (1994) J. Biol. Chem. 269:20172-20178) or to complexes in which various molecules of RI are combined with RII (Weiss G. and Massagué J. (1996) EMBO J 15:276-289). RII-RI interaction would give rise to phosphorylation of RI and subsequent activation of its serine/threonine kinase which would phosphorylate to second messengers like the MADR2 proteins (Macias-Silva M et al., (1996) Cell 87:1215-1224).

[0007] W9625178 disclosed active fragments of TGFβ of 45 amino acids. FR2720069 disclosed the modified amino acid sequence of a TGFβ almost complete, without the N-terminal end of the natural polypeptide, and with changes, mutations or deletions, in the C-terminal end, particularly in a Phe which may be substituted by Ile, Ala or Ser or even
being deleted. WO9229793 disclosed amino acid sequences of the TGFβ-receptor either longer than 500 amino acids or, when shorter than 15 amino acids, they are not related to TGFβ or its receptors.

Role of TGFβ1 in hepatic differentiation and regeneration

[0008] The effects produced are different depending on the moment of development and on the type of cell.

• Enlargement of the extracellular matrix, on acting upon the liver stellate cells (Ito cells), the principal source of matrix proteins (Mustoe TA et al. (1987) Science 237:1333-1336).

WO9625178 disclosed active fragments of TGFβ of 45 amino acids. FR2720069 disclosed the modified amino acid sequence of a TGFβ almost complete, without the N-terminal end of the natural polypeptide, and with changes, mutations or deletions, in the C-terminal end, particularly in a Phe which may be substituted by Ile, Ala or Ser or even being deleted. WO9229793 disclosed amino acid sequences of the TGFβ-receptor either longer than 500 amino acids or, when shorter than 15 amino acids, they are not related to TGFβ or its receptors.

• Differentiation of the epithelial cells and hepatocytes (Fiorini JR et al. (1986) J. Biol. Chem. 261:16509-16513).

• Inhibition of cell growth during the process of liver regeneration. This effect is of great importance in the maintenance of cell rest in vivo (Kato Y et al. (1988) Proc. Natl. Acad. Sci. 85:9552-9556).

• Inhibition of endocytosis of the receptor of the epithelial growth factor (EGF) as has been observed in cultures of foetal rat hepatocytes (Noda M. and Rodan GA (1987) J. Cell Physiol. 133:426-437).

Role of TGFβ1 in hepatic fibrosis

[0009] TGFβ1 has been found to be associated with the processes of hepatic fibrosis (Czaja MJ et al. (1989) J. Cell Biol. 108:2477-2482; Annoni G. et al. (1992) J. Hepatol. 14:259-264) causing an increase in production of proteins of the extracellular matrix, by the liver stellate cells (lipocytes or Ito cells), of their receptors and inhibiting synthesis of the proteolytic enzymes that degrade the matrix (Ignotz RA and Massagué J. (1986) J. Biol. Chem. 261:4337-4345). In the liver, TGFβ1 induces the synthesis of collagen and fibronectin in the liver stellate cells (Weiner FR (1990) Hepatology 11:111-117). There is also auto-regulation by increasing its own synthesis, via induction of its mRNA.

[0010] TGFβ1 has also been found to be involved in increased synthesis-of α2-macroglobulin synthesized by the hepatocytes and the activated liver stellate cells. By binding to TGFβ1 and causing its inactivation (Bachem MG (1994) Ann NY Acad. Sci. 737:421-424), α2-macroglobulin is said to eliminate TGFβ1 from the extracellular compartments.

[0011] Investigation of patients with chronic liver damage has shown that there is a correlation between expression of TGFβ1 and expression of the mRNA for the type I procollagen and the serum levels of type III peptide of procollagen (Castilla A. et al. (1991) N. Engl. J. Med. 324:933-940).

[0012] Patients with cirrhosis of the liver have a shorter than normal life expectancy owing to the complications that arise in the course of the disease, such as portal hypertension or hepatic failure.

Effect of TGFβ1 on the extracellular matrix

[0013] Interaction of TGFβ1 with the cell receptors causes:

[0014] These effects lead to an increase in interactions of the cell with the extracellular matrix, which combined with greater reorganization of the proteins of which it is composed, gives rise to an increase in the total quantity of extracellular matrix (Roberts CJ et al. (1988) J. Biol. Chem. 263:4586-4592). These findings confirm that TGFβ1 is involved in cicatrization processes (Fukamizu H. and Grinnell F. (1990) Exp. Cell Res. 190:276-282; Barnard JA et al. (1990) Biochim. Biophys. Acta 1032:79-87).

Peptides as inhibitors of ligand-receptor interaction

[0015] There is the possibility of using small molecules, synthetic peptides, as analogues of molecules that are present...
in the body, with the aim of emulating their function. Studies conducted by LeSateur et al. demonstrate the possibility of using cyclized analogues of nerve growth factor (NGF), emulating the β turn region, permitting its binding to the receptor (LeSateur L. et al. (1996) Nature Biotechnology 14:1120-1122). It is also possible to use peptides as antagonists of these molecules, preventing the native factor interacting with its receptor by blocking mediated by the peptide (Lasarte JJ et al. (1994) J. Acquired Immune Deficiency Syndromes 7:129-134: LeSateur et al. (1995) J. Biol. Chem. 270: 6564-6569). Earlier studies had demonstrated the usefulness of synthetic peptides as inhibitors of ligand-receptor interaction even when the recognition epitope is not continuous (Daniels AJ et al. (1995) Mol. Pharmacol. 48:425-432), Other studies conducted with the type II receptor of TGFβ interaction even when the recognition epitope is not continuous (Daniels AJ et al. (1995) Mol. Pharmacol. 48:425-432), Other studies conducted with the type II receptor of TGFβ1 and with fetuin, a glycoprotein in the group of type II receptors, have demonstrated the possibility of using cyclized peptides as inhibitors of the interaction of TGFβ1 with RII (Demetriou M. et al. (1996) J. Biol. Chem. 271:12755-12761). With this cyclization it becomes possible to obtain peptides with a structure similar to that which could be obtained in vivo.

DETAILED DESCRIPTION OF THE INVENTION

Selection of the peptides to be synthesized

For the reasons stated above, we consider that peptides derived from TGFβ1 receptor type III or from endoglin could be inhibitors of the action of TGFβ1. We therefore decided to explore this possibility.

Synthesis of peptides

The peptides for synthesis were selected in different ways depending on whether they were derived from TGFβ1 receptor type III or from endoglin.

The peptides were chosen on the basis of software designed in our laboratory. One of the computer programs compares two amino acid sequences, with the aim of predicting partially complementary regions. Other programs were also used that were able to predict the regions of the proteins that would be most exposed, on the basis of the hydrophobicity and hydrophilicity of the amino acids making up their sequence.

Purification of the peptides by HPLC

The synthesized peptides were analysed and purified by high-performance liquid chromatography (HPLC), using a Waters 600E-900 system (Millipore Corp., Bedford, USA). A Waters Radial-Pak™ C18 300 Å 15 μm, 8x100mm column (Millipore Corp., Bedford, USA) was used for analysis of the peptides by analytical HPLC. The peptide was dissolved in a 0.1% solution of TFA in distilled water, to a maximum concentration of 1 mg/ml. The solution of peptide was injected (100 μl) into the column and was eluted in a water/acetonitrile gradient (Fig. 15) (Romil Ltd., Cambridge, USA) both with 0.1% TFA at a flow rate of 1 ml/min. The fractions that contained the peptide were detected by its absorbance at 220 nm and 280 nm (photodiode array detector, Waters 991, Millipore Corp., Bedford, USA).

A Waters Delta-Pak™ C18 300 Å 15 μm, 25x100mm column (Millipore Corp., Bedford, USA) was used for its purification. The peptide was dissolved and was injected (2 ml) under the same conditions as in the preceding case, employing the same gradient at a flow rate of 5 ml/min. The fraction that contained the pure peptide was collected in a flask.

IN VITRO TESTS. INVESTIGATION OF THE ACTIVITY OF THE PEPTIDES

Cell lines

A line derived from mink pulmonary epithelium, MV-1-Lu, was used (CCL-64, American Type Cell Culture, Virginia, USA). The cells were grown in 162 cm² culture flasks (Costar Corporation, Cambridge, USA) in a stove at 37°C and 5% CO₂, until subconfluence was attained. A complete medium was used: RPMI 1640 with L-glutamine (GibcoBRL, Life Technologies Ltd., Paisley, Scotland) supplemented with 5% of foetal calf serum (FCS, Biological Industries, Kibbutz Beit Haemek, Israel), 10 mM HEPES (1M HEPES Buffer, Bio-Whittaker, Verviers, Belgium) and antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin).
Test of inhibition of the growth of the MV-1-Lu cell line

[0024] The MV-1-Lu cells grown as indicated above were removed from the bottom of the culture flasks using 5 ml of trypsin-EDTA (Biological Industries, Kibbutz Beit Haemek, Israel), resuspended in complete medium and centrifuged at 1500 rev/min for 8 minutes. After centrifugation the cells were resuspended in complete medium to a concentration of 50,000 cells/ml. For conducting the test, 10 ml of the cell suspension were taken and dispensed in 96-well, flat-bottom culture plates (Costar Corporation, Cambridge, USA), adding 100 µl/well, and were incubated overnight at 37°C and 5% CO₂, which permits adhesion of the cells to the bottom of the wells. At the end of this time, the peptides to be tested were added in RPMI, to a final concentration of 200 µg/ml in the presence of a concentration of 200 pg/ml of TGFβ1 in RPMI, (R&D Systems Europe Ltd., Abingdon, UK). The final concentration of FCS in the well was 2.5%. After 24 hours of incubation, 1 µCi of tritiated thymidine was added per well (25 Ci mmol [methyl-³H]-thymidine, Amersham Life Science, Buckinghamshire, UK) with incubation for a further 12 hours (Grubeck-Loebenstein B. et al. (1989) J. Clin. Invest. 83:764-770; Brennan FM et al. (1990) Clin. Exp. Immunol. 81:278-285).

[0025] At the end of the incubation periods the cells were removed from the bottom of the wells with trypsin-EDTA and were collected using a manual harvester (Titertek cell harvester, Skatron Instruments Inc., Sterling, USA) which ruptures the cells, collecting the DNA in nitrocellulose filters (Filter MAT 11731, Skatron Instruments Inc., Sterling, USA) where it is fixed. The filters were placed individually in 5 ml polypropylene tubes to which 4 ml of scintillation fluid was added (Biogreen-11, Reactivos Scharlau S.A., Barcelona, Spain). The activity of each tube was quantified for 90 seconds in a β LKB scintillation counter (Beta plate system, LKB, Uppsala, Sweden).

Investigation of inhibition of binding of TGFβ1 to the cell receptors Selective labelling of the cell receptors (affinity labelling)

[0026] The MV-1-Lu cells were removed from the culture flasks incubating them at 37°C for 10 minutes, with 10 ml of solution I. (128 mM NaCl, 5 mM KCl, 25 mM 4-(2-hydroxyethyl)-1-piperazine ethanesulphonate at pH 7.5, 5 mM glucose and 1 mM EDTA). The cells thus removed were resuspended in solution 2 (128 Mm NaCl, 5 mM KCl, 50 mM 4-(2-hydroxyethyl)-1-piperazine ethanesulphonate at pH 7.5, 1.2 mM CaCl₂, 1.2 mM MgSO₄ and 5 mg/ml BSA) and were collected by centrifugation at 1000 x g for 5 minutes. After centrifugation the cells were resuspended in solution 2 at a concentration of 10⁶ cells/ml.

[0027] From this cell suspension, 0.5 ml aliquots were made in 24-well plates (Greiner GmbH, Frickenhausen, Germany), the peptides were added, in 50 µl of a 0.8 mg/ml solution, then this was incubated for 2 hours at 4°C with stirring. Next, [¹²⁵I]-TGFβ1 (2 µCi) was added to a final concentration of 277.2 pM ([¹²⁵I]-TGFβ1 human recombinant 800-2200Ci mmol, Amersham Life Science, Buckinghamshire, UK) and this was incubated for a further two hours at 4°C with stirring.

[0028] After incubation, the cells were transferred to a centrifuge tube and were centrifuged cold at 12,000 x g for 1 minute. They were then washed twice in cold solution 2 and were resuspended in 0.5 ml of cold solution 2, 5 µl of dimethyl sulfoxide (DMSO 99.5%, Sigma Chemical Co., St. Louis, USA) and disuccimidyl suberate (DSS, Pierce Chemical Co., Rockford, USA) giving a final concentration of 0.25 mM of DSS. Reaction was stopped at 15 minutes by dilution, centrifugation and washing with a solution containing 0.25M saccharose, 10 mM Tris and 1 mM EDTA at pH 7.4. The precipitate of cells was resuspended in 0.5 ml of Triton X-100 (Bio-Rad Laboratories, Hercules, USA) 1% v/v, 10 mM Tris at pH 7.0, 1 mM EDTA, 0.1 mM phenylmethylsulphonyl fluoride, 1 µg/ml pepstatin and 1 µg/ml leupeptin (Sigma Chemical Co., St. Louis, USA) and incubated for 40 minutes at 4°C. The fraction that is insoluble in detergent is separated by centrifugation at 12,000 x g for 15 minutes. The fractions that are soluble in detergent (supernatant) and insoluble (precipitate) were frozen at -20°C (Massagué J. and Like 3. (1989) J. Biol. Chem. 260:2636-2695).

Electrophoresis of proteins in sodium polyacrylamide dodecyl sulphate gel

[0029] The fractions soluble and insoluble in detergent were used for analysis by electrophoresis in acrylamide/bisacrylamide gels at 7.5% for 5-6 hours at 220 volts.

[0030] The proteins were stained with a solution of (comassie brilliant blue® R250 (Serva Feinbiochemica GmbH, Heidelberg, Germany) in methanol (50%) , acetic acid (10%) and distilled water, for 30 minutes. Subsequent washings were effected with a solution of methanol (50%), acetic acid (10%) and distilled water for 10 minutes, the first washing, and methanol (2.5%), acetic acid (0.5%) and distilled water, in the subsequent washings, until the background colour was removed.

Flow cytometry

[0031] Inhibition of the binding of TGFβ1, mediated by peptides, to the cell receptors was measured by the direct immunofluorescence method. An immunofluorescence kit was used for this (Fluorokine rh TGF-beta, R&D Systems
EXPERIMENTAL MODEL OF FIBROSIS

In vivo.

EXPERIMENTS IN VIVO. EXPERIMENTAL MODEL OF FIBROSIS

[0032] The MV-1-Lu cells grown in 162 cm² flasks were removed using solution 1 (described previously) and were resuspended in physiological saline for centrifugation at 500 x g for 5 minutes. After centrifugation, the cells were resuspended again in physiological saline at a concentration of 4x10⁶ cells/ml. 25 µl of the cell suspension was added to 12x75 mm borosilicate tubes, to which was added the peptide to be tested in 40 µl of RPMI 1640 medium, giving a final concentration of 0.42 ng/ml and 10 µl of biotinylated TGFβ1. As a control of specificity, 10 µl of a biotinylated reagent supplied with the kit was added. 10 µl of biotinylated TGFβ1 was added as a positive control and 20 µl of anti-TGFβ1 blocking antibody was added as a negative control. Physiological saline was added to all the controls until a total volume of 75 µl was reached. All the tubes were incubated for 1 hour at 4°C in darkness.

[0033] At the end of the incubation period, 10 µl of fluorescein-labelled avidin was added, incubating for 30 minutes at 4°C in darkness, after which 2 ml of a washing solution (RDF1) was added, followed by centrifugation at 500 x g for 6 minutes. The cell precipitate was resuspended in 0.2 ml of cold PBS for cytometry (FACScan, Becton Dickinson Immunocytometry Systems, California, USA). This method permits measurement of the fluorescence emitted by each cell when a laser beam is incident upon it, by means of a computer program (Lysis™ II, Becton Dickinson Immunocytometry Systems, California, USA). Fig. 16 shows a typical image from analysis by flow cytometry.

[0034] To obtain the data on inhibition of the binding of TGFβ1 to the receptors, the positive control of the test was used for delimiting the fields corresponding to the labelled cells, that have bound to the TGFβ1-biotin (M2) and to the unlabelled cells (M1). Once the fields had been delimited, the percentage of cells located in each of them was calculated. The same was done with the data obtained when the peptide was incubated with TGFβ1-biotin or with the cells, depending on whether they were derived from the receptors or the TGFβ1 respectively. With these data, the percentage inhibition of each peptide was calculated using the following formula: 100 - ((M2 Peptide-M2 Negative) x 100 / (M2 Positive-M2 Negative)).

E X P E R I M E N T S

[0035] Male white rats (albino Wistar strain) from simultaneous litters (5 weeks ± 1.5 weeks) were used, in order to homogenize in age and initial weight. Throughout the experiments, the animals were kept in conditions of constant temperature (22°C) with a 12-hour cycle of light and darkness. They had free access to water and food.

[0036] Hepatic cirrhosis (HC) was induced by inhalation of carbon tetrachloride for 11 weeks, twice per week (López Novoa JM et al. (1976) Patologia IX:223-240; Camps J. et al. (1987) Gastroenterology 93:498-505). Exposure to CCl₄ was effected by bubbling compressed air, at a flow rate of 3 litres/min, through a gas wash-bottle. One minute of exposure was used initially, increasing by one minute per week until 4 minutes was reached in the fourth week. CCl₄ was administered during the fifth week, starting again at the sixth week with an exposure of 5 minutes. This exposure time was maintained until week 11. 400 mg/l of phenobarbital (Lumirial®, Bayer, Leverkusen, Germany) was added to the drinking water, from one week before starting exposure to CCl₄ and until the end of the experimental period. Before starting the treatment, one week was left, in which they were not administered CCl₄. During treatment they were administered a weekly dose of CCl₄ as recorded (Fig. 2).

Distribution of the animals

[0037] The animals were divided into 4 groups before beginning the process of induction of hepatic cirrhosis.

[0038] Healthy controls (Co) : Animals that were not subjected to the fibrosis process.

[0039] Treated healthy controls (Co+P144): Animals that were not subjected to the fibrosis process and that were administered the peptide P144 during the last 3 weeks (coinciding in time with the treatment of the group of rats TiO₂₂) .

[0040] Cirrhotic controls 1 (Ci₁): Animals subjected to the process of induction of cirrhosis by inhalation of CCl₄ twice per week. These animals were separated into 2 groups on reaching the fifth week:

- **Cirrhotic controls 1 (Ci₁):** Animals that continued to be subjected to the process of induction of fibrosis up to week 11, without being administered the peptide P144. They were administered saline serum on alternate days, throughout the induction process (weeks 5 to 11).

- **Treated cirrhotics 1 (Ti₁):** Animals that were administered the peptide P144 derived from the sequence of the type III receptor, on alternate days, during the process of induction of fibrosis, from week 5 to week 11.

Cirrhotic controls 2 (Ci₂): Animals that continued to be subjected to the process of induction of fibrosis without
receiving the peptide P144 or saline serum. This group was subdivided into another two on reaching week 11.

Cirrhotic controls 2 (Cir 2): Cirrhotic animals that were not subjected to any type of treatment, kept as controls. These animals received injections of saline serum for 3 weeks (weeks 13 to 15).

Treated cirrhotics 2 (Tt12): Cirrhotic animals that were treated with the peptide derived from the sequence of the type III receptor (P144), for 3 weeks (weeks 13 to 15).

Treatment of the animals

[0041]

• Group Tt1: These animals underwent treatment during the fibrosis process. Treatment with the peptide started in the fifth week (before exposure to CCl₄ for 5 minutes) and continued up to the end of the eleven weeks of the cirrhosis induction process.

• Group Tt2: These animals underwent treatment after completion of the process of induction of cirrhosis (11 weeks). Treatment started one week after the last inhalation of CCl₄ and continued for 21 days.

[0042] Before starting the treatment and on its completion, blood was taken from all the animals that had been treated with the peptide. The peptide was administered by subcutaneous injection in the abdominal zone at a dose of 70 μg/animal in 500 μl of physiological saline.

Sacrifice of the animals and dissection of the liver

[0043] On completion of treatment of the animals with the peptide, both in the model with rats and in that with mice, the animals were sacrificed by decapitation, after taking blood from them from the retro-orbital plexus with a capillary.

[0044] This was followed immediately by dissection of the liver and collection of samples.

[0045] The samples were cut and placed in formol as fixing solution, for later histologic examination. Other fragments were placed in cryotubes, which were immersed in liquid nitrogen and then stored at -80°C.

Anatomopathologic evaluation of the liver

[0046] Histologic examination was carried out on fragments of liver previously fixed in formol for at least 24 hours, after which they were placed in ethanol (70%).

[0047] After dehydrating they were embedded in paraffin blocks. Successive sections 3 μm thick were prepared from the blocks obtained, using a Leitz rotary microtome and steel blades. Prior to staining the sections were deparaffined in xylene (AnalaR, BDH, Poole, UK) for 15 minutes, after heating them at 60°C in a stove for 15 minutes, and they were hydrated by successive passes through alcohols of decreasing concentration 100%, 96%, 80% and 70% and finally in water. The following stains were used:

- Haematoxylin-eosin.
- Sirius Red: A stain specific for collagen.

Confirmation of hepatic fibrosis: image analysis

[0048] For image analysis of the samples obtained, a light microscope was used (Olympus BH-2, Tokyo, Japan) connected to a video camera (Sony DXP-950P, Sony Co., Tokyo, Japan), with which the various fields of each preparation were photographed. Six fields were taken at random from each preparation stained with Sirius Red. The various images captured were analysed by means of a computer program (Visilog 4.1.5, Noesis, Orsay, France) which calculates the area of fibrosis and the total area of the preparation. From these data, a fibrosis index (area of fibrosis/total area) was calculated for each field. To be able to use this program it was necessary to modify image acquisition by using polarized light filters (Olympus U-POT, Tokyo, Japan) and green light filters (Olympus IF550, Tokyo, Japan) which made it possible to automate the process of sample analysis.
Detection of collagen in 14 μm sections of paraffin-treated tissue

The 14 μm sections that were used for this technique were obtained in the same way as the 3 μm sections mentioned previously. These sections were subjected to a process of deparaffinization for 12 hours in xylene. Once the paraffin had been eliminated, the samples were hydrated by passing them through different grades of alcohol 96%, 80%, 50%, completing the process in distilled water.

Once hydrated, they were subjected to a process of prestaining in a solution of 160 mg of Fast Green FCF (Fluka Chemika-BioChemika, Buchs, Switzerland) in 160 ml of saturated picric acid (Merck, Darmstadt, Germany) for 15 minutes in darkness. The samples were washed by immersion in water until they no longer coloured the wash water. Once the surplus dye was removed, the samples were stained for 30 minutes in darkness in a solution of 160 mg of Direct Red 80 (Fluka Chemika-BioChemika Buchs, Switzerland) and 64 mg of Fast Green, both dyes in 160 ml of saturated picric acid. They were washed again until the surplus dye was removed, and then the samples were removed from the slides by scraping the sample off with a small spatula. The sections removed in this way were placed in separate tubes containing 3 ml of a solution of NaOH 0.1 N (Quimón, Montplet&Esteban S.A., Barcelona, Spain) and methanol (1:1). Aliquots were taken from the various tubes for reading in the spectrophotometer (Lambda 2 UV/VIS spectrophotometer, Perkin-Elmer, Norwalk, USA) at wavelengths of 540 nm and 630 nm using as blank an aliquot of the solution of NaOH 0.1 N and methanol (López de León A. and Rojkind (1985) Histochem. Cytochem. 33:737-743; Gaudio E. et al. (1993) Int. J. Exp. Path. 74:463-469).

In accordance with the works of Gaudio E. et al. (1993) Int. J. Exp. Path. 74:463-469), the following formulae were used for finding the quantities of collagen and total protein:

\[
\text{mg collagen} = \frac{\text{absorbance at 540 nm} - \text{absorbance at 630 nm}}{37} \\
\text{mg collagen/mg total protein} = \frac{\text{mg collagen}}{\text{mg collagen} + \text{mg non-collagen proteins}} \\
\text{Non-collagen proteins} = \frac{\text{absorbance at 630 nm}}{3}
\]

Statistical analysis of the results

The data obtained in the experiments in vivo were subjected to statistical analysis. Normality of the quantitative variables was verified by the Shapiro-Wilks test.

As the data had not been adjusted to a normal distribution, non-parametric statistical analysis was undertaken. Comparison between groups was effected by means of Kruskal-Wallis H followed by comparison of Mann-Whitney U. The data were presented graphically by means of boxes, with representation of the median of the data (thick line inside each box), together with the interquartile range (height of the box), whereas the "whiskers" of each box represent the highest and lowest observations within a given interquartile range.

The association between variables was investigated using Fisher's exact test. Logistic regression was employed for investigating the independence of association of these variables.

A value of P equal to or less than 0.05 was regarded as significant.

All the statistical analyses were accomplished using the program SPSS for Windows V 6.1.3.

INHIBITION IN VITRO OF THE ACTIVITY OF TGFβ1

Test of inhibition of cell growth of the MV-1-Lu line

TGFβ1 is a cytokine that is able to inhibit the growth in vitro of the MV-1-Lu cell line (Grubeck-Loebenstein B. et al. (1989) J. Clin. Invest. 83:764-770; Brennan FM et al. (1990) Clin. Exp. Immunol. 81:278-285), therefore this line was used for testing the blocking effect of peptides on TGFβ1. After different combinations of media, cells and thymidine,
we studied the effect of different concentrations of TGFβ1 on incorporation of [methyl-\(^3\)H] thymidine by MV-1-Lu cells in culture, for determining the most suitable conditions for the test. These conditions are shown in Fig. 3.

0058 Once both the optimum concentration of MV-1-Lu cells (5000 cells/well) and the lowest concentration of TGFβ1 capable of producing inhibition of about 90% (200 pg/ml, Fig. 18) had been determined, the inhibitory effect of the synthetic peptides at a concentration of 200 µg/ml was tested.

Inhibition in vitro of the activity of TGFβ1 by synthetic peptides

0059 The synthetic peptides of the invention that are potentially inhibitors of TGFβ1 activity, were tested using the MV-1-Lu cell line. The peptides were dissolved in buffered RPMI medium, free from foetal calf serum, and the following procedure was used:

0060 The peptides belonging to the sequence of the receptor, or complementary to the peaks of hydrophilicity of TGFβ1, were incubated for 30 minutes in the presence of this cytokine and were then combined with the cell culture. The peptides derived from the sequence of TGFβ1 were added to the cell culture prior to addition of TGFβ1, since they interact with the receptors of the cell surface. These incubations were effected in 100 µl of the same medium as was used for adding the cells. The active peptides permitted cell growth to a greater or lesser degree depending on its ability to inhibit TGFβ1.

Inhibition of TGFβ1 by means of peptides derived from TGFβ1 (Comparative)

0061 In a first stage, overlapping peptides derived from TGFβ1 were synthesized. These peptides (Table 2) were synthesized in the hope that some of them could bind to the cell receptors, thus preventing the binding of natural TGFβ1 to these receptors.

Table 2. Peptides derived from TGFβ1. The number of the peptide is shown, together with its position in the complete sequence, as well as its amino acid sequence. For convenience of synthesis, all the peptides were synthesized with an alanine added at the C-terminal end which is not shown in the table.
Fig. 4 shows the inhibitory effect of the peptides in Table 6 on the activity of TGFβ1. Since TGFβ1 inhibits growth of the MV-1-Lu cells, inhibition of this cytokine by the peptides leads to re-establishment of growth of the MV-1-Lu cells.

As can be seen from Fig. 4, the peptide P12, derived from the sequence of TGFβ1, is the one that exhibits greater inhibitory activity of TGFβ1. For more detailed investigation of the inhibitory effect of peptide P12, an investigation was conducted into the effect of the concentration of the peptide on inhibition of the cytokine, which is described below.

Dose-response test of the inhibition of TGFβ1 by the peptide P12 (Comparative)

The effect of the concentration of peptide P12 on inhibition of the activity of TGFβ1 was investigated. As this peptide was not readily soluble in the test medium, stock solutions or suspensions were prepared with a nominal con-
cen\text{centration of peptide (that which would have been achieved if the peptide had dissolved completely) and aliquots were taken from these, and were filtered or even were used directly for the inhibition tests. [0065] 5 Fig. 5 examines the inhibitory effect of nominal concentrations of peptide, before and after filtration. It can be seen that peptide P12, with and without filtration, has practically the same activity.

[0066] 10 Once the results had been obtained with peptide P12, it was decided to lengthen the peptide, both in the N-terminal and the C-terminal direction, and to investigate the effect on its activity. In addition, changes were made to its sequence to improve its solubility and study the importance of the two cysteines in its sequence on the inhibitory activity of TGF\(_\beta 1\). The peptides synthesized are stated in Table 3.

\begin{table}[h]
\centering
\caption{Peptides derived from modification of peptide P12.}
\begin{tabular}{|c|c|}
\hline
\textbf{Peptide} & \textbf{Sequence} \\
\hline
P12,12-25 & PheCysLeuGlyProCysProTyrIleTrpSerLeuAspThr \\
\hline
P28,122-124 & PheCysLeuGlyProCysProTyrIleTrpSerLeuAspThrGlnLysValLeuAlaLeuTyr \\
\hline
P29,133-135 & HisGluProLysGlyTyrHisAlaAsnPheCysLeuGlyProCysProTyrIleTrpSerLeuAspThr \\
\hline
P30 & PheSerLeuGlyProCysProTyrIleTrpSerLeuAspThr \\
\hline
P31 & PheCysLeuGlyProSerProTyrIleTrpSerLeuAspThr \\
\hline
P32 & PheSerLeuGlyProSerProTyrIleTrpSerLeuAspThr \\
\hline
P33 & PheCysLeuGlyProCysProTyrIleTrpSerAspAspAsp \\
\hline
P34 & AspAspAspGlyProCysProTyrIleTrpSerLeuAspThr \\
\hline
P35 & AspAspAspGlyProCysProTyrIleTrpSerAspAspAsp \\
\hline
P36 & GlyProCysProTyrIleTrpSerAspAspAsp \\
\hline
P37 & AspAspAspGlyProCysProTyrIleTrpSer \\
\hline
P38 & AspGlyProCysProTyrIleTrpSerAsp \\
\hline
\end{tabular}
\end{table}

[0067] 40 Fig. 6 shows the results of inhibition of TGF\(_\beta 1\) by the peptides in Table 3.

[0068] 45 It can be seen from Fig. 6 that peptide P29 is active. This peptide includes the previously tested peptide P12 and has 9 extra amino acids towards the N-terminal end (Fig. 4) Investigations conducted by Quian SW et al. (1992) Proc. Natl. Acad. Sci. 89:6290-6294 and by Burmester JK et al. (1993) Proc. Natl. Acad. Sci. 90:8628-8632) using chimeric recombinant proteins identified a region of TGF\(_\beta 1\) that is necessary for the activity of this cytokine (amino acids 40 to 82 in the sequence of mature TGF\(_\beta 1\)). It was speculated that peptide P29 (amino acids 34 to 56 in the sequence of mature TGF\(_\beta 1\)), extending over a larger region than peptide P12 (amino acids 43 to 56), might acquire a three-dimensional structure more like the structure of the TGF\(_\beta 1\) in circulation. For this reason, peptide P29 was used for tests of binding to the cell receptors, based on affinity labelling.

\textit{Tests of inhibition of the binding of TGF\(_\beta 1\) to its receptors by peptide P29 (affinity labelling) (Comparative)}

[0069] 50 Peptide P29, derived from the sequence of TGF\(_\beta 1\), was used in affinity labelling tests for verifying its capacity for inhibition of the binding of TGF\(_\beta 1\) to its cell receptors (Material and Methods).

[0070] 55 Owing to the different activity of the batches of \(^{125}\text{I}\)-TGF\(_\beta 1\) employed, the concentrations of peptide used in the tests were adjusted according to the concentration of the \(^{125}\text{I}\)-TGF\(_\beta 1\) batch used in each case. The results of these tests are shown in Figs. 7 and 8.

[0071] 60 Further tests were carried out to find the minimum concentration required for blocking the binding of \(^{125}\text{I}\)-TGF\(_\beta 1\)
Inhibition of TGFβ1 by peptides derived from the sequence of the type III receptor of the rat

With the aim of finding new peptides that are inhibitors of the activity of TGFβ1, peptides derived from the type III receptor of the rat were synthesized. Some peptides were chosen on the basis of regions of their sequence that were predicted as complementary to blocks of amino acids of the sequence of TGFβ1. It was hoped that these peptides would be capable of binding to free TGFβ1, sequestering it and preventing its binding to the cell receptors.

Other peptides were synthesized by overlapping 10 amino acids and covering part of the extracellular region of the type III receptor (amino acids 45 to 410). It has been described that a soluble type III receptor exists that corresponds to the extracellular region of the receptor, this region is cut from the membrane and acts as a sequestrator of the TGFβ1 in circulation (Lopez Casillas F. et al. (1991) Cell 67:785-795). Later studies described two possible regions of binding to TGFβ1, one of which is located at the N-terminal end of the receptor (López-Casillas et al. (1994) J. Cell Biol. 124: 557-568) and the other is located in the region closest to the membrane, towards the C-terminal end (Fukushima D. et al. (1993) J. Biol. Chem. 268:22710-22715; Pepin MC et al. (1995) FEBS Lett 377:368-372). For these reasons peptides of the extracellular region of this receptor were synthesized, on the supposition that these peptides might be capable of sequestering the circulating TGFβ1.

The peptides synthesized are shown in Table 4.

Table 4. Peptides derived from the type III receptor of the rat. The number of the peptide and its sequence are shown. P39 to P65 are peptides predicted as complementary to TGFβ1 and P66 to P138 are overlapping peptides covering the extracellular region of the receptor. For convenience of synthesis, all the peptides were synthesized with an alanine added at the C-terminal end which is not shown in the table.
<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>P39(51-102)</td>
<td>AsnProlleAlaSerValHisThrHisHisLysPro</td>
</tr>
<tr>
<td>P40(103-155)</td>
<td>ValPheLeuLeuAsnSerProGlnProLeuValTrp</td>
</tr>
<tr>
<td>P41(156-208)</td>
<td>SerProGlnProLeuValTrpHisLeuLysThrGlu</td>
</tr>
<tr>
<td>P42(159-210)</td>
<td>ProGlnProLeuValTrpHisLeuLysThrGluArg</td>
</tr>
<tr>
<td>P43(211-364)</td>
<td>TrpAlaLeuAspAsnGlyTyrArgProValThrSer</td>
</tr>
<tr>
<td>P44(428-439)</td>
<td>ProIleValProSerValGlnLeuLeuProAspHis</td>
</tr>
<tr>
<td>P45(555-666)</td>
<td>GlyAspGluGlyGluThrAlaProLeuSerArgAla</td>
</tr>
<tr>
<td>P46(563-574)</td>
<td>LeuSerArgAlaGlyValValPheAsnCysSer</td>
</tr>
<tr>
<td>P47(603-614)</td>
<td>LeuPheLeuValProSerProGlyValPheSerVal</td>
</tr>
<tr>
<td>P48(605-616)</td>
<td>LeuValProSerProGlyValPheSerValAlaGlu</td>
</tr>
<tr>
<td>P49(707-718)</td>
<td>GlnLeuThrLeuCysSerArgLysLysGlySerLeu</td>
</tr>
<tr>
<td>P50(717-728)</td>
<td>SerArgLysLysGlySerLeuLysLeuProArgCys</td>
</tr>
<tr>
<td>P51(721-773)</td>
<td>SerLeuLysLeuProArgCysValThrProAspAsp</td>
</tr>
<tr>
<td>P52(722-733)</td>
<td>ArgCysValThrProAspAlaCysThrSerLeu</td>
</tr>
<tr>
<td>P53(727-738)</td>
<td>AspAspAlaCysThrSerLeuAspAlaThrMetIle</td>
</tr>
<tr>
<td>P54(734-745)</td>
<td>ThrSerLeuAspAlaThrMetIleTrpThrMet</td>
</tr>
<tr>
<td>P55(732-743)</td>
<td>SerLeuAspAlaThrMetIleTrpThrMetGln</td>
</tr>
<tr>
<td>P56(737-748)</td>
<td>MetIleTrpThrMetMetGlnAsnLysThrPhe</td>
</tr>
<tr>
<td>P57(742-753)</td>
<td>MetGlnAsnLysLysThrPheThrLysProLeuAla</td>
</tr>
<tr>
<td>P58(747-758)</td>
<td>ThrPheThrLysProLeuAlaValValLeuGlnVal</td>
</tr>
<tr>
<td>P59(751-775)</td>
<td>LysGluAsnValProSerThrLysAspSerSerProIleProPro</td>
</tr>
<tr>
<td>P60(761-801)</td>
<td>SerThrLysAspSerSerProIleProProProProProGlnIle</td>
</tr>
<tr>
<td>P61(771-795)</td>
<td>SerProIleProProProProProProProProProProProGlnIle</td>
</tr>
<tr>
<td>P62(774-800)</td>
<td>ProProProGlnIleProHisGlyLeuAsp ThrGlyLeuProGlnIleProHisGlyLeuAspThrLeuThrValMet</td>
</tr>
<tr>
<td>P63(781-795)</td>
<td>PheHisGlyLeuAspThrLeuThrValMetGlyIleAlaPheAla</td>
</tr>
<tr>
<td>P64(786-800)</td>
<td>ThrLeuThrValMetGlyIleAlaPheAlaPheAlaValIleGly</td>
</tr>
<tr>
<td>P65(797-809)</td>
<td>LeuLeuThrGlyAlaLeuLeuTrpTyrlleTyrSerHis</td>
</tr>
<tr>
<td>P66(45-55)</td>
<td>LeuMetGluSerPheThrValLeuSerGlyCysAlaSerArgGly</td>
</tr>
<tr>
<td>P67(50-61)</td>
<td>ThrValLeuSerGlyCysAlaSerArgGlyThrThrGlyLeuPro</td>
</tr>
<tr>
<td>P68(55-69)</td>
<td>CysAlaSerArgGlyThrThrGlyLeuProArgGluValHisVal</td>
</tr>
<tr>
<td>P69(60-74)</td>
<td>ThrThrGlyLeuProArgGluValHisValLeuAsnLeuArgSer</td>
</tr>
<tr>
<td>P70(65-79)</td>
<td>ArgGluValHisValLeuAsnLeuArgSlyThrAspGlnGlyPro</td>
</tr>
<tr>
<td>P71(70-84)</td>
<td>LeuAsnLeuArgSerThrAspGlnGlyProlGlyGlnArgGlnArg</td>
</tr>
<tr>
<td>P72(73-89)</td>
<td>ThrAspGlnGlyProGlyGlnArgGlnArgGluThrLeuHis</td>
</tr>
<tr>
<td>P73(80-94)</td>
<td>GlyGlnArgGlnArgGluThrLeuHisLeuAsnProIleAla</td>
</tr>
</tbody>
</table>
GluValThrLeuHisLeuAsnProIleAlaSerValHisThrHisLeuAsnProIleAlaSerValHisThrHisLysProIleValPheLeuLeuAsnSerProGlnProLeuVal
P76 (93—109)
SerValHisThrHisLysProIleValPheLeuLeuAsnSerProGlnProLeuVal
P77 (100—114)
PheLeuLeuAsnSerProGlnProLeuValTrpHisLeuLysThrProGlnProLeuValTrpHisLeuLysThrGluArgLeuAlaAla
P78 (115—119)
ArgLeuAlaAlaGlyValProArgLeuPheLeuValSerGluGlyGlyValProArgLeuPheLeuValSerGluGlySerValValGlnProSerGlyAsn
P79 (119—124)
PheSerValValGlnProSerGlyAsnProSerLeuThrAla
P80 (125—129)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P81 (130—134)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P82 (135—139)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P83 (140—144)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P84 (145—149)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P85 (150—154)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P86 (155—159)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P87 (160—164)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P88 (165—169)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P89 (170—174)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P90 (175—179)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P91 (180—184)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P92 (185—189)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P93 (190—194)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P94 (195—199)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P95 (200—204)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P96 (205—209)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P97 (210—214)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P98 (215—219)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P99 (220—224)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P100 (225—229)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P101 (230—234)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P102 (235—239)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P103 (240—244)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P104 (245—249)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P105 (250—254)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P106 (255—259)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P107 (260—264)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P108 (265—269)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P109 (270—274)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P110 (275—279)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P111 (280—284)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P112 (285—289)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P113 (290—294)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P114 (295—299)
PheSerLeuThrAlaGluThrGluArgAsnProGlnGlu
P115 (300—304)
The peptides in Table 4 were tested for their capacity to block TGF-β1 in the model of inhibition of the MV-1-Lu cell line. Since TGF-β1 is able to inhibit the growth of this line, inhibition of TGF-β1 by the peptides would be able to re-establish cell growth. These tests are shown in Figs. 9 to 12.

As can be seen in Figs. 9 to 12, there are various peptides that are able to inhibit the growth of the MV-1-Lu cell line to a greater or lesser degree, but only peptide P54 is capable of inhibiting the activity of TGF-β1 almost completely.

With the aim of conducting a more thorough investigation of this peptide, tests were carried out using different concentrations of peptide against a fixed concentration of TGF-β1 of 200 pg/ml.

Dose-response test of the inhibition of TGF-β1 by peptide P54

The effect of the concentration of peptide P54 on inhibition of the activity of TGF-β1 was investigated. In view of the low solubility of this peptide, stock solutions with nominal concentration of peptide were prepared, as was done in the case of peptide P12, and aliquots were taken from them, and filtered, or even used directly for the inhibition tests.

Fig. 13 examines the inhibitory effect of nominal concentrations of peptide, before and after filtration. It can be seen that there is no measurable inhibitory activity in the filtrate of peptide P54.
Having verified the capacity of peptide P54 to inhibit the activity of TGFβ1 in a manner that depends on the dose used, we proceeded to synthesize new peptides, taking as a basis the sequence of P54, with the aim of trying to improve the solubility and hence its activity at lower doses. Two peptides derived from the human type III receptor were also synthesized. One of these peptides (P144) is equivalent to peptide P54. The other peptide (P145) is similar to peptide P106 of the type III receptor of the rat, which had also demonstrated activity. These new peptides are shown in Table 5.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P54</td>
<td>ThrSerLeuAspAlaThrMetIleTrpThrMetMet</td>
<td>Rat type III receptor</td>
</tr>
<tr>
<td>P139</td>
<td>ThrSerLeuAspAlaThrMetIleTrpAspAspAsp</td>
<td></td>
</tr>
<tr>
<td>P140</td>
<td>AspAspAspAlaThrMetIleTrpThrMetMet</td>
<td></td>
</tr>
<tr>
<td>P141</td>
<td>AspAlaThrMetIleTrpAsp</td>
<td></td>
</tr>
<tr>
<td>P142</td>
<td>ThrSerLeuMetIleTrpThrMetMet</td>
<td></td>
</tr>
<tr>
<td>P143</td>
<td>ThrSerLeuAspAlaThrThrMetMet</td>
<td></td>
</tr>
<tr>
<td>P144</td>
<td>ThrSerLeuAspAlaSerIleIleTrpAlaMetMet</td>
<td>Human type III receptor</td>
</tr>
<tr>
<td></td>
<td>GlnAsn</td>
<td></td>
</tr>
<tr>
<td>P145</td>
<td>SerAsnProTyrSerAlaPheGlnValAspIleThr</td>
<td>Human type III receptor</td>
</tr>
<tr>
<td></td>
<td>IleAsp</td>
<td></td>
</tr>
</tbody>
</table>

The test of activity of the peptides in Table 5 is shown in Fig. 14.

Dose-response test of inhibition of TGFβ1 by peptide P144

A dose-response test was carried out with peptide P144 derived from the sequence of the human type III receptor, with the aim of testing whether its activity was dependent on the concentration (Fig. 15). It can be seen that the activity of the peptide decreases with the decrease in the concentration of peptide used in the tests.

Tests of inhibition of the binding of TGFβ1 to its receptors by peptide P144 (affinity labelling)

Peptide P144 derived from the sequence of the human type III receptor was used in affinity labelling tests for verifying its ability to inhibit the binding of TGFβ1 to its cell receptors (Material and Methods).

Owing to the different activity of the batches of 125I-TGFβ1 employed, the concentrations of peptide used in the tests were adjusted according to the concentration of the 125I-TGFβ1 batch used in each case. The results of these tests are shown in Fig. 15.

After verifying inhibition of the binding of TGFβ1 to its cell receptors by peptide P144, a new test was conducted with the aim of titrating peptide P144. It was observed that the peptide lost its activity at a concentration of 2x10^5 times the molar concentration of 125I-TGFβ1.

Inhibition of TGFβ1 by peptides derived from other proteins with ability to bind to TGFβ1 and predicted as complementary to TGFβ1

The peptides in Table 6, derived from proteins capable of binding to TGFβ1, were synthesized in this series. Table 6. Peptides derived from various proteins capable of binding to TGFβ1 (type II receptor P146, fetuin P147 to P149, endoglin P150 to P154 and α2-macroglobulin P155 - to P179). The number of the peptide is shown, together with its position in the complete sequence, its amino acid sequence, and its origin. For convenience of synthesis, all the peptides
were synthesized with an alanine added at the C-terminal end which is not shown in the table.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P146 (14-21)</td>
<td>CysValAlaValTrpArgLysAsnAspGluAsnIleThrLeuGluThrValCys</td>
<td>Type II receptor</td>
</tr>
<tr>
<td>P147 (14-22)</td>
<td>CysAspPheGlnLeuLeuLysLeuAspGlyLysPheSerValValTyrAlaLysCys</td>
<td>Fetuin</td>
</tr>
<tr>
<td>P148 (14-22)</td>
<td>CysAspPheHisIleLeuLysGlnAspGlyGlnPheArgValCysHisAlaGlnCys</td>
<td>Fetuin</td>
</tr>
<tr>
<td>P149 (14-22)</td>
<td>CysAspIleHisValLeuLysGlnAspGlyPheSerValLeuPheThrLysCysAsp</td>
<td>Fetuin</td>
</tr>
<tr>
<td>P150 (14-21)</td>
<td>GlnAlaValLeuIleGluGlnGlyProProTyrValSerTyrLeu</td>
<td>Endoglin</td>
</tr>
<tr>
<td>P151 (20-30)</td>
<td>ValAsnLeuProAspThrArgGlnGlyLeuLeuGluAlaArg</td>
<td>Endoglin</td>
</tr>
<tr>
<td>P152 (20-29)</td>
<td>LeuAspSerLeuSerPheGlnLeuGlyLeuTyrLeuSerProHis</td>
<td>Endoglin</td>
</tr>
<tr>
<td>P153 (20-29)</td>
<td>ProSerIleProGluLeuMetThrGlnLeuAspSerCysGlnLeu</td>
<td>Endoglin</td>
</tr>
<tr>
<td>P154 (20-32)</td>
<td>MetSerProSerIleProGluLeuMetThrGlnLeuAspSerCys</td>
<td>Endoglin</td>
</tr>
<tr>
<td>P155 (13-21)</td>
<td>LeuLeuLeuValLeuLeuProThrAspAlaSer</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P156 (13-22)</td>
<td>ProThrAspAlaSerValSerGlyLysProGlnTyr</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P157 (13-22)</td>
<td>ThrGluLysGlyCysValLeuLeuSerTyrLeuAsn</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P158 (14-177)</td>
<td>TyrIleGluAspProLysGlyAsnArgIleAlaGln</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P159 (14-177)</td>
<td>TyrIleGlnAspProLysGlyAsnArgIleAlaGln</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P160 (13-25)</td>
<td>PheProLeuSerSerGluProPheGlnGlySerTyr</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P161 (13-28)</td>
<td>AtnValSerValCysGlyLeuTyrThrTyrGlyLys</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P162 (13-28)</td>
<td>ValSerValCysGlyLeuTyrThrTyrGlyLysPro</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P163 (13-28)</td>
<td>SerIleCysArgLysTyrSerAspAlaSerAspCys</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P164 (14-26)</td>
<td>ProCysGlyHisThrGlnThrValGlnAlaHisTyr</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P165 (13-25)</td>
<td>AspSerAlaLysTyrAspValGluAsnCysLeuAla</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P166 (13-25)</td>
<td>GlnProPhePheGlnLeuLeuMetProTyrSerGlnLeuAlaSerProAlaPheLeuAlaValPro</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P167 (14-23)</td>
<td>ValSerValGlnLeuAlaSerProAlaPheLeuAlaValPro</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P168 (14-23)</td>
<td>AlaLeuGluSerGlnGluLeuCysGlyThrGluVal</td>
<td>α-2-Macroglubulin</td>
</tr>
<tr>
<td>P169 (14-25)</td>
<td>LysSerLysIleGlyTyrLeuAsnThrGlyTyr</td>
<td>α-2-Macroglubulin</td>
</tr>
</tbody>
</table>
Figs. 17 and 18 show the inhibitory activity of the peptides derived from Table 10. As can be seen in Figs. 17 and 18, only peptide P150 showed activity greater than 50%. However, peptides P146 and P149, which had been described as active by Demetriou M et al. (1996) J. Biol. Chem. 271:12755-12761, were not found to be active under the conditions employed for this test.

Measurement by flow cytometry of the inhibitory effect of synthetic peptides on the binding of TGFβ1 to its cell receptors

Peptides derived from the type III receptor, were used for measuring, by flow cytometry, their capacity to inhibit the binding of TGFβ1 to the cell receptors. In these tests the cells are incubated with the peptide before adding TGFβ1-biotin, which will be detected using avidin-FITC (Material and Methods). Then the fluorescence emitted by the avidin-FITC is measured: this will be directly proportional to the quantity of TGFβ1 bound to the cells and inversely proportional to the activity of the peptide. The results obtained with the most relevant peptides are shown in Fig. 19 and Table 7.
Table 7. Comparison of the inhibitory activity of TGFβ1, of some peptides, measured by bioassay of inhibition of growth of the MV-1-Lu\(^1\) cells (peptide concentration 200 μg/ml) with inhibition of the binding of TGFβ1 to its cell receptors measured using flow cytometry\(^2\) (peptide concentration 420 μg/ml).

<table>
<thead>
<tr>
<th>Peptides</th>
<th>Bioassay</th>
<th>Cytometry</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>P29</td>
<td>77.6</td>
<td>92.34</td>
<td>HisGluProLysGlyTyrHisAlaAsnPheCysLeuGlyProCysProTyrIleTrpSerLeuAspThr</td>
</tr>
<tr>
<td>P11</td>
<td>40</td>
<td>86</td>
<td>HisAlaAsnPheCysLeuGlyProCysProTyrIleTrpSerLeuAspThr</td>
</tr>
<tr>
<td>P12</td>
<td>96</td>
<td>77</td>
<td>PheCysLeuGlyProCysProTyrIleTrpSerLeuAspThr</td>
</tr>
<tr>
<td>P18</td>
<td>18.2</td>
<td>6.5</td>
<td>LeuTyrAsnGlnHisAsnProGlyAlaSerAlaAlaAlaProCysCys</td>
</tr>
<tr>
<td>P54</td>
<td>97</td>
<td>82.3</td>
<td>ThrSerLeuAspAlaThrMetIleTrpThrThrMet</td>
</tr>
<tr>
<td>P140</td>
<td>-1.7</td>
<td>69.9</td>
<td>AspAspAspAlaThrMetIleTrpThrThrMet</td>
</tr>
<tr>
<td>P142</td>
<td>70</td>
<td>72</td>
<td>ThrSerLeuMetIleTrpThrThrMet</td>
</tr>
<tr>
<td>P106</td>
<td>40</td>
<td>51</td>
<td>SerAlaProTyrSerAlaPheGlnValAspIleIleValAspIle</td>
</tr>
<tr>
<td>P145</td>
<td>21</td>
<td>74.35</td>
<td>SerAlaProTyrSerAlaPheGlnValAspIleThrAspThrSerLeuAspSerIleIleTrpAlaMetGlnAsn</td>
</tr>
<tr>
<td>P144</td>
<td>88</td>
<td>80</td>
<td>ThrSerLeuAspSerIleIleTrpAlaMetGlnAsn</td>
</tr>
<tr>
<td>P150</td>
<td>64</td>
<td>73</td>
<td>GluAlaValLeuIleLeuGlnGlyProProTrpSerLeuLeuAspSerLeuSerPheGln</td>
</tr>
<tr>
<td>P152</td>
<td>45</td>
<td>68.4</td>
<td>LeuGlyLeuTyrLeuSerProHis</td>
</tr>
</tbody>
</table>

INHIBITION IN VIVO OF THE ACTIVITY OF TGFβ1.

[0089] Peptide P144 derived from the sequence of the human type III receptor, which had proved active in the bioassays of inhibition of growth of the MV-1-Lu cell line, was used in the tests *in vivo* for studying its inhibitory effect in the induction of experimental cirrhosis with CCl\(_4\) in a rat model.
Model of experimental cirrhosis in Wistar rats

[0090] In this model, hepatic cirrhosis is induced by inhalation of carbon tetrachloride, for 11 weeks, twice per week (Lopez Novoa JM et al. (1976) Patologia IX:223-240; Camps J. et al. (1987) Gastroenterology 93:498-505) as described in Material and Methods.

[0091] Peptide P144 was administered in accordance with two protocols:

1. **Protocol 1**: The peptide was administered on alternate days by the intraperitoneal route during the cirrhosis induction process (11 weeks). Figs. 20 and 21.

2. **Protocol 2**: The peptide was administered on alternate days by the intraperitoneal route for 3 weeks, once cirrhosis was established, i.e. at 12 weeks from the start of induction of cirrhosis. Figs. 22 and 23.

[0092] The production of collagen in both protocols was measured by two techniques:

Figs. 24 and 25 show total collagen production measured by staining liver sections (two per animal) with Fast Green and Direct Red, elution of the colour and reading in a spectrophotometer (Material and Methods) (López de León A. and Rojkind (1985) Histoch. Cytochem. 33:737-743; Camps J. et al. (1987) Gastroenterology 93:463-469). Figs. 21 and 23 show collagen production, measured by image analysis of liver sections stained with Sirius Red, using light microscopy (Material and Methods).

[0093] As can be seen in Fig. 20, significant differences are observed (P < 0.05) between the group of rats treated with peptide P144 (Tlo1) and the control group of cirrhotic rats (Cf1) on investigating the ratio of collagen to total protein. In Fig. 27, the differences between the group of rats treated with peptide P144 (Tlo2) and the control group of cirrhotic rats (Cf1) are also significant (P < 0.001) when the area of fibrosis is investigated.

[0094] As can be seen in Figs. 22 and 23, which show the results for the rats treated once cirrhosis was established, the differences between the groups of rats treated with peptide P144 (Tlo2) and the cirrhotic rats without treatment (Cf2) are not significant when using either of the two techniques for measuring fibrosis.

[0095] The two techniques employed for measuring collagen were compared using linear regression with the aim of verifying the randomness of selection of the fields for investigation in each preparation and hence the validity of the image analysis, Figs. 24 and 25.

[0096] As can be seen from Figs. 24 and 25, there is a correlation between the two techniques with R > 0.85 in both cases, which is highly significant (F ≤ 0.001). This confirms that acquisition of the images for investigation was effected entirely randomly and hence confirms the validity of the data obtained by image analysis.

[0097] Figs. 26 and 27 show the images obtained by light microscopy from liver preparations stained with Sirius Red at a magnification of 10X obtained from livers of rats treated during the cirrhosis induction process (Cf1, and Tlo1).

[0098] The images in Fig. 26 were obtained without employing any type of filter.

[0099] Fig. 27 shows the images once they had been modified for investigation using special software. These modifications consist of application of two filters, one of polarized light and the other of green light, for the purpose of improving the quality of the images and facilitating automated examination of them.

[0100] Figs. 26 and 27 reveal that there are differences between the images obtained from the cirrhotic rats (Cf1) and those obtained from the rats treated with peptide P144 (Tlo1).

[0101] The differences in effectiveness between protocols 1 and 2 might be due to the fact that production of TGFβ1 might be much less once cirrhosis is induced (protocol 2) than during the process of induction of cirrhosis with CCl4 (protocol 1), and might even be at normal levels, so that the effect of treatment with peptide P144 would be less pronounced in protocol 2 than in protocol 1.

[0102] When we compare the groups of untreated cirrhotic rats, at the end of the process of induction of cirrhosis (Cf1) with the untreated cirrhotic rats at 4 weeks from the end of induction (Cf2), we find that there are significant differences (P = 0.016) between the two groups (Fig. 28), which would indicate that there is partial regression of cirrhosis when the cirrhotizing agent is removed, an observation that has been published by various authors (Szende-B et al. (1992) In Vivo 6:355-361; Columbano A (1996) Carcinogenesis 17:395-400).

[0103] These differences in effectiveness between the two protocols might also be due to the protocol itself, since the animals of protocol 2 are only treated for 3 weeks on alternate days, whereas the animals of protocol 1 are treated for a longer period of time (7 weeks, also on alternate days).

[0104] The results obtained demonstrate that it is possible to inhibit TGFβ1 both in vitro and in vivo by means of synthetic peptides derived from different proteins. In future it would be of great interest to try to increase the biological activity of these peptides. This might be accomplished by systematically replacing each of the amino acids of their sequences by the other 19. Once the peptide with greater activity was achieved it would be necessary to prepare mimotopes (McConnell-SJ (1994) Gene 151:115-118; Steward-MW (1995) J. Virol. 69:7668-7673) thereof with the aim...
of increasing the average life of the inhibitory agent in the organism.

DESCRIPTION OF THE FIGURES

Fig. 1. Inhibition of binding of TGFβ1 to the MV-1-Lu cells by peptide P144, measured by flow cytometry. A, image obtained on examining the cells incubated with biotinylated TGFβ1 and developed with avidin-FITC. B, image obtained on examining the cells incubated with avidin-FITC without prior addition of TGFβ1. C, image obtained on examining the cells incubated with TGFβ1 previously incubated with peptide P144 at a concentration of 0.42 μg/μl and developed with avidin-FITC. The fluorescence emitted is shown on the abscissa, while the ordinate shows the number of cells for each value of fluorescence. The fields corresponding to the cells labelled with TGFβ1-biotin and avidin-FITC (M2) and to the unlabelled cells (M1) are also shown.

Fig. 2. Schematic representation of the process of cirrhosis by CCl4. Black arrows indicate when two weekly doses of CCl4 were administered to the rats, and black dashed arrows show when there was one weekly dose. The grey arrows indicate administration of peptide P144. A: Healthy controls; B: Healthy controls + P144, B1: with peptide 70 μg/day; C: Cirrhotic; C1: with saline; C2 with peptide 70 μg/day; D: Cirrhotic with CCl4 + phenobarbital; D1 plus saline; D2 plus peptide 70 μg/day.

Fig. 3. Effect of TGFβ1 on growth of MV-1-Lu cells. The cells are cultivated at a density of 5000 cells/well at the concentrations of TGFβ1 indicated, pg/ml. Abscissa: TGFβ1 concentration (pg/ml); Ordinate: c.p.m.

Fig. 4. (Comparative) Percentage inhibition of TGFβ1 (200 pg/ml) by peptides from TGFβ1. All the peptides were tested at a concentration of 200 μg/ml. Inhibition of TGFβ1 of 100% corresponds to the growth of MV-1-Lu cells that is obtained in the absence of TGFβ1.

Fig. 5. (Comparative) Percentage inhibition of the activity of TGFβ1 (200 pg/ml) in the presence of various nominal concentrations of peptide P12, filtered (●) and unfiltered (○).

Fig. 6. (Comparative) Percentage inhibition of TGFβ1 (200 pg/ml) by peptides from TGFβ1. All the peptides were tested at a concentration of 200 μg/ml. Inhibition of TGFβ1 of 100% corresponds to the growth of MV-1-Lu cells that is obtained in the absence of TGFβ1.

Fig. 7. (Comparative) Autoradiograph of an affinity labelling test of the receptors of TGFβ1. Lane C1: effect of incubation of the cells with a concentration of 0.16 μM of 125I-TGFβ1 which corresponds to an activity of 0.3 μCi (positive control). Lane C2: effect of preincubation of the cells with a concentration of non-radioactive TGFβ1 10 times greater than that of 125I-TGFβ1 (negative control). Lane C3: preincubation was effected with peptide P29 at a concentration 106 times greater than the molar concentration of 125I-TGFβ1. It can be seen that there is inhibition of the binding of 125I-TGFβ1 to the type I, II and III cell receptors both by peptide P29 and by non-radioactive TGFβ1.

Fig. 8. (Comparative) Autoradiograph of an affinity labelling test of the receptors of TGFβ1. Lanes C1 to C6: effect of preincubation of the MV-1-Lu cells, with different concentrations of peptide P29 (108, 8x105, 6x105, 4x105, 2x105 and 105 times the molar concentration of 125I-TGFβ1 respectively), prior to addition of 125I-TGFβ1. Lane C7: effect of preincubation of the MV-1-Lu cells with unlabelled TGFβ1 (102 times the molar concentration of 125I-TGFβ1) prior to addition of 125I-TGFβ1 (negative control). Lane C8: effect of incubation of the MV-1-Lu cells with a concentration of 0.42 μM of 125I-TGFβ1, corresponding to an activity of 0.4 μCi, without prior preincubation (positive control).

Fig. 9. Percentage inhibition of TGFβ1 (200 pg/ml) by receptor peptides predicted as complementary to regions of TGFβ1. Lane P1: to the type I, II and III cell receptors both by peptide P29 and by non-radioactive TGFβ1. Lane P2: to the type III receptor. All the peptides were tested at a concentration of 200 μg/ml. Inhibition of TGFβ1 of 100% corresponds to the growth of MV-1-Lu cells that is obtained in the absence of TGFβ1.

Fig. 10. Percentage inhibition of TGFβ1 (200 pg/ml) by overlapping peptides derived from the extracellular region of the type III receptor. All the peptides were tested at a concentration of 200 μg/ml. Inhibition of TGFβ1 of 100% corresponds to the growth of MV-1-Lu cells that is obtained in the absence of TGFβ1.

Fig. 11. Percentage inhibition of TGFβ1 (200 pg/ml) by overlapping peptides derived from the extracellular region of the type III receptor. All the peptides were tested at a concentration of 200 μg/ml. Inhibition of TGFβ1 of 100% corresponds to the growth of MV-1-Lu cells that is obtained in the absence of TGFβ1.

Fig. 12. Percentage inhibition of TGFβ1 (200 pg/ml) by overlapping peptides derived from the extracellular region of the type III receptor. All the peptides were tested at a concentration of 200 μg/ml. Inhibition of TGFβ1 of 100% corresponds to the growth of MV-1-Lu cells that is obtained in the absence of TGFβ1.

Fig. 13. Percentage inhibition of the activity of TGFβ1 (200 pg/ml) in the presence of different nominal concentrations of peptide P54, filtered (●) and unfiltered (●).

Fig. 14. Percentage inhibition of TGFβ1 (200 pg/ml) by receptor peptides derived from modification of peptide P54 (P139 to P143) and of the peptides derived from the human type III receptor (P144 and P145). All the peptides were tested at a concentration of 200 μg/ml. Inhibition of TGFβ1 of 100% corresponds to the growth of MV-1-Lu cells that is obtained in the absence of TGFβ1.
Fig. 15. Percentage inhibition of the activity of TGFβ1 (200 pg/ml) in the presence of different nominal concentrations of peptide P144 without filtration.

Fig. 16. Autoradiograph of an affinity labelling test of the receptors of TGFβ1. Lane C1: preincubation was effected with peptide P144 at a concentration 10^6 times greater than the molar concentration of [125I]-TGFβ1. Lanes C2 and C3: effect of preincubation of the cells with a concentration of non-radioactive TGFβ1 10 times greater than that of [125I]-TGFβ1 (negative control). Lanes C4 and C5: effect of incubation of the cells with a concentration of 0.1 μM of [125I]-TGFβ1 that corresponds to an activity of 0.2 μCI (positive control). It can be seen that there is inhibition of the binding of [125I]-TGFβ1 to the cell receptors both by peptide P144 and by the non-radioactive TGFβ1.

Fig. 17. Percentage inhibition of TGFβ1 (200 pg/ml) by peptides derived from human type II receptor (P146), from fetuin (P147 to P149) and from endoglin (P150 to P154). All the peptides were tested at a concentration of 200 μg/ml. Inhibition of TGFβ1 of 100% corresponds to the growth of MV-1-Lu cells that is obtained in the absence of TGFβ1.

Fig. 18. (Comparative) Percentage inhibition of TGFβ1 (200 pg/ml) by peptides derived from α2-macroglobulin. All the peptides were tested at a concentration of 200 μg/ml. Inhibition of TGFβ1 of 100% corresponds to the growth of MV-1-Lu cells that is obtained in the absence of TGFβ1.

Fig. 19. Percentage inhibition of the binding of TGFβ1 to MV-1-Lu cells by various synthetic peptides. Inhibition was investigated by measuring the percentage of labelled cells (emit fluorescence) and unlabelled cells (do not emit fluorescence) for each peptide (Material and Methods).

Fig. 20. Effect of administration of peptide P144 on collagen synthesis during experimental cirrhosis induction with CCl4. The ratio of collagen to total protein is shown on the ordinate. The abscissa shows the various groups of rats: Co= healthy rats; Co+P144= healthy rats treated with peptide P144; TtO1= rats subjected to induction of cirrhosis with CCl4 and administered peptide P144 on alternate days during this period and Ci1= rats subjected to induction of cirrhosis with CCl4 for 11 weeks and not treated with peptide P144.

Fig. 21. Effect of administration of peptide P144 on collagen synthesis during experimental cirrhosis induction with CCl4. The ordinate shows the ratio of the area of fibrosis to the total area in tissue preparations stained with Sirius Red. The abscissa shows the various groups of rats: Co= healthy rats; Co+P144= healthy rats treated with the peptide; TtO1= rats subjected to induction of cirrhosis with CCl4 and administered peptide P144 on alternate days during this period and Ci1= rats subjected to induction of cirrhosis with CCl4 for 11 weeks and not treated with peptide P144.

Fig. 22. Effect of administration of peptide P144 on collagen synthesis once cirrhosis has been induced with CCl4. The ordinate shows the ratio of collagen to total protein. The abscissa shows the various groups of rats: Co= healthy rats; Co+P144= healthy rats treated with the peptide; TtO2= rats subjected to induction of cirrhosis with CCl4 and administered peptide P144 on alternate days at the end of this period and Ci2= rats subjected to induction of cirrhosis with CCl4 for 11 weeks and not treated with peptide P144.

Fig. 23. Effect of administration of peptide P144 on collagen synthesis once cirrhosis has been induced with CCl4. The ordinate shows the ratio of the area of fibrosis to the total area in tissue preparations. The abscissa shows the various groups of rats: Co= healthy rats; Co+P144= healthy rats treated with the peptide; TtO2= rats subjected to induction of cirrhosis with CCl4 and administered peptide P144 on alternate days at the end of this period and Ci2= rats subjected to induction of cirrhosis with CCl4 for 11 weeks and not treated with peptide P144.

Fig. 24. Comparison of the data on quantity of collagen and area of fibrosis, obtained by the two techniques employed. The abscissa shows the values of the ratio of the area of fibrosis to the total area, obtained by image analysis. The ordinate shows the values of the ratio of μg of collagen to mg of total protein, obtained by spectrophotometric analysis of liver sections stained with Direct Red and Fast Green. R² is shown. (F ≤ 0.001).

Fig. 25. Comparison of the data on quantity of collagen and area of fibrosis, obtained by the two techniques employed for examining the samples at the end of protocol 2. The abscissa shows the values of the ratio of the area of fibrosis to the total area, obtained by image analysis. The ordinate shows the values of the ratio of μg of collagen to mg of total protein, obtained by spectrophotometric analysis of liver sections stained with Direct Red and Fast Green. R² is shown. (F ≤ 0.001).

Fig. 26. Images that are representative of the 24 fields obtained by light microscopy (10X) from rat liver preparations obtained from each animal (R= rat and C= field). The ordinate shows the values of the ratio of the area of fibrosis to the total area, obtained by image analysis. The abscissa shows the values of the ratio of μg of collagen to mg of total protein, obtained by spectrophotometric analysis of liver sections stained with Direct Red and Fast Green. R² is shown. (F ≤ 0.001).

Fig. 27. Images that are representative of the 24 fields obtained by light microscopy (10X) from rat liver preparations obtained from each animal (R= rat and C= field). Polarized light and a green filter were used in order to show up the collagen fibres.

Fig. 28. Comparison between the two groups of untreated cirrhotic rats. Ci1 are cirrhotic rats at the end of the 12
weeks of induction of cirrhosis with CCl₄. Ci₂ are cirrhotic rats at 4 weeks from the end of the process of induction of cirrhosis. P = 0.016. Ordinate: Area of fibrosis/Total area.

SEQUENCE LISTING

[0106]

<110> Instituto Científico y Tecnológico de Navarra (ICTN)
<120> TGFβ1-inhibitor peptides
<160> 10
<210> SEQ ID NO: 1
<211> 15
<212> Peptide
<213> Artificial sequence
<220> Domain
<223> Derived from TGFβ1, position 319-333 (comparative)
<400>

His Ala Asn Phe Cys Leu Gly Pro Cys Pro Tyr Ile Trp

Ser Leu

15

<210> SEQ ID NO: 2
<211> 14
<212> Peptide
<213> Artificial sequence
<220> Domain
<223> Derived from TGFβ1, position 322-335 (comparative)
<400>

Phe Cys Leu Gly Pro Cys Pro Tyr Ile Trp Ser Leu Asp

Thr

10

<210> SEQ ID NO: 3
<211> 12
<212> Peptide
<213> Artificial sequence
<220> Domain
<223> Deduced as complementary to TGFβ1, position 731-742
<400>

Thr Ser Leu Asp Ala Thr Met Ile Trp Thr Met Met

10

<210> SEQ ID NO: 4
<211> 15
Peptide Artificial sequence Domain Overlapping with the extracellular region of the rat type III receptor, position 245-259

Ser Asn Pro Tyr Ser Ala Phe Gln Val Asp Ile Ile Val

Asp Ile

Thr Ser Leu Met Ile Trp Thr Met Met

Thr Ser Leu Asp Ala Ser Ile Ile Trp Ala Met Met Gln

Asn

Ser Asn Pro Tyr Ser Ala Phe Gln Val Asp Ile Thr Ile

Asp
A peptide antagonist of the binding of TGF-beta 1 to the type III TGF-beta 1 receptor or endoglin, characterised in that said peptide is 9-15 amino acids long and is selected from the group consisting of:

1. Glu Ala Val Leu Ile Leu Gln Gly Pro Pro Tyr Val Ser Trp Leu

2. Leu Asp Ser Leu Ser Phe Gln Leu Gly Leu Tyr Leu Ser Pro His

3. His Glu Pro Lys Gly Tyr His Ala Asn Phe Cys Leu Gly Pro Cys Pro Tyr Ile Trp Ser Leu Asp Thr

Claims
1. a peptide comprising of a fragment of SEQ ID NO. 3, said fragment consisting of at least 6 contiguous amino acids of SEQ ID NO. 3,
 b) a peptide comprising the amino acid sequence SEQ ID NO. 3,
 c) a peptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO. 4, SEQ ID NO. 5, SEQ ID NO. 6 and SEQ ID NO. 7, and
 d) a peptide comprising an amino acid sequence SEQ ID NO. 3 or SEQ ID NO. 9.

2. Use of at least one of the peptides of claim 1 for manufacturing a pharmaceutical composition useful for the treatment of liver diseases.

3. Use of at least one DNA that codes for at least one of the peptides of claim 1 for manufacturing a pharmaceutical composition useful for the treatment of liver diseases.

4. Use according to any of the claims 2 or 3 wherein the manufactured pharmaceutical composition is useful for the treatment of hepatic fibrosis.
est utile pour le traitement de la fibrose hépatique.
FIGURE 2
FIGURE 10
FIGURE 13
FIGURE 15
FIGURE 16
FIGURE 23
$R^2 = 0.91$
$R^2 = 0.86$
FIGURE 26
FIGURE 27
FIGURE 28