EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 15.10.2003 Bulletin 2003/42

Application number: 01300309.0

Date of filing: 15.01.2001

Article comprising a single-stage all-pass optical filter
Vorrichtung mit einstufigem optischen Allpassfilter
Dispositif avec filtre passe-tout optique à étage unique

Designated Contracting States: DE FR GB

Priority: 28.01.2000 US 493710

Date of publication of application: 01.08.2001 Bulletin 2001/31

Proprietor: LUCENT TECHNOLOGIES INC. Murray Hill, New Jersey 07974-0636 (US)

Inventors:
• Lenz, Gadi
 Fanwood, NJ 07023 (US)
• Madsen, Christi Kay
 South Plainfield, NJ 07080 (US)

Representative:
Watts, Christopher Malcolm Kelway, Dr. et al
Lucent Technologies (UK) Ltd, 5 Mornington Road
Woodford Green Essex, IG8 0TU (GB)

References cited:

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field Of The Invention

[0001] The present invention relates to optical communications systems and more particularly, to an article comprising a single-stage all-pass optical filter.

Background Of The Invention

[0002] Optical communications systems typically include a variety of devices (e.g., light sources, photodetectors, switches, optical fibers, amplifiers, filters, and so forth). Optical communications systems are useful for transmitting optical signals over long distances at high speeds. An optical signal, which comprises a series of light pulses, is transmitted from a light source such as a laser to an optical fiber and ultimately to a detector. Amplifiers and filters may be used to propagate the light pulses along the length of the fiber to the light source to the detector. Today, the bulk of long-distance communication traffic is carried by optical fibers. As use of optical fibers becomes more widespread and infiltrates the consumer marketplace, demand is increasing for efficient, high-speed, integrated opto-electronic devices.

[0003] There are many considerations and design constraints in developing optical systems. One consideration relates to signal synchronization in a wavelength division multiplexer or demultiplexer and/or optical time-division multiplexer (OTDM) device. Optical communications systems may include such devices for coupling, splitting, or filtering co-propagating pump signals. For example, FIG. 1 reflects a schematic representation of an OTDM system, comprising a time-division multiplexer (TDM) 100 which includes a plurality of low-speed transmitters 102, 103, 104 and a multiplexer 105, an optical switch or demultiplexer 110, and a receiver 115, connected by trunk fiber 11. Each of the transmitters sends low speed signals \(s_L \) to the multiplexer 105 which then outputs a high speed signal \(s_{H1} \) to the switch 110. The switch selectively drops pulses from the high-speed signal to produce low-speed output signals \(s_O \) sent to receiver 115. In this way, the signals may be sent at high-speed over the length of the fiber between the multiplexer 105 and the switch 110, and then interpreted at low speed to determine the information sent from each one of the transmitters.

[0004] Such OTDM communication systems require synchronization elements. For example, when the optical switch 110 demultiplexes a high bit-rate signal, a low bit-rate control "C" needs to be synchronized with the high bit-rate signal so that the signals coincide correctly in time inside the switch. This operation requires a delay line, e.g., the control will need to be delayed so it is synchronized inside the switch with the high bit-rate signal. A challenge in designing optical switches involves achieving a delay for a pulse train so that each of the frequencies of the pulse train is delayed for the same period of time. For example, FIG. 2 is a graphical illustration showing the spectrum of an unmodulated pulse train. In FIG. 2, an optical pulse 10 typically comprises a packet of waves 15a, 15b, 15c ... 15g. Each wave has a certain amplitude and frequency within the bandwidth \(f \), e.g., each wave within the packet is characterized by a different frequency and amplitude and travels at a different speed. Challenges are involved in achieving a constant time delay for each of the frequencies over the entire bandwidth \(f \). If certain frequencies of the pulse train (e.g. 15a, 15b), are not delayed or are given a different period of delay than other frequencies (e.g., 15c, 15d), the delayed signal will not correspond in phase with the original pulse train.

[0005] All-pass filters have been known in the field of electronics for equalizing phase and reducing distortion. Structures for fabricating all-pass filters for electronic devices are known in the field and described in the literature. See, e.g., U.S. Pat. No. 5,258,716 to Kondo et al., "All-Pass Filter." All-pass filters provide advantages over other types of filters as they affect only the phase of a signal, rather than its amplitude. A configuration for an all-pass filter for use with optical devices is described in EP-A-0 997 751; filed by Kazarinov et al.

[0006] As explained in the Kazarinov et al. application (and shown in FIG. 2B thereof), an optical signal transmitted through a fiber may be distorted or broadened with time over the length of the fiber. This broadening is undesirable as it may create noise, i.e., interference between sequential optical pulses. The Kazarinov et al. application describes an all-pass optical filter designed to eliminate such distortions. Additionally, it was disclosed therein that the all-pass optical filter could be useful in delaying an optical pulse in time. The all-pass optical filter of the Kazarinov et al. application applies a frequency-dependent time delay to each frequency of the optical pulse.

[0007] The Kazarinov et al. application describes single-stage and multiple-stage all-pass optical filters. A schematic representation of one embodiment a single-stage all-pass optical filter according to the Kazarinov et al. application is illustrated in FIG. 3. The filter comprises an input port for an input optical pulse 120, an output port 150, a splitter/combiner 143, and a feedback path 145 wherein the feedback path advantageously comprises at least one ring resonator. Although FIG. 3 shows a single-stage filter (e.g., a single resonator ring), the Kazarinov et al. application discloses that best results are achieved when multiple stages (multiple resonator rings) are used. Indeed, the Kazarinov et al. application teaches that many all-pass stages are needed to generate a large tunable delay for an arbitrary broadband signal. For example, FIG. 4 is a graph of the group delay in units of time as a function of frequency for a four-stage all pass optical filter as applied to an arbitrary broadband signal. As can be seen, a maximum and fairly constant delay of 16 au (arbitrary units) is achieved over the normalized frequency range of 0.4 to 0.6. Thus,
only certain frequencies would receive the maximum delay. A single all-pass optical filter would achieve a constant delay over a much smaller frequency range (Δf) and thus would be ineffective in delaying a pulse train having a large bandwidth (Δf). On the other hand, many all-pass stages would increase the bandwidth (Δf) of the maximum delay period and also lessen the ripple effect. As can be seen, with the four-stage all pass optical filter, a ripple effect is created over the delay period in that four separate summits appear at the maximum height of the delay peak.

[0009] However, use of many all-pass stages translates to more complicated systems than if a single-stage all pass filter were used. Preferably, two heaters are deposited on each resonator ring of the device for locally changing the free-spectral range of the group delay and the desired phase. Thus, the four-stage all-pass optical filter used to produce the delay peak shown in FIG. 4 would include the use of eight heaters, each of which would be need to be periodically adjusted depending on the optical signal and desired phase response.

[0008] As may be appreciated, those in the field of communications systems continue to seek new designs to improve system performance and reduce cost. In particular, it would be advantageous to have an all-pass optical filter that can generate a large tunable delay for a broadband signal without use of many all-pass stages.

Summary Of The Invention

[0010] Summarily described, the invention embraces an article comprising a single-stage all-pass optical filter. The all-pass optical filter includes an input port for receiving an input optical pulse having a regular repetition rate; an output port; a splitter/combiner; and one feedback path. The all-pass optical filter is configured to apply a plurality of frequency-dependent time delay periods to the input optical pulse so that the filter is characterized by a time-delay spectrum having a plurality of delay peaks. The free-spectral range (FSR) of the filter, i.e., the spacing between the delay peaks, is matched to the regular repetition rate of the input optical pulse. This matching is accomplished by the FSR being equal to the repetition rate or offset from the repetition rate to a sufficiently small degree that each frequency of the pulse train will fall within the bandwidth of one of the plurality of delay peaks. Advantageously at least one heater is disposed on the feedback path for use in tuning the time-delay spectrum of the filter. The article including the single-stage all-pass optical filter may comprise an assembly for use in a communications system including an OTDM device or a pulsed laser.

Detailed Description Of The Invention

[0011] For a better understanding of the invention, an exemplary embodiment is described below, considered together with the accompanying drawings, in which:

FIG. 1 is a schematic representation of an optical time-division multiplexer/demultiplexer system;

FIG. 2 is a graphical illustration showing an optical pulse comprising various frequencies and the repetition rate for each frequency;

FIG. 3 is a schematic representation of a single-stage all-pass optical filter wherein the feedback path includes a ring resonator;

FIG. 4 is a graph illustrating the normalized group delay as a function of frequency for a four-stage all-pass optical filter as applied to an arbitrary broadband signal;

FIG. 5 is a graph illustrating the normalized group delay as a function of frequency for an alternative embodiment of the inventive all-pass optical filter where the FSR is equal to the repetition rate of the input pulse train;

FIG. 6 is a graph illustrating the normalized group delay as a function of frequency for an alternative embodiment of the inventive all-pass optical filter where the FSR is slightly offset from the repetition rate of the input pulse train;

FIGS. 7A-7B are schematic illustrations of single-stage all-pass optical filters with a Mach-Zehnder interferometer structure; and

FIG. 8 is a schematic illustration of an all-optical time DEMUX having on-chip synchronization.

[0012] It is to be understood that these drawings are for the purposes of illustrating the concepts of the invention and are not to scale.

FIG. 1 is a schematic representation of an optical time-division multiplexer/demultiplexer system.

FIG. 2 is a graphical illustration showing an optical pulse comprising various frequencies and the repetition rate for each frequency.

FIG. 3 is a schematic representation of a single-stage all-pass optical filter wherein the feedback path includes a ring resonator.

FIG. 4 is a graph illustrating the normalized group delay as a function of frequency for a four-stage all-pass optical filter as applied to an arbitrary broadband signal.

FIG. 5 is a graph illustrating the normalized group delay as a function of frequency for an alternative embodiment of the inventive all-pass optical filter where the FSR is equal to the repetition rate of the input pulse train.

FIG. 6 is a graph illustrating the normalized group delay as a function of frequency for an alternative embodiment of the inventive all-pass optical filter where the FSR is slightly offset from the repetition rate of the input pulse train.

FIGS. 7A-7B are schematic illustrations of single-stage all-pass optical filters with a Mach-Zehnder interferometer structure; and

FIG. 8 is a schematic illustration of an all-optical time DEMUX having on-chip synchronization.

Detailed Description Of The Invention

[0013] The invention comprises a single stage all-pass optical filter that can be used to generate a large tunable delay for a regular unmodulated pulse train. Applicants have discovered that when the pulse train for a signal has a regular repetition rate (i.e., each of the frequencies of the pulse train differs from another frequency of the pulse train by an equal amount), a single-stage all-pass optical filter can be used to generate a large tunable delay for the signal. Additionally, applicants have discovered that when the repetition rate is regular, as defined above, a single-stage all-pass optical filter...
can be effective in correcting certain dispersion such as the linear chirp of a pulsed laser. These functions are accomplished by configuring the all-pass optical filter so that the free spectral range (FSR) of the filter, i.e., the spacing between the frequency-dependent time delay peaks generated by the filter, is matched to the repetition rate of the regular unmodulated pulse train input to the filter. By "matched to" it is meant that FSR is either equal to the repetition rate or is off-set from the repetition rate by a sufficiently small degree that each frequency of the pulse train will fall within the bandwidth of a peak of the normalized group delay.

More particularly with reference to the figures, one embodiment of the all-pass optical filter of this invention is schematically represented by the structure of FIG. 3. This all-pass optical filter 130 includes a feedback path 145, an input port 140 for receiving optical pulse 120, an output port 150, and a splitter/combiner 143 for coupling portions of the input optical pulse into and away from the feedback path 145. The feedback path of the all-pass optical filter may have a ring resonator structure, as schematically shown. According to the invention, only one ring resonator structure is used and yet a large tunable delay or chirp correction is accomplished by configuring the all-pass optical filter so that the free spectral range (FSR) of the filter, the height and width of each time-delay peak, and the phase of each delay peak can be determined depending on the coupling coefficient κ. Additionally, heat may be applied to adjust the values for κ and φ as would be suitable for the particular signal being input to the all-pass optical filter. Considerations involved in designing κ and φ are described in the Kazarinov et al. application incorporated herein and can be determined by one skilled in the field depending on the particular input signal and desired delay period.

The optical pulse 120 that enters the all-pass optical filter comprises a regular unmodulated pulse train. By defining the pulse train as "regular" herein, it is meant that the pulse train has a regular repetition rate as illustrated in FIG. 2 and described above, i.e., each of the frequencies of the pulse train differ from another (i.e., adjacent) frequency of the pulse train by the same amount which is represented in FIG. 2 as value "R." When this optical pulse enters the all-pass optical filter, a portion of the pulse is provided to the feedback path 145 and circulates therein. At each pass of the optical pulse in the feedback path 145, some portion thereof is provided through the splitter/combiner 143 to the output port 150, which incrementally reduces the portion of the optical pulse introduced into the feedback path 145, in effect removing it therefrom. The length of the feedback path 145 is typically shorter than the optical pulse length. Thus, as the input optical pulse 120 repeatedly circulates along the feedback path 145, it interferes with itself. That is, leading edge portions of the optical signal circulating in the feedback path interfere with trailing edge portions of the optical signal being input thereto. Interference between the leading and trailing edges of the optical pulse applies a frequency-dependent time delay to the frequencies of the optical pulse. After the frequency-dependent time delays are applied to each frequency of the optical pulse, the pulse is output from the filter through the output port 150.

The time delay applied by the filter can be determined by the filter design and adjusted with the application of heat to the feedback path 145. Thus, at least one heater 185 advantageously is coupled to the feedback path, as shown. Coupling ratios for the splitter/combiner 143 and feedback path 145 determine the portions of the optical pulse 120 that are coupled into and away from the feedback path and thus impact upon the value for the frequency-dependent time delay that is applied. The coupling coefficient κ for the ring determines the height and width of each time-delay peak, and the phase φ for the ring determines the value of the FSR between each delay peak. Thus, the height and width of each delay peak is determined by the coupling coefficient κ which is configured into the device design. To illustrate, FIG. 5 is a graph of the normalized group delay as a function of frequency for five consecutive FSR's of the single-stage all-pass optical filter. As can be seen, the filter has a time delay spectrum consisting of five peaks spaced from each other by the FSR. The value for the FSR can be determined depending on the phase φ of the resonator ring, and the height "h" and width "w" of each delay peak can be determined depending on the coupling coefficient κ. Additionally, heat may be applied to adjust the values for κ and φ as would be suitable for the particular signal being input to the all-pass optical filter. Considerations involved in designing κ and φ are described in the Kazarinov et al. application incorporated herein and can be determined by one skilled in the field depending on the particular input signal and desired delay period.

In an alternative embodiment, the FSR is slightly offset from the repetition rate of the input pulse train. For example, FIG. 6 shows the frequencies of a pulse train denoted by arrows 15a', 15b', 15c'... 15g', superimposed on a plot of the filter's time delay spectrum. Here, as can be seen the value for the FSR is denoted as reflecting an arbitrary unit of 1, and the value for the repetition rate "R" is slightly less than 1. Consequently, the first frequency of the pulse train 15a' will experience the maximum peak delay and each frequency thereafter experiences a slightly different (in this case lesser) delay. When the differences in the delay periods follow a linear path, the device can correct for linear chirp on the pulse train. This embodiment thus may be used inside a laser cavity as a dispersion-compensating element. Certain lasers, such as pulsed lasers, have a regular repetition rate and suffer from chirp. Such lasers would be particularly well-suited for use with the single-stage all-pass optical filter of this invention, as the filter
can function to equalize the chirped pulses. In each case the degree to which the repetition rate is offset from the FSR will depend upon the phase of the pulse train, the extent of chirp sought to be corrected, and how much dispersion is sought to be generated. However, typically the repetition rate will be offset from the FSR by an amount of about 10% of the value for the FSR.

[0019] Preferably, the feedback path of the all-pass optical filter is arranged in parallel with a Mach-Zehnder interferometer (MZI), as shown in FIGS. 7A and 7B. The MZI is denoted schematically within boxed region 300. In this embodiment, two heaters 185, 305 are placed along waveguide arms 303, 304 wherein one heater 185 may be used to adjust the coupling coefficient κ and the other heater 305 may be used to adjust the phase φ of the device. The MZI structure has more than one coupler, denoted as 308, 308, which optionally may be identical. The MZI structures are folded to minimize any increase in the feedback path length. In FIG. 7A, the path lengths of the waveguide arms 303, 304 are slightly different which provides flexibility for designing wavelength-dependent feedback coupling. In FIG. 7B, the path lengths of each arm 303, 304 are crossed and thus made substantially equal. With the structure of FIG. 7B, the optical signal loss can be reduced by increasing the crossing angle for the waveguide arms. Crossing the arms is advantageous for achieving large feedback coupling because the effective κ can be made large without affecting fabrication tolerances.

[0020] A signal having the regular pulse train and repetition rate, as illustrated in FIG. 2, is not particularly advantageous in itself for transmitting information in an optical communications system. However, applicants have discovered that the inventive single-stage all-pass optical filter as used with a signal having a regular repetition rate is advantageous in synchronizing control signals in an optical time-division multiplexer/demultiplexer system. To illustrate, FIG. 8 is a schematic representation of an all-optical time demultiplexer having on-chip synchronization. A high-speed optical signal S1 received from a multiplexer (not shown) is input to the switch 110 or demultiplexer. The input signal S1 contains a plurality of pulses (e.g., at 125) traveling at high speed which may correspond to information received from a number of different sources. A control signal "C" also is input to the switch 110 containing a plurality of signal pulses 135. For the control signal "C" to operate to remove select pulses from the input signal S1, the control signals must overlap in time or in other words, be synchronized with the input signal, so that they arrive within the switch at the same time, e.g., as seen on FIG. 8, two pulses of control signal 135 are synchronized with pulses of input signal 125 following dashed lines TS. The inventive all-pass optical filter 130 may be incorporated on the control line to delay the timing of the control signal so that it will be synchronized in time with pulses of the input signal S1. The single-stage all-pass optical filter is advantageous as it is less complicated than other devices, such as multiple-stage all pass optical filters, achieves a constant time delay over a wide range of frequencies, affects only the phase of the signal, not the amplitude, and can be integrated on the same chip as the switch. Thus, it is useful in achieving high-speed integrated opto-electronic devices.

[0021] It is understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make variations and modifications without departing from the scope of the invention defined by the appended claims. For example, although the single-stage all-pass optical filter is described primarily with regard to its applications in correcting linear chirp of a pulsed laser and delaying a control signal of an OTDM system, other applications may be recognized by one skilled in the field.

Claims

1. An article comprising a tunable all-pass optical filter for filtering optical signals CHARACTERIZED IN THAT

the tunable all-pass filter includes:

an input port for receiving an input optical pulse train having a regular repetition rate;
an output port;
a splitter/combiner; and

one feedback path, wherein the tunable all-pass optical filter is configured to apply a plurality of frequency-dependent time delay periods to the input optical pulse to define a time delay spectrum having a plurality of delay peaks, and the free spectral range of the filter as defined by the spacing between the delay peaks is matched to the regular repetition rate of the input optical pulse train.

2. The all-pass optical filter of claim 1 in which the one feedback path comprises a ring resonator and a heating element for heating a section of the ring resonator.

3. The all-pass optical filter of claim 1 arranged in parallel with a Mach-Zehnder interferometer.

4. The all-pass optical filter of claim 1 in which the free-spectral range of the filter is matched to the repetition rate of the pulse train by the free-spectral range being equal to the repetition rate.

5. An assembly for use in an optical communication system comprising an optical multiplexer/demultiplexer device including the all-pass optical filter of claim 4.

6. The all-pass optical filter of claim 1, in which the
free-spectral range of the filter is matched to the repetition rate of the pulse train by the free-spectral range being offset from the repetition rate by a sufficiently small degree that each frequency component of the pulse train falls within a bandwidth of one of the plurality of delay peaks.

7. An assembly for use in an optical communication system comprising a pulsed laser and the all-pass optical filter of claim 6, in which the all-pass optical filter corrects linear chirp of the pulsed laser.

8. An optical communications system comprising the all-pass optical filter of claim 1.

9. An optical communications system comprising the assembly of claim 5.

10. An optical communications system comprising the assembly of claim 7.

11. A method of generating a tunable delay for an optical signal with use of a single-stage tunable all-pass optical filter wherein the pulse train of the optical signal has a regular repetition rate, the method comprising matching the spacing between the frequency-dependent time delay peaks generated by the tunable all-pass optical filter to the repetition rate of the pulse train.

12. The method of claim 11, in which the free-spectral range of the filter is matched to the repetition rate of the pulse train by the free-spectral range being equal to the repetition rate.

13. The method of claim 11, in which the free-spectral range of the filter is matched to the repetition rate of the pulse train by the free-spectral range being offset from the repetition rate by a sufficiently small degree that each frequency of the pulse train falls within a bandwidth of one of the plurality of delay peaks.

14. A method for correcting linear chirp of a pulsed laser comprising the steps of:

providing a tunable all-pass optical filter including an input port for receiving an input optical pulse having a regular repetition rate; an output port; a splitter/combiner; and one feedback path, wherein the tunable all-pass optical filter is configured to apply a plurality of frequency-dependent time delay periods to the input optical pulse to define a time delay spectrum having a plurality of delay peaks, and

off-setting the free spectral range of the filter as defined by the spacing between the delay peaks from the regular repetition rate of the input optical pulse by a predetermined value such that each frequency component of the pulse train falls within a bandwidth of one of the plurality of delay peaks, wherein the predetermined value is selected to substantially equalize the linear chirp of the pulsed laser.

15. A method for synchronizing control signals with transmission signals of an optical time-division multiplexer/demultiplexer system, the method comprising:

providing a tunable all-pass optical filter including an input port for receiving an input optical pulse train having a regular repetition rate; an output port; a splitter/combiner; and one feedback path, wherein the tunable all-pass optical filter is configured to apply a plurality of frequency-dependent time delay periods to the input optical pulse train to define a time delay spectrum having a plurality of delay peaks,

configuring the free spectral range of the tunable all-pass optical filter as defined by the spacing between the delay peaks to be equal to the regular repetition rate of the input optical pulse train, and

applying the tunable all-pass optical filter to the control signals to delay the control signals, thereby synchronizing the control signals with the transmission signals.

Patentansprüche

1. Artikel mit einem abstimmbaren optischen Allpaßfilter zum optischen Filtern von Signalen, dadurch gekennzeichnet, daß
 das abstimmbare Allpaßfilter folgendes enthält:
 einen Eingangsport zum Empfangen einer optischen Eingangsimpulsfolge mit einer regelmäßigen Wiederholungsrate;
 einen Ausgangsport;
 einen Verzeiger/Kombinierer; und
 einen Rückkopplungsweg, wobei das abstimmbare optische Allpaßfilter so konfiguriert ist, daβ es mehrere frequenzabhängige Zeitverzögerungsperioden auf den optischen Eingangsimpuls anwendet, um ein Zeitverzögerungsspektrum mit mehreren Verzögerungsspitzen zu definieren, und der durch den Abstand zwischen den Verzögerungsspitzen definierte freie spektrale Bereich des Filters an die regelmäßige Wiederholungsrate der optischen Eingangsimpulsfolge angepaßt ist.

2. Optisches Allpaßfilter nach Anspruch 1, bei dem
der eine Rückkopplungsweg einen Ringresonator und ein Heizelement zum Heizen eines Teils des Ringresonators umfaßt.

3. Optisches Allpaßfilter nach Anspruch 1, parallel mit einem Mach-Zehnder-Interferometer angeordnet.

4. Optisches Allpaßfilter nach Anspruch 1, bei dem der freie spektrale Bereich des Filters an die Wiederholungsrate der Impulsfolge angepaßt ist, indem er gleich der Wiederholungsrate ist.

6. Optisches Allpaßfilter nach Anspruch 1, bei dem der freie spektrale Bereich des Filters an die Wiederholungsrate der Impulsfolge angepaßt ist, indem der freie spektrale Bereich um einen ausreichend kleinen Grad von der Wiederholungsrate versetzt ist, zu dem jede Frequenzkomponente der Impulsfolge in eine Bandbreite einer der mehreren Verzögerungsspitzen fällt.

11. Verfahren zur Erzeugung einer abstimmbaren Verzögerung für ein optisches Signal unter Verwendung eines einstufigen abstimmbaren optischen Filters, wobei die Impulsfolge des optischen Signals eine regelmäßige Wiederholungsrate aufweist, wobei bei dem Verfahren der Abstand zwischen den durch das abstimmbare optische Filter erzeugten frequenzabhängigen Zeitverzögerungsspitzen an die Wiederholungsrate der Impulsfolge angepaßt wird.

12. Verfahren nach Anspruch 11, bei dem der freie spektrale Bereich des Filters an die Wiederholungsrate der Impulsfolge angepaßt wird, indem der freie spektrale Bereich gleich der Wiederholungsrate ist.

14. Verfahren zum Korrigieren des linearen Chirpen eines gepulsten Lasers, mit den folgenden Schritten:

Bereitstellen eines abstimmbaren optischen Allpaßfilters mit einem Eingangsport zum Empfangen eines optischen Eingangsimpulses mit einer regelmäßigen Wiederholungsrate; einem Ausgangsport; einem Verzeiger/Kombinierer; und einem Rückkopplungsweg, wobei das abstimmbare optische Allpaßfilter so konfigurierl ist, daß es mehrere frequenzabhängige Zeitverzögerungsperioden auf den optischen Eingangsimpuls anwendet, um ein Zeitverzögerungsspektrum mit mehreren Verzögerungsspitzen zu definieren, und

Versetzen des durch den Abstand zwischen den Verzögerungsspitzen definierten freien spektralen Bereichs des Filters um einen vorbestimmten Wert von der Wiederholungsrate des optischen Eingangsimpulses, so daß jede Frequenzkomponente der Impulsfolge in eine Bandbreite einer der mehreren Verzögerungsspitzen fällt, wobei der vorbestimmte Wert so gewählt wird, daß das lineare Chirpen des gepulsten Lasers im wesentlichen ausgeglichen wird.

15. Verfahren zum Synchronisieren von Steuersignalen mit Übertragungssignalen eines optischen Zeitmultiplexer-/Demultiplexer-systems, mit den folgenden Schritten:

Bereitstellen eines abstimmbaren optischen Allpaßfilters mit einem Eingangsport zum Empfangen einer optischen Eingangsimpulsfolge mit einer regelmäßigen Wiederholungsrate; einem Ausgangsport; einem Verzeiger/Kombinierer; und einem Rückkopplungsweg, wobei das abstimmbare optische Allpaßfilter so konfiguriert ist, daß es mehrere frequenzabhängige Zeitverzögerungsperioden auf die optische Eingangsimpulsfolge anwendet, um ein Zeitverzögerungsspektrum mit mehreren Verzögerungsspitzen zu definieren.

Konfigurieren des durch den Abstand zwischen den Verzögerungsspitzen definierten freien spektralen Bereichs des abstimmbaren optischen Allpaßfilters, so daß er gleich der regel-
mäßigen Wiederholungsrate der optischen Eingangsimpulsfolge ist, und

Anwenden des abstimmbaren optischen Allpaßfilters auf die Steuersignale, um die Steuersignale mit den Übertragungssignalen synchronisiert werden.

Revendications

1. Article comprenant un filtre optique passe-tout accordable pour filtrer des signaux optiques CHARACTERISE EN CE QUE

le filtre passe-tout accordable comporte :

un port d'entrée pour recevoir un train d'impulsions optiques d'entrée ayant une fréquence de répétition régulière ;
un port de sortie ;
un diviseur/combiner ; et
un trajet de contre-réaction, dans lequel le filtre optique passe-tout accordable est configuré pour appliquer une pluralité de périodes de retards dépendant de la fréquence à l'impulsion optique d'entrée afin de définir un spectre de retards ayant une pluralité de pics de retard, et la gamme spectrale libre du filtre définie par l’espacement entre les pics de retard est adaptée à la fréquence de répétition régulière du train d'impulsions optiques d'entrée.

2. Filtre optique passe-tout selon la revendication 1, dans lequel le trajet de contre-réaction comprend un résonateur en anneau et un élément chauffant pour chauffer une section du résonateur en anneau.

3. Filtre optique passe-tout selon la revendication 1, agencé en parallèle avec un interféromètre de Mach-Zehnder.

4. Filtre optique passe-tout selon la revendication 1, dans lequel la gamme spectrale libre du filtre est adaptée à la fréquence de répétition du train d'impulsions par le fait que la gamme spectrale libre est égale à la fréquence de répétition.

5. Ensemble destiné à être utilisé dans un système de communication optique comprenant un dispositif multiplexeur/démultiplexeur optique comportant le filtre optique passe-tout de la revendication 4.

6. Filtre optique passe-tout selon la revendication 1, dans lequel la gamme spectrale libre du filtre est adaptée à la fréquence de répétition du train d'impulsions par le fait que la gamme spectrale libre est décalée de la fréquence de répétition par un degré suffisamment petit pour que chaque composante de fréquence du train d'impulsions tombe dans une largeur de bande de l'un de la pluralité de pics de retard.

7. Ensemble destiné à être utilisé dans un système de communication optique comprenant un laser pulsé et le filtre optique passe-tout selon la revendication 6, dans lequel le filtre optique passe-tout corrige la compression d'impulsions linéaire du laser pulsé.

8. Système de communications optique comprenant le filtre optique passe-tout de la revendication 1.

9. Système de communications optique comprenant l'ensemble de la revendication 5.

10. Système de communications optique comprenant l'ensemble de la revendication 7.

11. Procédé de génération d'un retard accordable d'un signal optique en utilisant un filtre optique passe-tout accordable à étage unique dans lequel le train d'impulsions du signal optique a une fréquence de répétition régulière, le procédé comprenant l'adaptation de l'espacement entre les pics de retard dépendant de la fréquence générée par le filtre optique passe-tout accordable à la fréquence de répétition du train d'impulsions.

12. Procédé selon la revendication 11, dans lequel la gamme spectrale libre du filtre est adaptée à la fréquence de répétition du train d'impulsions par le fait que la gamme spectrale libre est égale à la fréquence de répétition.

13. Procédé selon la revendication 11, dans lequel la gamme spectrale libre du filtre est adaptée à la fréquence de répétition du train d'impulsions par le fait que la gamme spectrale libre est décalée de la fréquence de répétition par un degré suffisamment petit pour que chaque fréquence du train d'impulsions tombe dans une largeur de bande de l'un de la pluralité de pics de retard.

14. Procédé de correction de la compression d'impulsions linéaire d'un laser pulsé comprenant les étapes de :

fourniture d’un filtre optique passe-tout accordable comportant un port d’entrée pour recevoir une impulsion optique d’entrée ayant une fréquence de répétition régulière ; un port de sortie ; un diviseur/combiner ; et un trajet de contre-réaction, dans lequel le filtre optique passe-tout accordable est configuré pour appliquer une pluralité de périodes de retard dépendant de la fréquence à l’impulsion optique d’en-
trée afin de définir un spectre de retards ayant une pluralité de pics de retard, et décalage de la gamme spectrale libre du filtre telle que définie par l'espacement entre les pics de retard par rapport à la fréquence de répétition régulière de l'impulsion optique d'entrée par une valeur prédéterminée de telle sorte que chaque composante de fréquence du train d'impulsions tombe dans une largeur de bande de l'un de la pluralité de pics de retard, où la valeur prédéterminée est sélectionnée pour être sensiblement égale à la compression d'impulsions linéaire du laser pulsé.

15. Procédé de synchronisation de signaux de commande avec des signaux d'émission d'un système multiplexeur/démultiplexeur à répartition dans le temps optique, le procédé comprenant

la fourniture d'un filtre optique passe-tout accordable comportant un port d'entrée pour recevoir un train d'impulsions optiques d'entrée ayant une fréquence de répétition régulière ; un port de sortie ; un diviseur/combineur ; et un trajet de contre-réaction, dans lequel le filtre optique passe-tout accordable est configuré pour appliquer une pluralité de périodes de retard dépendant de la fréquence au train d'impulsions optiques d'entrée afin de définir un spectre de retards ayant une pluralité de pics de retard, et

la configuration de la gamme spectrale libre du filtre optique passe-tout accordable telle que définie par l'espacement entre les pics de retard pour qu'elle soit égale à la fréquence de répétition régulière du train d'impulsions optiques d'entrée ; et

l'application du filtre optique passe-tout accordable aux signaux de commande afin de retarder les signaux de commande, synchronisant ainsi les signaux de commande avec les signaux d'émission.