EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 23.07.2003 Bulletin 2003/30

Application number: 9970077.6

Date of filing: 05.10.1999

Int Cl. 7: C07C 51/42, C07C 51/265, C07C 63/38, C08G 63/189

International application number:

PCT/US99/23085

International publication number:

WO 00/020368 (13.04.2000 Gazette 2000/15)

Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

Priority: 07.10.1998 US 103393 P
09.06.1999 US 138344 P
04.10.1999 US 412458

Date of publication of application: 01.08.2001 Bulletin 2001/31

Proprietor:

BP Corporation North America Inc.
Chicago, IL 60601 (US)

Inventors:

• PASCHKE, Edward, E.
 Wheaton, IL 60187 (US)
• ROSEN, Bruce, I.
 Morton Grove, IL 60053 (US)
• PETERSON, David, Alan
 Westmont, IL 60559 (US)
• JAMES, David, Eugene
 Batavia, IL 60510 (US)
• LUETKENS, Melvin, Louis, Jr.
 Batavia, IL 60510 (US)
• BAUER, Charles, W.
 Batavia, IL 60510 (US)
• BROOKS, Gary, T.
 Naperville, IL 60563 (US)

Representative:

Ritter, Stephen David et al
Mathys & Squire
100 Gray’s Inn Road
London WC1X 8AL (GB)

References cited:

DATABASE WPI Section Ch, Week 199816

DATABASE WPI Section Ch, Week 197604

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Related Applications

Field of the Invention

[0002] The invention generally relates to polymers formed from aromatic acids. More particularly, the invention relates to aromatic acid monomers which contain small amounts of materials that can provide unexpected advantages during the polymerization or copolymerization of those acid monomers, as well as to processes for manufacturing such aromatic acid monomers and polymers.

Background of the Invention

[0003] The manufacture of aromatic acids useful as monomers typically is a complex, multistep process. For example, 2,6-naphthalenedicarboxylic acid (2,6-NDA) can be manufactured by a five step synthesis process which includes the steps of reacting o-xylene and butadiene in an alkenylation reaction to produce 5-ortho-tolylpentene, cyclizing the 5-ortho-tolylpentene to form 1,5-dimethyltetralin (1,5-DMT), dehydrogenating the 1,5-DMT to produce 1,5-dimethylnaphthalene (1,5-DMN), isomerizing the 1,5-DMN to produce 2,6-dimethylnaphthalene (2,6-DMN), and oxidizing the 2,6-DMN to produce 2,6-NDA.

[0004] Crude NDA produced by such a process will contain a wide variety of what are believed to be undesired process-related materials. Many of these materials will be isomers of 2,6-NDA or mono- or trifunctional reaction products. Other undesired process-related materials contained in the crude NDA will be reagents such as catalyst metals carried through the various reactions steps, and color bodies formed during the reaction steps. As used herein, the term "process-related material" means any material that is formed or added in any process step leading up to the manufacture of aromatic acid monomer product, including but not limited to, catalysts, products of side reactions, undesired oxidation products, undesired isomers and the like.

[0005] It is believed that in the preparation of polyesters from monomers such as NDA, monomer purity is critical to satisfactorily achieving high molecular weight polymers and a sufficiently fast kinetic rate of polymerization. For this reason, polymer manufacturers typically require that monomer impurities such as monofunctional and tri-functional glycols and carboxylic acids be minimized or eliminated from monomers to be used in polymerization reactions. For example, terephthalic acid and isophthalic acid typically are expected to contain less than 200 parts per million or less by weight total of monocarboxylic and tricarboxylic acids. Similarly, ethylene glycol used in polymerization reactions typically is expected to contain no detectable impurities.

[0006] Tricarboxylic acids are thought to be undesirable because such trifunctional compounds can cause undesired cross-linking of polymer chains. Such cross-linking is reported to contribute to slow rates of crystallization and polymer brittleness, both of which are undesired characteristics in many applications. Additionally, when cross-linking becomes substantial, a "gel point" is reached. At this point, the polymer cannot be melt polymerized or melt fabricated and is no longer considered to be a thermoplastic material.

[0007] Monocarboxylic acids and other monofunctional materials are believed to be undesirable components in monomers because they act as "chain-stoppers" which inhibit the development of molecular weight and because they decrease reaction kinetics. If the concentration of such materials is too high, the polymerization rate can become zero due to termination of otherwise reactive end-groups.

[0008] Color bodies of various types are thought to be undesirable in monomers. The presence of color bodies in monomer can result in substantially greater color in a polymer than would appear likely from seemingly small amounts of color visible in a monomer, thus making even minute amounts of color bodies in monomers undesirable. As used herein, the term "color bodies" refers to any carboxylic acid containing process-related material present in a monomer or polymer that can contribute to the presence of color in the monomer or polymer if present in sufficient amount.

[0009] Metals such as entrained catalyst metals also are thought to be undesirable components in monomers. For example, entrained cobalt and manganese oxidation catalyst are believed to be undesirable monomer impurities because it is expected that they may affect the rate of polymerization and polymer color in an unpredictable way. Such metals also are thought to sometimes affect the amount of color visible in a monomer or polymer.

[0010] Because it is believed that the presence in monomer of undesired process-related materials such as byproducts, reagents and impurities like color bodies can result in an inferior polymer product, substantial effort typically is
devoted to Improving the purity of monomers such as 2,6 NDA to provide a quality of product deemed acceptable by customers.

For example, purified aromatic acids have been produced from crude aromatic acids by slurring the effluent from a crude aromatic acid oxidation process, passing the slurry through a plurality of heaters until the reaction products are dissolved, passing the resulting solution over a purification catalyst, and thereafter crystallizing a purified product. Such a process requires substantial time and energy beyond that expended to produce crude aromatic acid, and therefore substantially increases the cost of the monomer.

In another procedure described in US-A-5 770 764, crude aromatic acids derived by liquid place oxidation from corresponding alkyl-substituted aromatic compounds are purified by reacting the oxidation product with a polyalkyl amine, e.g. triethylamine to form an aqueous solution of salts, separating deleterious compounds from the solution and recovering the polyalkylamine and a relatively pure carboxylic acid product.

Alternatively, high purity monomer can be manufactured by starting with a relatively high purity feedstock, such as a process in which relatively pure 2,6-naphthalenedicarboxylate (2,6-NDC) is hydrolyzed to form relatively pure NDA. This process is also cost intensive because of the complexity and expense of producing the relatively pure NDC feedstock.

What is needed is a cost effective way to produce aromatic acids such as NDA which are suitable for use in polymer applications.

Summary of the Invention

Surprisingly, we have found that the presence of certain levels of process-related materials in aromatic add monomers can result in monomers that perform as well as or better than higher purity aromatic acid monomers when used in many polymer applications. In some applications, the presence of certain levels of catalyst metals can result in more rapid polycrystallation and solid state polymerization reactions, thereby improving the economics of these polymerization reactions without affecting the desired properties of the polymer product. In other applications, the presence of certain trifunctional materials in the aromatic acid monomer product provide for branching of polymer chains, thereby providing increased melt strength which is useful when molding articles from the polymer.

In still other applications, the presence of certain levels of metallic impurities and color bodies provides for an aromatic acid monomer that has a brownish cast that is useful in particular end uses, including but not limited to the packaging of drinks such as beer in brown polymer bottles.

While in some cases the foregoing aromatic add monomers might be produced directly as solids separated from the product of an oxidation reaction, typically aromatic monomer product in accordance with the present invention will be produced by relatively simple post-processing of oxidized aromatic feedstocks, such as by slurrying or washing crude aromatic acid in an appropriate solvent under the appropriate process conditions. Monomer product manufactured in this way can be both less expensive and advantageous in certain end uses.

Thus according to one aspect of the invention, this is provided a process for producing a naphthalenic dicarboxylic acid monomer product suitable for the manufacture of polyesters, said process comprising the steps of:

oxidizing a naphthalenic feedstock to produce a crude naphthalenic dicarboxylic acid;

slurrying the crude naphthalenic dicarboxylic acid wherein no more than about 10 mole percent of the naphthalenic acid is dissolved in order to produce a naphthalenic dicarboxylic acid monomer product comprising at least 90 mole percent of the acid monomer and one or more process-related materials selected from the group consisting of between 50 and 5,000 ppm of monofunctional materials, between 50 and 10,000 ppm of trifunctional materials, between 50 and 500 ppm of color bodies, and between 50 and 10,000 ppm of metals.

The resulting product may be subjected to a further step of polymerising the formed naphthalenic dicarboxylic acid monomer product into a homopolymer or a copolymer without performing an intervening process step intended to remove the process-related materials from the monomer product prior to conducting the polymerization step.

A polymerized product made from at least 90 mole percent naphthalenic dicarboxylic acid monomer and one or more materials selected from the group consisting of between 50 and 5,000 ppm of monofunctional materials, between 50 and 10,000 ppm of trifunctional materials, between 50 and 10,000 ppm of metals, and combinations thereof forms a further aspect of the invention.

Detailed Description of the Invention

The following detailed description of preferred embodiments of our invention focuses on the advantages of
our invention focuses on the advantages of our invention with respect to the preparation of 2,6 naphthalenedicarboxylic acid monomer product and polymers made therefrom. As will be discussed later in more detail, the advantages of the invention also are believed to be useful in connection with other aromatic acid monomers such as terephthalic acid, isophthalic acid and other isomers of naphthalenedicarboxylic acids.

[0024] As noted above, 2,6-naphthalenedicarboxylic acid (2,6-NDA) can be manufactured by a five step synthesis process which includes the steps of reacting o-xylene and butadiene in an alkenylation reaction to produce 5-ortho-tolylpentene, cyclizing the 5-ortho-tolylpentene to form 1,5-dimethyltetralin (1,5-DMT), dehydrogenating the 1,5-DMT to produce 1,5-dimethylnaphthalene (1,5-DMN), isomerizing the 1,5-DMN to produce 2,6-dimethylcarboxylic acid (2,6-DMN), and oxidizing the 2,6-DMN to produce 2,6-NDA. Aromatic feedstocks such as the 2,6-DMN oxidized in this process preferably contain at least 97 mole percent of the feed material which is to be oxidized to the acid, calculated as a mole percent of all aromatic material in the feedstock.

[0025] Crude 2,6-NDA produced by the foregoing process preferably contains at least 93 mole percent acid monomer and typically is expected to contain unacceptable levels of one or more of the following materials: trifunctional materials, 1-bromo-2,6-NDA, 2-naphthoic acid, 6-formyl-2-naphthoic acid, cobalt, manganese, bromine, iron and various color bodies. We have found that it frequently is not harmful, and in many cases it is advantageous, to permit certain levels of metals, trifunctional compounds, and color bodies to be present in 2,6-NDA monomer product used in polymerization reactions. In many cases, these acceptable and advantageous material levels can be obtained by relatively simple processing of the oxidation product of 2,6-DMN, thereby eliminating the need for costly purification steps such as recrystallization.

[0026] Acceptable and preferred levels of the foregoing materials consistent with our invention are listed in Table 1, below. The ppm ranges listed refer to ppm by weight of the material present in NDA monomer product.

<table>
<thead>
<tr>
<th>Material</th>
<th>Acceptable level</th>
<th>Preferred Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>trifunctionals</td>
<td>50 to 10,000</td>
<td>150 to 8,500</td>
</tr>
<tr>
<td>monofunctionals</td>
<td>50 to 5,000</td>
<td>150 to 3,500</td>
</tr>
<tr>
<td>metals (Co+Mn)</td>
<td>50 to 10,000</td>
<td>500 to 2,000</td>
</tr>
<tr>
<td>color bodies</td>
<td>50 to 500</td>
<td>50 to 250</td>
</tr>
</tbody>
</table>

[0027] NDA monomer having one or more of the foregoing materials in concentrations in accordance with our invention readily can be produced, for example, by slurrying crude NDA oxidation product to remove a fraction of such materials, while permitting a desirable, or at least non-deleterious, portion of such materials to remain in the monomer. As used herein, the term "slurry" refers to any process which employs a solvent to wash or disperse a crude oxidation product, but specifically excludes any process which dissolves greater than 10 mole percent of a desired aromatic monomer present in crude oxidation product, such as a recrystallization step. Other examples of "slurry" processes in accordance with the invention include the use of higher solvent volumes in the reactor in which the aromatic feedstock is oxidized to render the process-related materials more soluble, thereby somewhat reducing the levels present in the product, adding or increasing the volume of solvent in the crystallizer train of the oxidation process to reduce the presence of process-related material by dilution, and the use of filtration with a solvent wash to reduce the level of process-related materials remaining in the monomer product.

[0028] For example, crude 2,6-naphthalenedicarboxylic acid can be recovered directly from 2,6-DMN oxidation mother liquor. The crude 2,6-NDA then can be redispersed or reslurried in a suitable solvent such as water, a low molecular weight carboxylic acid, or a mixture of water and a low molecular weight carboxylic acid at a weight ratio of 0.1 to 1 part of 2,6-naphthalene dicarboxylic acid per part of solvent. Preferred process conditions for the reslurry process include temperatures of from 60 to 125°C, with 75 to 110°C being most preferred, and pressures of from about 0.5 to 3 atmospheres, with pressures of from 1 to 2 atmospheres being most preferred. Solvent acid to water ratios can range from 100 percent acid to 100 percent water, with the preferred acid to water ratio being from to 90:10 to 50:50, with the most preferred ranges being 80 parts acid and 20 parts water.

[0029] Preferably, at least a portion of the solvent used to redisperse or reslurry the 2,6-naphthalene dicarboxylic acid in this manner is a process stream or process-derived stream such as condensate from the overhead of the oxidation reaction mixture. In this case, solvent comprising water and an acid such as acetic acid can be returned, at least in part, to the oxidation reactor. Alternatively, the solvent can be distilled to recover the low molecular weight carboxylic acid for recycle to the oxidation reactor. Solvents may contain other process materials that will not substantially affect the slurry process or properties of the monomer product, such as solvents or acetates generated in the process. Such process streams should, however, contain little or none of the process-related materials sought to be minimized in the slurry process.
[0030] The foregoing slurry step provides for a relatively purer 2,6-naphthalenedicarboxylic acid. In many cases, such a 2,6-NDA monomer product in accordance with the invention will be suitable or preferred for certain applications over a monomer product produced from a more complex process having additional purification steps.

[0031] After this slurry step, the 2,6-naphthalenedicarboxylic acid can be separated from the solvent by any method or methods known in the art for partitioning a solid from a liquid phase such as, for example, centrifugation, filtration, or settling.

[0032] Of particular interest in the reslurried NDA are the concentrations of catalyst metals such as cobalt and manganese, the ratio of cobalt and manganese metals, the level of multifunctional aromatic compounds, and the level of colored impurities.

[0033] The levels and ratios of catalytic metals are important both because they will affect the polymerization rate of the monomer and because their presence may, in some cases, influence the final polymer color. For NDA applications, the total amount of Co and Mn present in the reslurried material should be no more than about 10,000 ppm by weight in the reslurried product, with 500 to 2,000 ppm being preferred, and 1000 to 1,500 ppm being most preferred. The molar ratio of Co to Mn can range from 5:1 to 0.2:1, with the preferred ratios being between 4:1 to 0.25:1, and the most preferred ratios being between 3:1 and 0.5:1.

[0034] The levels of multifunctional materials are important when the polymer to be produced from the aromatic monomer requires additional melt strength. For NDA applications, trifunctional naphthalenic moieties are the more likely species, with 1,2,6-, 1,3,7- and 2,3,6-naphthalene tricarboxylic acids predominating in the mix. Preferably, these trifunctional species will be present in the reslurried NDA in an amount between 50 and about 10,000 ppm by weight, preferably between 200 and 9,000 ppm by weight, and most preferably between 150 and 8,500 ppm by weight. When other aromatic monomers such as PTA are the subject of the invention, trifunctional acids such as 1,2,3-, 1,2,4- and 1,3,5-benzene tricarboxylic acids, and mixtures thereof are the more likely trifunctional species, and may be present in the ranges set forth above for the naphthalenic trifunctional species. Mixtures of any and all of the foregoing trifunctional impurities may, of course, be present in accordance with the invention, and impurities having a functionality greater than 3 may also be advantageously utilized in accordance with the invention. As used herein, the term "trifunctional material" means any process-related material having three functional groups capable of reacting with a glycol monomer under polymerization conditions. The term "multifunctional material" means any such material with a functionality of three or more.

[0035] Polyester color is a very important performance requirement in certain applications, while in other applications, color is not important. Sometimes, a color such as brown is required for certain packaging applications. The brown color typically is achieved by the addition of dyes which usually are high molecular weight organic compounds. Dyes are undesirable because they can detract from the polyester properties, especially barrier permeation to gases such as oxygen and carbon dioxide. Additionally, dyes are expensive, and can be undesirable from environmental and recycling standpoints. Thus, color bodies present in an aromatic acid monomer may be useful for inducing a color such as brown into subsequently formed polymers. Color bodies useful in accordance with the invention include benzocoumarin, pentaquinone, pentacene and fluorenone structures containing carboxylic acid functions. Typically, these color bodies should be present in an amount between 50 and 500 ppm by weight, more preferably between about 50 and 250 ppm, and most preferably present at a level of about 150 ppm.

[0036] Slurried NDA in accordance with the invention also can contain monofunctional impurities including, but not limited to, such aromatic acid impurities as benzoic acid and benzoic acid substituted with groups such as methyl, bromo, and formyl groups, as well as 1- and 2-naphthoic acid and 1- and 2-naphthoic acid substituted with groups such as methyl, bromo, and formyl, and mixtures thereof. The concentration of monocarboxylic acids in a reslurried NDA typically is from 50 to 5,000 ppm by weight, preferably 100 to 4,000 ppm by weight, and most preferably about 150 to 3500 ppm by weight. As used herein, the term "monofunctional material" means any process-related material having a single functional group capable of reacting with a glycol monomer under typical polymerization conditions.

[0037] Each of the foregoing materials need not be present in the amounts mentioned above if the desired advantage attributable to that material is not required in the desired monomer application.

[0038] By way of example, the crude NDA can be reslurried to yield an NDA monomer having the approximate specifications set forth in Table 2, below.

<table>
<thead>
<tr>
<th>Material</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>trifunctionals</td>
<td>5,500 +/- 1,500 ppm</td>
</tr>
<tr>
<td>monofunctionals</td>
<td>2,000 +/- 1,000 ppm</td>
</tr>
<tr>
<td>metals (Co+Mn)</td>
<td>1000 +/- 500 ppm</td>
</tr>
<tr>
<td>color bodies</td>
<td>150 +/- 120 ppm</td>
</tr>
</tbody>
</table>
Examples 1 and 2, below, demonstrate the effect of cobalt and manganese metal on the rate of polymerization of an aromatic polymer. The effect of catalytic metals in NDA monomer in a purified terephthalic acid (PTA)/naphthalenedicarboxylic acid (NDA) polymer was demonstrated by comparing the polymerization of an antimony-catalyzed 92 mole percent PTA/8 mole percent NDA mixture polymerized with ethylene glycol (the polymer being hereafter referred to as "PETN-8") with that of a similar mixture that had been "spiked" with 90 ppm by weight of cobalt (as cobalt acetate) and 30 ppm by weight of manganese (as manganese acetate). The polymerization times for both mixtures were measured for pressure esterification, atmospheric esterification and polycondensation reactions.

Example 1

In this example, the melt polymerization of PETN-8 without cobalt and manganese concentrations in the range of the invention was demonstrated. The following materials were placed into a 56-liter, helical-agitated reactor 12.86 kg of ethylene glycol, 27.53 kg of terephthalic acid, 3.12 kg of 2,6-naphthalene dicarboxylic acid, 1.34 grams of tetramethylammonium hydroxide, 8.46 grams of antimony trioxide, and 3.00 grams of cobalt acetate (20 ppm based on polymer yield). The initial reactor temperature was 107 °C and the reactor was pressurized with 40 psig nitrogen pressure. The melt temperature was increased to 223-246 °C and water was removed while the pressure was maintained at 40 psig. When water evolution stopped, the pressure was reduced to atmospheric and pressure esterification was completed. The pressure esterification time was 218 minutes.

The melt temperature then was increased to 263 °C and atmospheric esterification was continued for 60 minutes. An additional 100 grams of ethylene glycol and 3.83 grams of phosphoric acid were added. The reactor pressure was decreased from atmospheric to 3 mm Hg over a period of 65 minutes as the melt temperature was increased to 285 °C. Melt polycondensation was continued for an additional 108 minutes for a total of 173 minutes of polycondensation time to reach an agitator torque value of 1800 pound-inches. The product was stranded, quenched, and pelletized. The product had an inherent viscosity of 0.58 dL/g measured in 60/40 phenol/tetrachloroethane at 30 °C and a concentration of 0.4 g/dL.

Example 2

The following example demonstrates the melt polymerization of PETN-8 with cobalt and manganese concentrations present in the range of the invention. Example 1 was repeated with the same raw materials and weights except that 4.42 grams (28 ppm based on polyester weight) of manganese acetate was added and the amount of cobalt acetate added was 13.59 grams (91 ppm based on polyester weight). Using identical temperatures and pressures, the pressure esterification time was 220 minutes. The atmospheric esterification time was 60 minutes and the polycondensation time at the 285 °C melt temperature required to obtain 1800 pound-inches of torque was 117 minutes. The product's inherent viscosity was 0.59 dL/g.

Example 3

Example 1 was repeated with the same raw materials and weights as the control except that 12.57 grams of trimellitic acid, 3.80 grams of 2-formyl-6-naphthoic acid, 2.22 grams of 2-naphthoic acid, and 0.19 grams of 2-methyl-6-naphthoic acid were added. High purity NDA obtained by the hydrolysis of NDC was used in the control, while reslurried crude NDA obtained directly from an oxidation of DMN was used in the sample in accordance with the invention. The composition and characteristics of the control and the mono- and trifunctional-containing sample are set forth below. Color bodies were present in the crude sample but were not quantified.

<table>
<thead>
<tr>
<th>Impurity (ppm)</th>
<th>Control</th>
<th>Invention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricarboxylic Acids</td>
<td>None</td>
<td>4,029</td>
</tr>
<tr>
<td>Monocarboxylic Acids</td>
<td>109</td>
<td>1,993</td>
</tr>
</tbody>
</table>
The reduction in polycondensation time from 173 minutes to 118 minutes in accordance with the present invention is believed to be of major economic significance.

With respect to color, it should be noted that the *b color value noted above is a tristimulous color value on the blue/yellow scale. On this scale, a negative value appears blue and a positive value appears yellow, but with *b values greater than about +10, the visual appearance is brown. Therefore, the polyester prepared according to the invention particularly was suitable for beer bottle and other brown container applications without the added cost and environmental concern of the addition of an organic dye or pigment. Such color body-containing polyesters of this invention also are useful as relatively low cost polyesters in applications where white color is not a requirement, such as for industrial fibers and insulating films.

Example 4, below, illustrates the increased ability of polymers in accordance with the invention to polymerize in the solid state.

Example 4

3.0 gram polymer pellets produced from the materials of Examples 1 and 2 were crystallized in an oven at 150°C for 2.0 hours. The pellets were placed in test tubes, vacuum was applied, and the test tubes placed in an oil bath at room temperature. The oil was heated over a period of 200 minutes to 410°F which was considered the starting point for solid state polymerization. Samples were periodically removed from the oil bath and the following data obtained:

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Inherent Viscosity (dL/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>Start</td>
<td>0.60</td>
</tr>
<tr>
<td>1.0</td>
<td>0.61</td>
</tr>
<tr>
<td>2.0</td>
<td>0.62</td>
</tr>
<tr>
<td>4.0</td>
<td>0.65</td>
</tr>
<tr>
<td>6.0</td>
<td>0.71</td>
</tr>
<tr>
<td>8.0</td>
<td>0.75</td>
</tr>
<tr>
<td>Rate (dL/g)</td>
<td>0.0188</td>
</tr>
</tbody>
</table>

The foregoing data demonstrates an approximately 40 percent solid state polymerization rate increase for the invention compared to the control.

Examples 5 and 6, below, demonstrate that films can be formed and stretched from polymers in accordance with the invention, and that the presence of extraneous material in the polymer does not adversely affect the film product.
Example 5

[0052] Solid state polymerized pellets in accordance with the invention from Example 4 were dried for 16 hours at 150°C and melt extruded using a Killion Model KL-125 single screw extruder equipped with a 1.25 inch screw with a length to diameter ratio of 24 to 1 (L/D = 24/1). The extruder was equipped with a six inch adjustable lip sheet die and three chilled temperature rolls for take-off. A heater temperature profile of 515/525/530/530/530°F 268/274/277/277/277°C (feed throat to die) was employed and the screw speed was 75 rpm. High quality, amorphous sheet having a thickness of approximately 23 mils was produced.

Example 6

[0053] Samples of the sheet from Example 6 were biaxially oriented in a T. M. Long stretcher. The samples were heated to 226-244°F (108-118°C) for a period of 2.0 minutes and stretched at a strain rate of approximately 300%/second to produce 3 X 3 biaxially oriented films.

[0054] The following film properties were measured:

<table>
<thead>
<tr>
<th>Property</th>
<th>Control</th>
<th>Invention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallinity, %</td>
<td>25.0</td>
<td>23.7</td>
</tr>
<tr>
<td>Carbon Dioxide Permeation</td>
<td>34.2</td>
<td>31.2</td>
</tr>
<tr>
<td>(co-mil/100mil2-day-atm @ 35°C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0055] As can be seen from the foregoing data, the PETN-8 copolyester sample of the invention which contained high levels of monocarboxylic acids and tricarboxylic acids exhibited essentially the same level of crystallinity as the control sample and both films had similar carbon dioxide permeation values. However, the lower permeation value for the invention translates into longer shelf-life for packaging applications. Both films were very tough and showed no evidence of brittleness.

[0056] Other preferred polyesters which can employ NDA monomer product in accordance with the present invention include any PTA/NDA polymer having molar ratios of PTA to NDA of 99:1 to 1:100. Preferred ranges of NDA to PTA in NDA/PTA polyesters will range from 2 to 15 mole percent NDA to 98 to 85 mole percent PTA, with 2 to 9 mole percent NDA to 98 to 91 mole percent PTA being more preferred. NDAs useful in the invention can be any polymerizable isomer such as 2,6-, 1,5-, 1,4- and 2,7-NDA, as well as mixtures thereof. The polyesters also can include up to about 15 mole percent of other carboxylic acids such as isophthalic acid and/or adipic acid. The polyester also may incorporate up to about ten mole percent of a glycol such as diethylene glycol, 1,4-butanediol, polybutadiene glycol or 1,4-cyclohexanediolmethanol, or mixtures thereof. With respect to the ranges of process-related materials set forth in Table 1, above, it should be noted that higher levels of monomer impurities are preferred in monomer product intended to be used as small fractions of a copolymer, while lower levels of impurities will be preferred where the monomer product comprises large fractions of a copolymer or where the end product is a homopolymer.

[0057] The inherent viscosity of polyesters in accordance with the present invention as measured in a 60/40 solution of phenol/tetrachloroethane at 30°C and a concentration of 0.4 grams/dL typically will be between 0.40 to 1.00 dL/gram, preferably 0.50-0.90 dL/g, and most preferably between about 0.60-0.80 dL/g.

[0058] The dicarboxylic acid component of polyesters in accordance with the invention optionally may be modified with up to 15 mole percent of one or more different dicarboxylic acids other than terephthalic acid and 2,6-naphthalenedicarboxylic acid. Such additional dicarboxylic acids include aromatic dicarboxylic acids preferably having 8 to 14 carbon atoms, aliphatic dicarboxylic acids preferably having 4 to 12 carbon atoms, or cycloaliphatic dicarboxylic acids preferably having 8 to 12 carbon atoms. Examples of dicarboxylic acids to be included are phthalic acid, isophthalic acid, cyclohexanedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, resorcinoldiacetic acid, diglycolic acid, 4,4'-oxybis(benzoic) acid, 1,12-dodecanedicarboxylic acid, 4,4'-sulfonyldibenzonic acid, 4,4'-methylenedibenzonic acid, trans 4,4'-stilbenedicarboxylic acid, 2,6-dicarboxytertraline, 2,6-dicarboxydecalin, and the like.

[0059] Other additives and stabilizers known in the art such as glass fibers, mineral reinforcement, oxygen scavengers, diethylene glycol suppressants, optical brightening agents and phosphorous-containing stabilizers can be incorporated into monomer product or polymers made therefrom in accordance with the invention.

[0060] Monomers in accordance with the invention also may be used to produce homopolymers and copolymers from relatively pure acids by adding the materials described herein in the amounts set forth herein.

[0061] For example, metal salts particularly useful for preparing metal-containing monomers include cobalt and manganese alkylates such as acetates, halides, especially bromides, and organic acid salts, particularly aromatic salts.
When adding salts to relatively pure aromatic acids, metal concentrations can range from 20 to 10,000 ppm by weight, more preferably between 50 to 2000 ppm by weight, and most preferably between 100-1000 ppm by weight.

[0062] If Co and Mn are added to produce a monomer in accordance with the invention, the molar ratio of Co to Mn can range from 5:1 to 0.2:1, with the preferred ratios being between 4:1 to 0.25:1, and the most preferred ratios being between 3:1 and 0.5:1.

[0063] Polymers in accordance with the invention can be produced in the same manner as polymers are produced from purer monomers of the same acids. Such polymerization reactions are well-known in the art. See, for example, The Encyclopedia of Chemical Technology, Vol. 18, pp. 531-594, John Wiley and Sons (1982), the disclosure of which is hereby incorporated by reference.

[0064] Co- and homopolymers produced in accordance with the invention can be used to manufacture sheets and biaxially oriented films, fibers, stretch blow molded containers and any other application where such polyesters typically are employed. See, for example, Plastics Engineering Handbook, 4th Edition, Van Nostrand Reinhold Company (1976), the disclosure of which is hereby incorporated by reference.

[0065] The presence of metals, color bodies and other impurities in the acid monomer of the present invention make these monomers particularly useful in NDA-copolymer applications where the presence of color is desired or not objectionable, as well as where enhanced high temperature performance is required. Typical applications particularly suitable for use of copolymers in accordance with the invention are containers for food or beverages that require heating or pasteurization and which must exhibit dimensional stability during and after the heating or pasteurization process. This is especially true where the packaged material contains carbon dioxide or another gas which will generate substantial internal package pressure when heated. Specific examples of such applications are pasteurizable bottles for beer, and bottles for fruit juices such as prune juice, where package heatability and color are desired package characteristics. The utility of NDA/PTA copolymers is demonstrated by Example 7 below.

Example 7

[0066] One half liter capacity, long neck, pasteurizable amber beer bottles having a champagne base were fabricated from experimental copolymers containing reslurried acid monomer in accordance with the composition described in Table 2, above.

[0067] In Example 7A, the PETN-3 copolymer employed contained 3 mole percent of the reslurried NDA and 97 mole percent of a purified terephthalic. In this Example, a 35.0 gram injection molding preform was prepared. The preform contained approximately 15 grams of copolymer in the shoulder area, 10 grams of copolymer in the panel area, and 10 grams of material in the base area.

[0068] In Example 7B, a PETN-5 copolymer contained 5 mole percent of the reslurried NDA and 95 mole percent of the same purified terephthalic acid. In this Example, a 34.1 gram injection molding preform was prepared. The preform contained approximately 14.7 grams of copolymer in the shoulder area, 10 grams of copolymer in the panel area, and about 9.4 grams of material in the base area.

[0069] The preforms of Examples 7A and 7B were blown into 0.5 liter bottles using a Sidel SBL2/3 stretch blow molding machine. Carbonated water containing about 2.9 to 3.1 volumes of carbon dioxide was added to each bottle to a predetermined fill line and capped.

[0070] The capped bottles were placed in a pasteurization chamber and sprayed with 71 degree Centigrade water until the bottle contents reached a temperature of 63°C. The spray water temperature was then reduced to 64°C to maintain the bottle contents at 63°C for an additional 15 minutes. Spray water temperature was then reduced until the bottle contents reached 40°C, after which time the bottles were chilled to room temperature in a cold water bath.

[0071] Several physical parameters of the pasteurized bottles were measured to determine the effects on the bottles from the pasteurization process. The results of those measurements are summarized in Table 3 below.

<table>
<thead>
<tr>
<th>Bottle material</th>
<th>PETN-3</th>
<th>PETN-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin IV</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Dimensional Changes (% increase)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>0.43</td>
<td>0.26</td>
</tr>
<tr>
<td>Diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Bumper</td>
<td>1.94</td>
<td>2.15</td>
</tr>
<tr>
<td>Mid Panel</td>
<td>1.74</td>
<td>0.48</td>
</tr>
</tbody>
</table>
In the case of Examples 7A and 7B, both bottles’ dimensional changes were judged acceptable based on pressure retention (at least 75% of the prepasteurization pressure was retained when initially charged to a pressure of about 3 volumes), and perpendicularity (deviation from the vertical less than 0.25 inches for the vertical radial axis of bottle symmetry when the pasteurized bottle is standing on its base, with the deviation measured at the top of the bottle. Fill line drops of less than 3 percent also are preferred.

It was also found that injection blow molding bottle preforms containing between about 40-46 weight percent of their material in the shoulder region, 26-32 weight percent of their material in their panel region and 25-31 weight percent of their material in the base region were most successful in withstanding the pasteurization tests. These approximate preform weight distributions and geometries are believed to be useful for half liter bottles formed from other polymers and are believed to be scalable for producing pasteurizable bottles of other volumes.

While the foregoing examples describe the invention with respect to certain naphthalenic acid monomer products, those of ordinary skill in the art will recognize that the invention is equally useful in connection with monomers such as terephthalic acid, isophthalic acid and the like, with process-related materials present in approximately the same ranges when corrected for the molecular weight difference between naphthalenic and other aromatic monomers. Additionally, when monomers according to the present invention are used to make copolymers, the process-related materials present in accordance with the present invention may be present, for example, in any one monomer, or in more than one monomer. For these reasons, our invention is intended to be limited only by the scope of the following claims.

Claims

1. A process for producing a naphthalenic dicarboxylic acid monomer product suitable for the manufacture of polyesters, said process comprising the steps of:

 oxidizing a naphthalenic feedstock to produce a crude naphthalenic dicarboxylic acid;

 slurrying the crude naphthalenic dicarboxylic acid wherein no more than 10 mole percent of the naphthalenic acid is dissolved in order to produce a naphthalenic dicarboxylic acid monomer product comprising at least 90 mole percent of the acid monomer and one or more process-related materials selected from the group consisting of between 50 and 5,000 ppm of monofunctional materials, between 50 and 10,000 ppm of trifunctional materials, between 50 and 500 ppm of color bodies, and between 50 and 10,000 ppm of metals.

2. The process of Claim 1 wherein the crude naphthalenic dicarboxylic acid is slurried in a solvent selected from the group consisting of water, aliphatic organic acids having between 2 and 4 carbon atoms, and mixtures thereof.

3. The process of Claim 2 wherein the slurrying step is performed at a temperature of 75 to 110°C, at a pressure of from 1 to 2 atmospheres, wherein the solvent comprises at least 50 mole percent acetic acid, and at a solvent to crude naphthalenic acid weight ratio of 1:1 to 10:1.

4. The process of any of claims 1 to 3 wherein a naphthalenic dicarboxylic acid monomer product comprising at least 93 mole percent of the acid monomer is recovered from the slurry.

5. The process of Claim 4 wherein the recovering step is performed without first performing a recrystallisation step.

6. The process of any preceding claim wherein the process-related materials are selected from the group consisting of between 150 and 3,500 ppm of monofunctional materials, between 150 and 8500 ppm of trifunctional materials,
between 50 and 250 ppm of color bodies, and between 500 and 2,000 ppm of metals, and combinations thereof.

7. The process of any preceding claim wherein the process-related material includes from between 500 and 2,000 mole percent of metals selected from the group consisting of cobalt, manganese, and mixtures thereof.

8. The process of any preceding claim further comprising the step of polymerizing the naphthalenic dicarboxylic acid monomer product into a homopolymer or a copolymer without performing an intervening process step intended to remove the process-related materials from the monomer product prior to conducting the polymerization step.

9. The process of Claim 8 further comprising the step of producing a homopolymer or copolymer article from the polymerized naphthalenic dicarboxylic acid monomer product, said article being selected from the group consisting of sheets, films, oriented films, fibers, injection molded articles, and blow molded articles.

10. The process of Claim 8 wherein a copolymer is formed from between 2 and 15 mole percent of the polymerized naphthalenic dicarboxylic acid monomer product and from between 98 and 85 mole percent of one or more aromatic acids selected from the group consisting of terephthalic acid, isophthalic acid, and adipic acid, and mixtures thereof.

11. The process of Claim 8 wherein the copolymer is formed from monomer comprising between 2 and 9 mole percent of the naphthalenic dicarboxylic acid monomer product and from between 91 and 98 mole percent of terephthalic acid.

12. The process of any of Claims 8-11 further comprising polymerizing the naphthalenic dicarboxylic acid monomer product into a homopolymer or a copolymer without first performing an intervening process step intended to remove the process related materials from the monomer product prior to conducting the polymerization.

13. A polymerised product made from at least 90 mole percent naphthalenic dicarboxylic acid monomer and one or more materials selected from the group consisting of between 50 and 5,000 ppm of monofunctional materials, between 50 and 500 ppm of color bodies, and between 50 and 10,000 ppm of metals, and combinations thereof.

14. The product of Claim 13 wherein one or more of the one or more materials is a process-related material resulting from manufacture of naphthalene dicarboxylic acid.

15. The product of Claim 14 wherein the process-related material is selected from the group consisting of between 150 and 3,500 ppm of monofunctional materials, between 150 and 8,500 ppm of trifunctional materials, between 50 and 250 ppm of color bodies, and between 500 and 2,000 ppm of metals selected from the group consisting of cobalt and manganese, and combinations thereof.

16. A polyester comprising at least 2 mole percent of the product of Claim 15 and having a tristimulus color value of greater than +10 on a yellow/blue scale.

17. A copolymer formed from monomer comprising between 2 and 10 mole percent of the polymerized naphthalenic dicarboxylic acid monomer product of Claim 13 and from between 98 and 90 mole percent of terephthalic acid.

18. An article formed from the copolymer of Claim 17, said article being selected from the group consisting of sheets, films, oriented films, fibers, injection molded articles, and blow molded articles.

19. A pasteurizable blow-molded bottle prepared from a polymerized material comprising a copolymer containing between 2 and 9 mole percent of the naphthalenic dicarboxylic acid monomer product formed by the process of any of Claims 1 to 12, and from between 98 and 91 mole percent of terephthalic acid, said bottle being capable of containing a gas-containing liquid during a pasteurization process in which the temperature of the gas-containing liquid is maintained at a temperature of at least 60°C for at least 15 minutes during said process, and wherein said bottle is capable of retaining at least 70 percent of an initial gas pressure when charged to an initial gas pressure of about 3 volumes of gas per bottle volume.

20. The bottle of Claim 19 wherein, after pasteurization, the bottle has a vertical axis of radial symmetry through the bottle which deviates from perpendicular of less than 0.25 inches.

21. The bottle of Claim 19 wherein the bottle is a bottle having an approximate 500 milliliter capacity, and wherein the
bottle is blown from a preform having a shoulder area, a panel area and a base area, said areas expanding during the blowing process under exposure to heat and pressure to form a blow molded bottle, and in which the shoulder area contains between 14 to 16 grams of polymer, wherein the panel area contains between 9 to 11 grams of polymer, and wherein the the base contains between 8.5 and 11 grams of polymer.

Patentansprüche

1. Ein Verfahren zur Herstellung eines naphthalinischen Dicarbonsäuremonomer-Produkts, das für die Herstellung von Polyestern geeignet ist, wobei das Verfahren die folgenden Schritte umfaßt:

 man oxidiert ein naphthalinisches Einsatzmaterial zur Erzeugung einer rohen naphthalinischen Dicarbonsäure;
 man schlämmt die rohe naphthalinische Dicarbonsäure auf, in der nicht mehr als 10 Molprozent der naphthalinischen Säure gelöst ist, um ein naphthalinisches Dicarbonsäuremonomer-Produkt zu erzeugen, das wenigstens 90 Molprozent des Säure-Monomers und ein oder mehrere verfahrensverwandte Materialien aus der Gruppe aus zwischen 50 und 5.000 ppm monofunktionelle Materialien, zwischen 50 und 1.000 ppm trifunktionelle Materialien, zwischen 50 und 500 ppm Farbkörper und zwischen 50 und 10.000 ppm Metalle umfaßt.

2. Verfahren nach Anspruch 1, wobei die rohe naphthalinische Carbonsäure in einem Lösungsmittel aus der Gruppe: Wasser, aliphatische organische Säure mit 2 bis 4 Kohlenstoffatomen und Gemischen hieraus aufgeschlämmt wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, wobei ein naphthalinisches Dicarbonsäuremonomer-Produkt, das wenigstens 93 Molprozent des Säuremonomers umfaßt, aus der Aufschlämmung gewonnen wird.

5. Verfahren nach Anspruch 4, wobei der Gewinnungsschritt durchgeführt wird, ohne erst einen Umkristallisations-schritt durchzuführen.

7. Verfahren nach einem der vorstehenden Ansprüche, wobei das verfahrensverwandte Material zwischen 500 und 2.000 Molprozent Metalle aus der Gruppe bestehend aus Kobalt, Mangan und Mischungen hieraus umfaßt.

8. Verfahren nach einem der vorstehenden Ansprüche, das weiter den Schritt der Polymerisierung des naphthalinischen Dicarbonsäuremonomer-Produkts zu einem Homopolymer oder einem Copolymer ohne Ausführung eines dazwischenliegenden Verfahrensschritts, der vorgesehen ist zur Entfernung der verfahrensverwandten Materialien, aus dem Monomerprodukt vor Durchführung des Polymerisationsschrittes umfaßt.

11. Verfahren nach Anspruch 8, wobei das Copolymer aus Monomer, das zwischen 2 und 9 Molprozent des naphthalinischen Dicarbonsäuremonomer-Produkts und zwischen 91 und 98 Molprozent Terephthalsäure umfaßt, gebildet wird.
12. Verfahren nach einem der Ansprüche 8 bis 11, das weiterhin die Polymerisierung des naphthalinischen Dicarbon säuremonomer-Produkts zu einem Homopolymer oder einem Copolymer umfaßt, ohne erst einen dazwischenliegenden Prozessschritt zur Entfernung der prozeßverwandten Materialien aus dem Monomerprodukt vor Durchführung der Polymerisation auszuführen.

13. Ein polymerisiertes Produkt, hergestellt aus wenigstens 90 Molprozent naphthalinischen Dicarbon säuremonomer und einem oder mehreren Materialien der Gruppe 50 bis 5.000 ppm monofunktionele Materialien, zwischen 50 und 500 ppm Farbkörper und zwischen 50 und 10.000 ppm Metalle und Kombinationen hieraus.

18. Artikel, gebildet aus dem Copolymer des Anspruchs 17, wobei der Artikel aus der Gruppe: Blätter (Bögen), Filme, orientierte Filme, Fasern, Spritzgußartikel und blasverformte Artikel ausgewählt ist.

19. Pasteurisierbare blasverformte Flasche, hergestellt aus einem polymerisierten Material, das ein Copolymer enthaltend zwischen 2 und 9 Molprozent des naphthalinischen Dicarbon säuremonomer-Produkts, gebildet nach dem Verfahren nach einem der Ansprüche 1 bis 12, und zwischen 98 und 91 Molprozent Terephthalsäure umfaßt, wobei die Flasche eine Gas enthaltende Flüssigkeit während eines Pasteurisierverfahrens aufnehmen kann, bei dem die Temperatur der gashaltigen Flüssigkeit bei einer Temperatur von 60°C für wenigstens 15 Minuten während des Verfahrens gehalten wird, und wobei die Flasche wenigstens 70% eines anfänglichen Gasdrucks aufrechterhalten kann, wenn sie mit einem anfänglichen Gasdruck von etwa 3 Volumen Gas pro Flaschenvolumen beaufschlagt wird.

20. Flasche nach Anspruch 19, wobei nach der Pasteurisierung die Flasche eine vertikale Achse der Radialsymmetrie durch die Flasche aufweist, die von den senkrechten weniger als 0,25 Inch abweicht.

21. Flasche nach Anspruch 19, wobei die Flasche eine Flasche ist, die ungefähr 500 ml Kapazität besitzt und wobei die Flasche aus einer Vormorf geformt wird, die eine Schulterfläche, eine Wandfläche und eine Grundfläche besitzt, wobei die Flächen sich während des Blasverfahrens unter Einwirkung von Hitze und Druck zur Bildung einer blasgeformten Flasche ausdehnen und in der die Schulterfläche zwischen 14 und 16 g Polymer, die Füllwandfläche zwischen 9 und 11 g Polymer und die Grundfläche zwischen 8,5 und 11 g Polymer enthalten.

Revidications

1. Procédé de production d'un produit monomère d'acide naphtalénique dicarboxylique approprié à la fabrication de polyesters, ledit procédé comprenant les étapes :

- d'oxydation d'un produit de départ naphtalénique pour produire un acide naphtalénique dicarboxylique brut ;

- de mise en suspension de l'acide naphtalénique dicarboxylique brut au cours de laquelle pas plus de 10 moles pour cent d'acide naphtalénique sont dissoutes, afin de produire un produit monomère d'acide naphtalénique dicarboxylique comprenant au moins 90 moles pour cent du monomère acide et un ou plusieurs matériaux liés au procédé, choisis au sein du groupe consistant en 50 à 5.000 ppm de matériaux monofonctionnels, 50 à 10.000 ppm de matériaux trifonctionnels, 50 à 500 ppm de corps colorés et 50 à 10.000 ppm de métaux.
2. Procédé selon la revendication 1, dans lequel l'acide naphtalénique dicarboxylique brut est mis en suspension dans un solvant choisi au sein du groupe consistant en l'eau, en des acides organiques aliphatiques ayant entre 2 et 4 atomes de carbone et en des mélanges de ceux-ci.

5. Procédé selon la revendication 2, dans lequel l'étape de mise en suspension est effectuée à une température de 75 à 110°C, à une pression de 1 à 2 atmosphères, dans lequel le solvant comprend au moins 50 moles pour cent d'acide acétique, et dans un rapport pondéral solvant/acide naphtalénique brut de 1:1 à 10:1.

8. Procédé selon l'une quelconque des revendications précédentes, comprenant aussi l'étape de polymérisation du produit monomère d'acide naphtalénique dicarboxylique en un homopolymère ou un copolymère sans mise en œuvre d'une étape de procédé interposée destinée à éliminer du produit monomère les matériaux liés au procédé, avant d'effectuer l'étape de polymérisation.

11. Procédé selon la revendication 8, dans lequel le copolymère est formé à partir d'un monomère comprenant entre 2 et 9 moles pour cent de produit monomère d'acide naphtalénique dicarboxylique et entre 91 et 98 moles pour cent d'acide tétréphtalique.

14. Produit selon la revendication 13, dans lequel un ou plusieurs des un ou plusieurs matériaux sont des matériaux liés au procédé, provenant de la fabrication de l'acide naphtaléne dicarboxylique.
et les combinaisons de ceux-ci.

16. Polyester comprenant au moins 2 molles pour cent du produit selon la revendication 15, et ayant une valeur de tristimulus de couleur supérieure à +10 sur une échelle jaune/bleu.

17. Copolymère formé à partir de monomère comprenant entre 2 et 10 molles pour cent du produit monomère d'acide naphtalénique dicarboxylique polymérisé selon la revendication 13, et entre 98 et 90 molles pour cent d'acide téréphtalique.

19. Bouteille pasteurisable, moulée par soufflage, préparée à partir d'un matériau polymérisé comprenant un copolymère contenant entre 2 et 9 molles pour cent du produit monomère d'acide naphtalénique dicarboxylique formé par le procédé selon l'une quelconque des revendications 1 à 12, et entre 98 et 91 molles pour cent d'acide téréphtalique, ladite bouteille étant capable de contenir un liquide renfermant du gaz, au cours d'un processus de pasteurisation dans lequel la température du liquide renfermant du gaz est maintenue à une température d'au moins 60°C pendant au moins 15 minutes au cours dudit processus, et dans lequel ladite bouteille est capable de retenir au moins 70 pour cent de la pression gazeuse initiale lorsqu'elle est chargée à une pression gazeuse initiale d'environ 3 volumes de gaz par volume de bouteille.

20. Bouteille selon la revendication 19, dans laquelle, après pasteurisation, la bouteille a un axe vertical de symétrie radiale à travers la bouteille qui s'écarte de moins de 0,25 pouce, de la perpendiculaire.

21. Bouteille selon la revendication 19, dans laquelle la bouteille est une bouteille ayant une capacité d'environ 500 millilitres et dans laquelle la bouteille est soufflée à partir d'une préforme comportant une surface à épaulement, une surface latérale et une surface de base, lesdites surfaces s'expansant au cours du processus de soufflage sous l'exposition à la chaleur et à la pression pour former une bouteille moulée par soufflage, et dans laquelle la surface à épaulement contient entre 14 et 16 grammes de polymère, dans laquelle la surface latérale contient entre 9 et 11 grammes de polymère et dans laquelle la surface de base contient entre 8,5 et 11 grammes de polymère.