EUROPEAN PATENT SPECIFICATION

AMPLIFIER APPARATUS WITH TRANSIENT RECOVERY AID
VERSTÄRKER MIT REDUZIERTER ERHOLZEIT FÜR STÖRIMPULSE
APPAREIL AMPLIFICATEUR AVEC ELEMENT AUXILIAIRE DE RECUPERATION EN CAS DE TRANSITOIRES

Designated Contracting States:
DE FR GB IT

Priority: 02.10.1998 US 102774 P

Date of publication of application:
25.07.2001 Bulletin 2001/30

Proprietor: Thomson Licensing S.A.
92648 Boulogne Cedex (FR)

Inventors:
• MORRIS, Robert, Edward, Jr.
 Indianapolis, IN 46256 (US)
• HOOVER, Alan, Anderson
 Indianapolis, IN 46240 (US)

Representative: Rossmanith, Manfred, Dr.
Deutsche Thomson-Brandt GmbH
European Patent Operations
Karl-Wiechert-Allee 74
30625 Hannover (DE)

References cited:
• HERBERT SAX: "HIFI IM FERNSEHGERÄT ANSPRUCH ODER WIRKLICHKEIT"
 FUNKSCHAU, no. 25/26, 1981, pages 65-67,
XP002104648 MUNCHEN DE
• R.W.J. BARKER ET AL: "GATE-CIRCUIT PROTECTION SAFEGUARDS MOSFET AMPLIFIER" ELECTRONIC ENGINEERING, vol. 44, no. 527, January 1972, pages 31-32,
XP002104649 LONDON GB
• "POWER AMPLIFIER (BUFFER) WITH LOW OUTPUT IMPEDANCE AND CURRENT MEASUREMENT CAPABILITY" IBM TECHNICAL DISCLOSURE BULLETIN., vol. 30, no. 7, December 1987, pages 95-97, XP002104650 NEW YORK US

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

This invention relates to amplifiers having provisions for reducing recovery time for transient operating conditions and particularly to transient suppression circuitry for reducing the effect of transients which may accompany the input signal to an amplifier. The feedback circuit, which consists of a resistor in the feedback circuitry for reducing the effect of transients which may occur in certain types of amplifiers. Specifically, in certain amplifier applications there may be only a uni-polar power supply available for operation of an amplifier normally requiring a bi-polar supply (as described in detail later). It has been found, in accordance with an aspect of the invention, that in such applications an input signal transient may result in a condition wherein the voltages of power supply filter capacitors may be disturbed by transients accompanying the amplifier input signal and this disturbance may degrade the amplifier transient response. It is an object of the invention, to provide a transient recovery arrangement reducing the effect of input signal transients on the supply voltages of an amplifier.

Various methods are known for protecting an audio amplifier from transient effects. As an example, Morris, Jr. et al. in US Pat. 5,224,169 describes a system including stereo amplifiers, each supplied with dual supply voltages (+V and -V). A detector, coupled to the amplifier outputs, senses the amplifier output voltage and turns off the positive and negative supplies if sustained DC is present or if either supply fails. Brief DC transients (i.e., not "sustained") which may accompany the input signal may not be sensed. Lendaro, in US Pat. 5,157,353 describes a protection circuit wherein the dual power supplies of an operational amplifier are provided with "slow start" circuitry which limits the rate of change of the supply voltages to suppress turn-on/turn-off transients. There is no provision, however, for suppressing transients which may accompany the input signal.

Other examples of amplifier protection circuits are described, for example, by Griffis in US Pat. 4,405,948 in which supply voltage transients are detected and used for reducing the gain of a variable gain amplifier preceding an audio amplifier. In US Pat. 5,199,079 Anderson et al. describe an arrangement including an amplifier having bias and supply voltages obtained from diode isolated filters that reduce the voltages slowly when the main voltage supply is de-energized.

Herbert Sax, in his article "HIFI IM FERNSEHGERÄT ANSPRUCH ODER WIRKLICHKEIT" FUNK-SCHAU, no. 25/26, 1981, pages 65-67, XP002104648 discloses an amplifier apparatus having a feedback circuit to suppress statistical amplitude distribution. The apparatus includes two voltage dividing resistors coupled to a switched-mode power supply for providing a center potential. The two voltage dividing resistors are connected in series through a center terminal. Two capacitors, also coupled to the power supply, are connected in series through the same center terminal and in parallel with the two respective voltage dividing resistors. One terminal of a speaker is coupled to the output of an amplifier, and the other to the center terminal. The feedback circuit, which consists of a resistor, connects the center terminal and the non-inverting output of the amplifier. The resistor in the feedback circuit must be low in resistance, so that a possible output offset current of the IC does not shift the center potential too strongly.

Summary

The present invention resides, in part, in the discovery of a heretofore unrecognized problem regarding transient effects which may occur in certain types of amplifiers. Specifically, in certain amplifier applications there may be only a uni-polar power supply available for operation of an amplifier normally requiring a bi-polar supply (as described in detail later). It has been found, in accordance with an aspect of the invention, that in such applications an input signal transient may result in a condition wherein the voltages of power supply filter capacitors may be disturbed by transients accompanying the amplifier input signal and this disturbance may degrade the amplifier transient response. It is an object of the invention, to provide a transient recovery arrangement reducing the effect of input signal transients on the supply voltages of an amplifier.

The foregoing and further aspects of the invention are shown in the accompanying drawing, wherein the sole figure is a circuit diagram, partially in block form, of a television apparatus including an audio amplifier unit embodying the invention.

The television apparatus 10 of FIGURE 1 includes a power input terminal 12 coupled to a standby power supply 14 and coupled via a switch 16 to a main power supply 18. The standby power supply 14 continuously supplies operating power to a control unit 20 which may include a remote control receiver. Upon receipt of a turn-on command by a user's remote control transmitter, the control unit sends a turn-on signal to switch 16 which activates the main power supply 18 which, in turn, supplies operating power to an audio/video signal processing unit 22 and to a video display unit 24 coupled to an output of the audio/video signal processing unit 22. Unit 22 has a plurality of audio/video inputs 27 and may include a tuner and other conventional audio/video signal processing circuits. Control unit 20 is responsive to user inputs for providing channel selection signals, input selection signals and various other control signals (e.g., volume, color, tint, etc.) via a bus 26 to the audio/video processing unit 22 which, in turn, provides a video signal to the display unit 24 and an audio output signal to audio output terminal 28 for amplification and application to a speaker by an audio amplifier unit 30 (outlined in phantom) embodying the invention. To simplify the drawing, only a single audio output terminal 28 and amplifier unit 30 are shown which
would be suitable for monaural sound applications. For stereo applications, a second audio output terminal would be provided and a second audio amplifier unit.

[0010] The main power supply 18 is preferably of the switching mode type to provide high efficiency generation of DC voltages for units 22 and 24 as well as a source of AC power for operating the audio amplifier unit 30. Specifically, supply 18 includes a transformer 32 having windings (not shown) for generation of various voltages for the processing and display units 22 and 24. As shown, the transformer 32 also has a secondary winding 34 for providing AC power to unit 30. It will be noted that the secondary winding 34 is a single winding without a center tap and is "floating" (i.e., not grounded) within the main power supply unit 18.

[0011] DC power for the audio amplifier unit 30 is provided by a rectifier unit 36 comprising a diode D1 in series with the AC supply line from power supply 18 which rectifies the AC power and produces a DC output voltage V which is applied to first (T1) and third (T3) terminals of a filter 40 for smoothing the rectified voltage and for converting the uni-polar voltage V to bi-polar form. More specifically, filter 40 comprises a pair of capacitors C1 and C2 coupled in series across terminals T1 and T3 to which the rectified voltage V is applied and a second terminal (T2) connected to a common connection of the capacitors whereby a positive voltage +V/2 is produced at terminal T1 relative to terminal T2 and a negative voltage -V/2 is produced at terminal T3 relative to terminal T2. A pair of resistors R1 and R2 are provided in parallel with respective ones of capacitors C1 and C2 for stabilizing the filter output impedance and setting the filter time constant as well as for providing uniform capacitor discharge when the AC power is switched off. Exemplary values for the resistors R1 and R2 are 250 Ohms each.

[0012] The output voltages +V/2 and -V/2 are developed across the capacitors C1 and C2 and are coupled to respective supply terminals A1 and A2 of an amplifier 50 which has an output terminal A3 coupled via a load S2 (e.g., a loud speaker voice coil) to the common connection of the pair of capacitors (i.e., to terminal T2). A preferred amplifier for use as amplifier 50 is the type TDA7480 class "D" audio amplifier manufactured by ST Microelectronics, Inc. The DC reference input terminal A5 of amplifier 50 is coupled to filter output terminal T2 and, in this example of the invention, is also coupled to the TV apparatus 10 system ground. As shown and described later, any terminal of the filter 40 may be referenced to the system ground. The signal input terminal A4 of amplifier 50 (which is the non-inverting input in this example) is AC coupled via a coupling capacitor CC to the audio output terminal 28 of processing unit 22.

[0013] DC transients may accompany the audio input signal when, for example, the main power supply 18 is turned on or off. Such transients may also occur, illustratively, when a user changes connections to the inputs 27 of the audio/video processor 22 or they might occur when unit 22 switches between different audio sources coupled to inputs 27.

[0014] In accordance with an aspect of the invention, it is herein recognized that DC transients accompanying the audio input signal may have the effect of un-balancing the filter capacitor voltages and such an unbalanced condition may undesirably lengthen the time necessary for the transient to decay and for amplifier 50 to recover. As an example, a positive DC transient relative to the voltage at terminal A5 can cause amplifier 50 to demand more current from capacitor C1 than from capacitor C2 thus un-balancing the capacitor voltages. This is particularly likely to happen when the time constant of the DC transient is greater than the time constant of the filter 40.

[0015] In accordance with the invention, DC transients accompanying the input signal applied to amplifier 50 are suppressed by means of a feedback circuit which is activated when an unbalanced condition of the capacitor voltages occurs.

[0016] The feedback circuit comprises a bias supply 60 which is independent of operation of amplifier 50. Independent bias supply 60 is coupled in parallel with the filter 40 and has an output node N coupled via a threshold device 70 to the amplifier 50 input terminal A4. The independent bias supply 60 comprises a pair of equal valued resistors R3 and R4 coupled from node N to filter terminals T1 and T3. Exemplary values for the resistors R3 and R4 are 4.7 K-Ohms, respectively. The threshold device 70 comprises a pair of equal valued Zener diodes Z1 and Z2 which are coupled "back-to-back" in series between node N of bias supply 60 and the signal input terminal A4 of amplifier 50. An exemplary value for the Zener voltage of diodes Z1 and Z2 is 5.6 Volts. This voltage is sufficiently higher than the expected peak input signal voltage at terminal A4 to normally prevent the Zener diodes from conducting so that the feedback path is open under normal signal conditions and diodes Z1 and Z2 are only conductive when transients occur for diverting the transient input signal energy to node N of the independent bias supply 60. Another way to look at this operation is that node N provides a current to input terminal A4 for suppressing or canceling transients when transients occur.

[0017] As a further example of operation of amplifier unit 30, when transients are not present the voltages across capacitors C1 and C2 will be equal since equal currents will be drawn from both by amplifier 50. Accordingly, the voltage at the common connection of the capacitors (terminal T2) will be equal to the voltage at node N produced by bias supply 60. Under these conditions Zener diodes Z1 and Z2 will be non-conductive since, as noted previously, the Zener voltage is greater than the maximum value of the expected audio input signal.

[0018] When a positive transient occurs, having a duration longer than the filter time constant, amplifier 50 will tend to discharge capacitor C1 more than capacitor C2 because of the greater current demand at its positive
supply terminal A1. Since bias supply 60 averages the voltages across the filter, the reduced voltage across capacitor C1 will cause the node N voltage to become negative with respect to the voltage at terminal T2 (ground) thereby turning Zener diodes Z1 and Z2 on and diverting the transient input current to node N (i.e., supplying a current from node N to terminal A4 for suppressing or canceling the transient) thereby reducing the amplitude of the transient and speeding up recovery from the transient by amplifier 50. The same effect occurs for negative input transients wherein the node N voltage becomes positive with respect to terminal T2 due to the greater discharge of capacitor C2.

Various modifications may be made to the audio amplifier of Figure 1. For example, the single diode rectifier 36 may be replaced by a full wave bridge rectifier. This would be advantageous in applications where the preferred switching mode supply is replaced by a non-switched supply providing a lower frequency AC signal for the audio unit 30. Also, with minor modifications, the non-inverting amplifier 50 may be replaced by an inverting amplifier. The system ground reference may be coupled to either of terminals T1 or T3 of the filter 40 rather than to terminal T2.

Claims

1. Transient recovery arrangement, comprising:
 an amplifier (50);
 a source (18, 36) of DC voltage for providing an operating voltage for said amplifier (50);
 a filter (R1, C1, R2, C2) coupled between said amplifier (50) and said source (18, 36) of DC voltage including first and second storage means; and
 a feedback circuit (60, 70) for providing a suppressing current,
 characterized in that said feedback circuit (60, 70) includes a bias supply (60) coupled in parallel with said filter (50) and said source (18, 36) of DC voltage including first and second storage means; and
 a threshold device (70) coupled between an output of said bias supply (60) and an input of said amplifier (50).

2. The arrangement as recited in Claim 1, wherein said first (C1) and second (C2) storage means include a pair of capacitors (C1, C2) coupled in series across first and second outputs of said source (18, 36); and said arrangement further comprises:
 means coupling output voltages developed across said pair of capacitors (C1, C2) to respective supply terminals of said amplifier;
 means coupling an output of said amplifier to a common connection of said pair of capacitors via a load; and
 said feedback circuit (60, 70) suppressing transient input signal components in proportion to a voltage difference between said two capacitors (C1, C2).

3. The arrangement as recited in Claim 2 wherein said feedback circuit (60, 70) means comprises:
 a threshold device (70) coupled between said output of said bias supply (60) and an input of said amplifier (50).

4. The arrangement as recited in Claim 1, wherein said filter (R1, C1, R2, C2) is coupled to said source (18, 26) for providing a first output voltage between first (T1) and second (T2) terminals of said filter (R1, C1, R2, C2) and for providing a second output voltage between said second terminal (T2) and a third (T3) terminal of said filter (R1, C1, R2, C2); and
 said amplifier (50) has a first supply terminal (A1) coupled to said first terminal (T1) of said filter (R1, C1, R2, C2), a second supply terminal (A2) coupled to said third terminal (T3) of said filter (R1, C1, R2, C2); and an output (A3) coupled via a load to said second terminal (T2) of said filter (R1, C1, R2, C2).

5. The arrangement as recited in Claim 4 wherein said bias supply (60) has respective inputs coupled to said first (T1) and third (T3) terminals of said filter (R1, C1, R2, C2) and an output coupled via a threshold device (70) to an input (A4) of said amplifier (50).

6. The arrangement as recited in Claim 5 wherein said bias supply (60) comprises means for summing (R3, R4) the voltages at said first (T1) and third (T3) terminals of said filter (R1, C1, R2, C2) and wherein said threshold device (70) is coupled between an output of said summing means (R3, R4) to said input (A4) of said amplifier (50).

7. The arrangement as recited in Claim 4 further comprising:
 means coupling said second terminal (T2) of said filter (R1, C1, R2, C2) to a reference voltage input (A5) of said amplifier (50).

8. The arrangement as recited in Claim 7 further comprising:
 means coupling a selected one of said second
(T2) and third (T3) terminals of said filter (R1, C1, R2, C2) to a source of ground reference potential.

Patentansprüche

1. Stabilisierungsanordnung mit folgendem:
 einem Verstärker (50);
 einer Gleichspannungsquelle (18, 36) zur Bereitstellung einer Betriebsspannung für den Verstärker (50);
 einem zwischen den Verstärker (50) und die Gleichspannungsquelle (18, 36) gekoppelten Filter (R1, C1, R2, C2) mit ersten und zweiten Speichermitteln; und
 einer Rückkopplungsanordnung (60, 70) zur Bereitstellung eines Unterdrückungsvorganges,
 dadurch gekennzeichnet, daß die Rückkopplungsanordnung (60, 70) eine parallel zu dem Filter (R1, C1, R2, C2) gekoppelte Vorspannungsversorgung (60) aufweist, die einen Ausgang (N) zur Bereitstellung des Unterdrückungststromes, währenddessen die an entsprechenden der ersten und zweiten Speichermittel anliegenden Spannungen unsymmetrisch sind, und der Verstärker (50) einen an den ersten Anschluß (T1) des Filters (R1, C1, R2, C2) angekoppelten ersten Versorgungsanschluß (A1), einen an den dritten Anschluß (T3) des Filters (R1, C1, R2, C2) angekoppelten zweiten Versorgungsanschluß (A2) und einen über eine Last an den zweiten Anschluß (T2) des Filters (R1, C1, R2, C2) angekoppelten Ausgang (A3) aufweist.

2. Anordnung nach Anspruch 1, wobei das erste (C1) und zweite (C2) Speichermittel ein Paar in Reihe an den ersten und zweiten Ausgang der Quelle (18, 36) angekoppelten Kondensatoren (C1, C2) umfassen; und die Anordnung weiterhin folgendes umfaßt:
 an dem Paar Kondensatoren (C1, C2) entwickelte Ausgangsspannungen an entsprechende Versorgungsanschläge des Verstärkers ankoppelnden Mittel;
 einen Ausgang des Verstärkers an eine gemeinsame Verbindung des Paars Kondensatoren über eine Last ankoppelnde Mittel; und wobei die Rückkopplungsschaltung (60, 70) vorübergehende Eingangssignalkomponenten im Verhältnis zu einem Spannungsspannungsspannungsunterschied zwischen den zwei Kondensatoren (C1, C2) unterdrückt.

3. Anordnung nach Anspruch 2, wobei das Rückkopplungsschaltungsmittel (60, 70) eine zwischen den Ausgang der Vorspannungsversorgung (60) und einem Eingang des Verstärkers (50) gekoppelte Schwellwertvorrichtung (70) umfaßt.

4. Anordnung nach Anspruch 1, wobei das Filter (R1, C1, R2, C2) an die Quelle (18, 26) angekoppelt ist, um eine erste Ausgangsspannung zwischen dem ersten (T1) und zweiten (T2) Anschluß des Filters (R1, C1, R2, C2) bereitzustellen und eine zweite Ausgangsspannung zwischen dem zweiten Anschluß (T2) und einem dritten (T3) Anschluß des Filters (R1, C1, R2, C2) bereitzustellen; und der Verstärker (50) einen an den ersten Anschluß (T1) des Filters (R1, C1, R2, C2) angekoppelten ersten Versorgungsanschluß (A1), einen an den dritten Anschluß (T3) des Filters (R1, C1, R2, C2) angekoppelten zweiten Versorgungsanschluß (A2) und einen über eine Last an den zweiten Anschluß (T2) des Filters (R1, C1, R2, C2) angekoppelten Ausgang (A3) aufweist.

5. Anordnung nach Anspruch 4, wobei die Vorspannungsversorgung (60) mit jeweiligen Eingängen an den ersten (T1) und dritten (T3) Anschluß des Filters (R1, C1, R2, C2) angekoppelt sind und wobei die Schwellwertvorrichtung (70) gekoppelten Eingang an einen Eingang (A4) des Verstärkers (50) ankoppelt.

6. Anordnung nach Anspruch 5, wobei die Vorspannungsversorgung (60) Mittel zum Summieren (R3, R4) der Spannungen am ersten (T1) und dritten (T3) Anschluß des Filters (R1, C1, R2, C2) umfaßt und wobei die Schwellwertvorrichtung (70) zwischen einen Ausgang des Summierungsmediums (R3, R4) an den Eingang (A4) des Verstärkers (50) angekoppelt ist.

7. Anordnung nach Anspruch 4, weiterhin mit folgendem:
 den zweiten Anschluß (T2) des Filters (R1, C1, R2, C2) an einen Bezugsspannungseingang (A5) des Verstärkers (50) ankoppelnden Mitteln.

8. Anordnung nach Anspruch 7, weiterhin mit folgendem:
 einen ausgewählten des zweiten (T2) und dritten (T3) Anschluß des Filters (R1, C1, R2, C2) an eine Quelle von Erdbezugspotential ankoppelnden Mitteln.

Revendications

1. Configuration de rétablissement après transitoire comportant :
 un amplificateur (50) ;
 une source (18, 36) de tension continue pour
fournir la tension de fonctionnement audit amplificateur (50) ;
un filtre (R1, C1, R2, C2) connecté entre ledit amplificateur (50) et ladite source (18, 36) de tension continue comprenant un premier et un deuxième moyens de conservation de charge ;
et un circuit de réaction (60, 70) pour générer un courant de suppression,
caractérisée en ce que ledit circuit de réaction (60,70) comprend une alimentation de polarisation (60) connectée en parallèle sur ledit filtre (R1, C1, R2, C2), ladite alimentation de polarisation (60) comporte une sortie (N) pour établir le courant de suppression pendant lequel les tensions générées au niveau desdits premier et deuxième moyens respectifs de conservation de charge sont déséquilibrés, et ledit courant de suppression indique une différence de tension entre ledit premier (C1) et ledit deuxième (C2) moyens de conservation de charge.

2. Configuration selon la revendication 1, dans laquelle
lesdits premier (C1) et deuxième (C2) moyens de conservation de charge comprennent une paire de condensateurs (C1, C2) reliés en série aux première et deuxième entrées de la dite source (18, 36) ; et ladite configuration comporte en outre :

un moyen d'application des tensions de sortie générées aux bornes de ladite paire de condensateurs (C1, C2) aux bornes d'alimentation respectives dudit amplificateur ;
un moyen de connexion d'une sortie dudit amplificateur à une connexion commune de ladite paire de condensateurs par l'intermédiaire d'une charge ; et
ledit circuit de réaction (60, 70) qui supprime les composantes transitaires du signal d'entrée proportionnellement à la différence de tension entre les deux dits condensateurs (C1, C2).

3. Configuration selon la revendication 2, dans laquelle
ledit circuit de réaction (60, 70) comporte :

un dispositif à seuil (70) connecté entre ladite sortie de ladite alimentation de polarisation (60) et une entrée dudit amplificateur (50).

4. Configuration selon la revendication 1, dans laquelle
ledit filtre (R1, C1, R2, C2) est relié à ladite source (18, 36) pour générer une première tension de sortie entre les première (T1) et deuxième (T2) bornes dudit filtre (R1, C1, R2, C2) et pour générer une deuxième tension de sortie entre ladite deuxième borne (T2) et une troisième borne (T3) dudit fil-