Solenoid-valve manifold with feeding mechanism

Stromzuführungssystem für eine Magnetventilverteilplatte

Système d’alimentation d’un distributeur pour électrovannes

Designated Contracting States:
DE FR GB IT

Priority: 18.10.1999 JP 29597699

Date of publication of application: 25.04.2001 Bulletin 2001/17

Proprietor: SMC CORPORATION
Minato-ku, Tokyo (JP)

Inventors:
• Sato, Hideharu, c/o SMC Corporation Tsukuba
 Tsukuba-gun, Ibaraki (JP)
• Matsumoto, Takumi,
 c/o SMC Corporation Tsukuba
 Tsukuba-gun, Ibaraki (JP)

Representative: Findlay, Alice Rosemary
Lloyd Wise
Commonwealth House,
1-19 New Oxford Street
London WC1A 1LW (GB)

References cited:
EP-A- 0 648 940
EP-A- 0 915 275
JP-A- 60 104 876
US-A- 4 815 496
US-A- 4 938 258

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a solenoid-valve manifold in which each of a plurality of manifold blocks connected together has a solenoid valve mounted thereon and having a feeding mechanism for feeding electrical power to the solenoid valves.

[0002] It is well known to provide a solenoid-valve manifold in which a plurality of interconnected manifold blocks each have a valve-mounting surface for mounting a solenoid valve and a channel for supplying the solenoid valve with a pressure fluid and the solenoid-valve manifold has a feeding mechanism for supplying the solenoid valves with electrical power.

[0003] In general, in a conventional feeding mechanism, a manifold-block connecting body has a terminal block attached to a connecting end thereof, and a multipolar connector for connecting to an external power source is fixed to the terminal block, and then the multipolar connector and each solenoid valve are directly connected using a lead wire or are connected via a relay connector.

[0004] In the conventional feeding mechanism, however, since the multipolar connector is located at one end of the solenoid-valve manifold, a number of lead wires must be led out from the multipolar connector in one direction. Consequently, when a number of solenoid valves are connected together, the number of lead wires also increases, and, as a result, the wiring operation is complicated by the fact that not only are the lead wires intertwined but also long lead wires are required for connecting to solenoid valves distant from the connector. Moreover, changing the connection in the case of increasing or decreasing the number of solenoid valves or rearranging them is extremely troublesome.

[0005] It is an object of the present invention to provide a solenoid-valve manifold having a highly convenient feeding mechanism in which a connector for connecting to a power source and each solenoid valve can be easily connected together and in which the connection structure can be easily changed where there is an increase or decrease in the number of the solenoid valves.

[0006] EP-A-0915275 describes a solenoid-valve manifold comprising a plurality of interconnected manifold blocks is provided with a highly convenient feeding mechanism in which a connector for connecting to a power supply and each solenoid valve can be easily connected together and in which the connection structure can be easily changed in accordance with an increase or decrease in the number of the solenoid valves. The plurality of manifold blocks have two upper and lower fixing grooves at front and rear surfaces thereof and a connector holder is fixed to the fixing grooves in such a manner that the fixing position can be freely adjusted. A multipolar connector for connecting to an external power source is attached to the connector holder. A connector base plate having a plurality of distributing connectors corresponding to each of solenoid valves is also attached to the connector holder. The distributing connectors are each connected to a power-receiving connector of a solenoid valve with a splicer.

[0007] According to the present invention, there is provided a solenoid-valve manifold comprising a plurality of detachably connected manifold blocks each having a valve-mounting surface for mounting a solenoid valve and a channel for supplying the mounted solenoid valve with a pressure fluid, a solenoid valve mounted on the valve-mounting surface of each of the manifold blocks, and a power-receiving connector provided for each of the solenoid valves, characterised in that the manifold further comprises at least one fixing groove provided on at least one of the front and rear surfaces of each manifold block, the fixing groove extending in the block-connecting direction and connected to the fixing grooves of the adjacent manifold blocks, a connector holder fixed to the fixing groove of at least one manifold block in such a manner that the holder position can be freely adjusted along the interconnected fixing grooves, a multipolar connector carried by the connector holder for connecting to an external power source, a plurality of distributing connectors carried by the connector holder and connected to the multipolar connector, and which correspond in number to the number of solenoid valves, and splicers for electrically connecting each distributing connector to the power-receiving connector of a respective solenoid valve.

[0008] In the solenoid-valve manifold having the above construction, since the connector holder can be moved along the fixing groove and fixed to any location where wiring can be easily performed depending on the number of the solenoid valves and the like, it is highly convenient because not only is the wiring operation remarkably simplified, but also a connection structure can be easily changed in accordance with an increase or decrease in the number of the solenoid valves.

[0009] According to a preferred embodiment, the plurality of distributing connectors are mounted on one connector base plate, and the connector base plate is removably attached to the connector holder. The connector holder is constructed so as to allow the connector base plate to be installed in a state where part of the connector base plate is protruded from the end surface thereof. The connector holder can have an auxiliary case covering the protruded portion of the connector base plate and an end cover for closing an open end of the auxiliary case connected thereto.

[0010] According to one embodiment, the fixing groove provided for each manifold block has a section having a larger groove width therein, and fixing screws each having a nut attached at a tip thereof are attached to the connector holder and the end cover at positions corresponding to the fixing groove in a manner so as to be freely fastened or loosened. By inserting the nuts into the large section of the fixing groove via a groove end and by tightening the fixing screws, the connector holder
and the end cover are fixed to the fixing groove.

[0011] With the above construction, mounting of the connector holder and the end cover to the fixing groove and adjustment of the positions thereof can be remarkably easily performed.

[0012] The invention will now be described by way of example with reference to the accompanying drawings in which:

Fig. 1 is a perspective view of a solenoid-valve manifold according to the present invention, and,

Fig. 2 is an exploded view of Fig. 1.

[0013] Fig. 1 and Fig. 2 illustrate a preferred embodiment of a solenoid-valve manifold according to the present invention. The solenoid-valve manifold has a plurality of manifold blocks 1 detachably connected together, two end blocks 2 and 2 for fixing the manifold blocks 1 by sandwiching them from both sides, solenoid valves 3 each mounted on the manifold block 1, and a feeding mechanism 4 for supplying each of the solenoid valves 3 with electrical power.

[0014] The manifold blocks 1 are a modular type divided for each solenoid valve 3 and each have a valve-mounting surface 1a for mounting the solenoid valve 3, a supply channel 6 for supplying the mounted solenoid valve 3 with a pressure fluid such as compressed air, and exhaust channels 7A and 7B for conducting the pressure fluid from the solenoid valve 3 to the exterior. The supply channel 6 and the exhaust channels 7A and 7B bore through the manifold blocks 1 in a connecting direction to be connected to each channel of the adjacent manifold blocks 1, and are each connected to a supply port P and exhaust ports EA and EB. The supply channel 6 and the exhaust channels 7A and 7B are each connected to a supply hole 8a and exhaust holes 9a and 9b, which are opened in the valve-mounting surface 1a. When the solenoid valve 3 is mounted on the valve-mounting surface 1a, the supply channel 6 and the exhaust channels 7A and 7B are each connected to a supply hole 8a and exhaust holes 9a and 9b of the solenoid valve 3.

[0015] In addition, the manifold blocks 1 each have two fixing grooves 10 extending in the block-connecting direction formed on both front and rear end surfaces thereof, wherein the fixing grooves 10 and 10 are each connected to the corresponding fixing grooves 10 and 10 of the adjacent manifold blocks 1. These fixing grooves 10 each have an extended section 10a having a large groove width therein.

[0016] One or both of the end blocks 2 have the supply port P and the exhaust ports EA and EB in order to also serve as piping blocks. The two end blocks 2 and 2 and the manifold blocks 1 sandwiched by them are fixed together using a plurality of bolts 5 boring through them. However, the end blocks 2 and 2 and the manifold blocks 1 can be also grouped together by mounting on a rail.

[0017] In addition, the solenoid valve 3 comprises a main valve section 3a having therein valve members for switching the channels and a solenoid section 3b for driving the valve members, wherein the main valve section 3a has the supply hole 8a and the exhaust holes 9a and 9b provided at the bottom surface thereof, and has two output ports A and B provided at the top surface thereof. The solenoid section 3b has a power-receiving connector 12 for receiving electrical power from the feeding mechanism 4.

[0018] The feeding mechanism 4 includes a connector holder 15 fixed to the two fixing grooves 10 and 10 of the manifold blocks 1 in such a manner that the fixing position can be freely adjusted. The connector holder 15 has a rectangular shape that is long in a direction of the fixing groove 10, and has at a lower front portion thereof a concave section 17 for detachably mounting a multipolar connector 16 from the front surface side thereof for connecting to a power source, while at a rear side of the multipolar connector 16, there is provided an inserting hole (not shown) opened from one end-side surface of the holder 15, the hole for inserting a connector base plate 18 having a plurality of distributing connectors 19 each corresponding to the solenoid valve 3. At a front upper portion of the connector holder 15, there is provided a window hole 20 for conducting the distributing connectors 19 on the connector base plate 18. In this case, the connector holder 15 is preferably constructed to allow contacts of the multipolar connector 16 and contacts of the distributing connectors 19 on the connector base plate 18 to be each automatically connected together, when the multipolar connector 16 is inserted into the concave section 17 after the connector base plate 18 has been inserted into the inserting hole.

[0019] In order to fix the connector holder 15 to the fixing grooves 10 and 10, the connector holder 15 has fixing holes 22 each formed at an upper corner on one end and a lower corner on another end thereof in a longitudinal direction. Fixing screws 23 are inserted into the fixing holes 22 and 22 corresponding to the upper and lower fixing grooves 10 and 10, and are screwed into nuts 24 inserted to the extended sections 10a of the upper and lower fixing grooves 10, respectively. Consequently, the connector holder 15 is fixed to the fixing grooves 10. In this case, by inserting the fixing screws 23 and the nuts 24 into the fixing grooves 10 and the extended sections 10a via a groove end in a state where the nuts 24 are each loosely attached to a tip of the fixing screw 23, and by tightening the fixing screws 23 after the connector holder 15 has been moved to a predetermined position, the connector holder 15 can be easily mounted at any required position.

[0020] The connector base plate 18 is mounted to the connector holder 15 in a state where part thereof is protruded from the side end surface thereof. In order to cover the protruded portion of the connector base plate 18, the connector holder 15 has an auxiliary case 26 and
an end cover 27 connected to the side end surface thereof.

[0021] The auxiliary case 26 has a short cylinder shape having the same shape and the same size in cross section as the connector holder 15, and includes a window hole 28 for conducting the distributing connectors 19 at the front surface, and is secured by being sandwiched between the connector holder 15 and the end cover 27.

[0022] On the other hand, the end cover 27 is used to close the open end of the auxiliary case 26, and has two fixing holes 30 at the upper and lower portions thereof, and is secured to the fixing grooves 10 using the fixing screws 23 and the nuts 24 in a manner similar to the connector holder 15.

[0023] The distributing connectors 19 and the power-receiving connectors 12 of the solenoid valves 3 are each electrically connected together by splicers 31. The splicer 31 is configured by attaching a first socket 33a for connecting to the distributing connector 19 and a second socket 33b for connecting to a power-receiving connector 12 of the solenoid valve 3 to opposite ends of lead wires 32.

[0024] In the solenoid-valve manifold with the above construction, when the numbers of the manifold blocks 1 and the solenoid valves 3 are increased or decreased, it is desirable that after one end block 2 has been detached, and the feeding mechanism 4 has been detached, and then the numbers of the manifold blocks 1 and the solenoid valves 3 have been adjusted, the feeding mechanism 4 is fixed to a required position of the fixing grooves 10 and 10 on the manifold blocks 1 as described above, and then the end blocks 2 are mounted to connect them all together. In this case, in order to match the number of the increased or decreased solenoid valves 3 and the number of the distributing connectors 19, the connector base plate 18 can be replaced by one on which the distributing connectors 19 of the number corresponding to the solenoid valves 3 are mounted. In this instance, the multipolar connector 16 can be replaced by one appropriate to it. In addition, when a long connector base plate 18 is provided, in which a number of distributing connectors 19 are mounted, since a portion protruded from the connector holder 15 is long, the auxiliary case 26 is desirably replaced by a long one.

[0025] In addition, in the embodiment as shown in the drawings, since single-solenoid-type solenoid valves each having one solenoid section 3b as the solenoid valves 3 are used, the feeding mechanism 4 is provided only at one end of the manifold blocks 1. However, when double-solenoid-type solenoid valves 3 each having two solenoid sections at opposite ends of the main valve section 3a are used, the above-mentioned feeding mechanism 4 can be mounted on both of front and rear sides of the manifold blocks 1. Or wiring can be also provided for the solenoid section 3b on one end of the double-solenoid-type solenoid valves 3 from the feeding mechanism 4 mounted at the opposite end of the manifold blocks 1.

[0026] Furthermore, the manifold blocks 1 having the fixing grooves 10 and 10 only at either one of the front and rear surfaces thereof can be used.

[0027] Furthermore, the manifold blocks 1 are not necessarily constructed to allow part of the connector base plate 18 to be mounted in a state of being protruded therefrom, but may be constructed in a nonprotruding state, or may be constructed to allow the distributing connectors 19 to be mounted in other appropriate manners. In these cases, there is no need to provide the auxiliary case 26 and the end cover 27.

[0028] In addition, at each of the front and rear surfaces of the manifold blocks 1, although there are provided the two fixing grooves 10 for fixing the connector holder 15, the number of the fixing grooves may be one or three or more. When the three or more fixing grooves are provided, any one or two grooves can be used to fix the connector holder.

[0029] According to the present invention as described above, there is provided the solenoid-valve manifold having the highly convenient feeding mechanism in which the connector for connecting to power supply and each solenoid valve can be easily connected together and in which the connection structure can be easily changed in accordance with the increase or decrease in the number of the solenoid valves.

Claims

1. A solenoid-valve manifold comprising a plurality of detachably connected manifold blocks (1) each having a valve-mounting surface (1a) for mounting a solenoid valve and a channel (6) for supplying the mounted solenoid valve with a pressure fluid, a solenoid valve (3) mounted on the valve-mounting surface (1a) of each of the manifold blocks (1), and a power-receiving connector provided for each of the solenoid valves, characterised in that the manifold further comprises at least one fixing groove (10) provided on at least one of the front and rear surfaces of each manifold block (1), the fixing groove extending (10) in the block-connecting direction and connected to the fixing grooves of the adjacent manifold blocks, a connector holder (15) fixed to the fixing groove (10) of at least one manifold block in such a manner that the holder position can be freely adjusted along the interconnected fixing grooves, a multipolar connector (16) carried by the connector holder (15) for connecting to an external power source, a plurality of distributing connectors (19) carried by the connector holder and connected to the multipolar connector (16), and which correspond in number to the number of solenoid valves (3), and splicers (31) for electrically connecting each distributing connector (19) to the pow-
A solenoid-valve manifold as claimed in Claim 1, wherein the plurality of distributing connectors (19) are mounted on a connector base plate (18), and the connector base plate (18) is detachably mounted to the connector holder (15).

A solenoid-valve manifold as claimed in Claim 2, wherein the connector holder (15) has a recess (17) in a front region thereof for receiving the multipolar connector (16), a hole at a side thereof for insertion of the connector base plate (18) to the rear of the multipolar connector (16), and a window (20) in the front region thereof through which the distributing connectors (19) are mounted on the connector base plate (18).

A solenoid-valve manifold as claimed in Claim 3, wherein the connector holder (15) is arranged to mount the connector base plate (18) such that it protrudes from a side end surface thereof, wherein an auxiliary case (26) is connectable to the side end surface for covering the protruding portion of the connector base plate and wherein an end cover (27) is provided for closing an open end of the auxiliary case.

A solenoid-valve manifold as claimed in any preceding claim wherein each fixing groove (10) has an extension section (10a) of larger groove width, wherein fixing screws (23) each having a nut (24) at a tip thereof are attached to the connector holder (15) and wherein the connector holder (15) is fixed to the fixing groove (10) by inserting the nuts (24) into the extension section (10a) of the fixing groove from a groove end and by tightening the fixing screws (23).

A solenoid-valve manifold as claimed in Claim 5, wherein fixing grooves (10) are provided at upper and lower positions on each manifold block (1), and two fixing screws (23) are attached to the connector holder (15) in such a manner that one corresponds to the upper fixing groove and another corresponds to the lower fixing groove.

Patentansprüche

1. Magnetventilunterplatte, bestehend aus mehreren auseinandernehmbar verbundenen Batterieplatten (1), von denen jede eine Ventilmontagefläche (1a) für die Montage eines Magnetventils und einen Kanal (6) für die Zufuhr von Druckfluid zu dem montierten Magnetventil, ein auf der Ventilmontagefläche (1a) einer jeden der Batterieplatten (1) montier-

tes Magnetventil (3) und einen für jedes der Magnetventile bestimmten Magnetventilsteckverbinder hat, dadurch gekennzeichnet, dass die Unterplatte des Weiteren folgendes aufweist: mindestens eine Montagenut (10), die mindestens an der Vorder- oder der Rückseite jeder Batterieplatte (1) vorhanden ist, wobei sich die Montagenut (10) in der Richtung der Verbindung einer Platte an der anderen erstreckt und mit den Montagenuten der benachbarten Batterieplatten verbunden ist, eine Steckverbinderhalterung (15), die an der Montagenut (10) mindestens einer Batterieplatte so befestigt ist, dass die Position der Halterung auf der Länge der miteinander verbundenen Montagenuten frei einstellbar ist, einen von der Steckverbinderhalterung (15) gehaltenen multipoligen Steckverbinder (16) zum Anschließen an eine äußere Stromquelle und mehrere Verteilersteckverbinder (19), die von der Steckverbinderhalterung gehalten werden und mit dem multipoligen Steckverbinder (16) verbunden sind und die zahlenmäßig der Anzahl der Magnetventile (3) entsprechen, und Verbindungselemente (31) zum elektrischen Anschließen jedes Verteilersteckverbinders (19) an den Magnetventileanschluss (12) eines entsprechenden Magnetventils (3).

2. Magnetventilunterplatte nach Anspruch 1, bei der die Verteilersteckverbinder (19) an einer Steckverbindergrundplatte (18) montiert sind und die Steckverbindergrundplatte (18) abnehmbar an der Steckverbinderhalterung (15) befestigt ist.

3. Magnetventilunterplatte nach Anspruch 2, bei der die Steckverbinderhalterung (15) in einem vorderen Bereich eine Aussparung (17) zur Aufnahme des mehrpoligen Steckverbinders (16), an ihrer Seite eine Öffnung zum Einsetzen der Steckverbindergrundplatte (18) an der Rückseite des mehrpoligen Steckverbinders (16) und eine Öffnung (20) in ihrem vorderen Bereich aufweist, durch die die Verteilersteckverbinder (19) an der Steckverbindergrundplatte (18) befestigt sind.

4. Magnetventilunterplatte nach Anspruch 3, bei der die Steckverbinderhalterung (15) dazu bestimmt ist, die Steckverbindergrundplatte (18) so aufzunehmen, dass sie an einer Stirnfläche derselben hervorsteht, bei der an der Stirnfläche ein Hilfsrahmen (26) zum Abdecken des hervorstehenden Bereichs der Steckverbindergrundplatte befestigt werden kann und bei der eine starrseitige Abdeckung (27) zum Verschließen einer offenen Stirnseite des Hilfsrahmens vorgesehen ist.

5. Magnetventilunterplatte nach einem der vorstehenden Ansprüche, bei der jede Montagenut (10) einen Bereich (10a) mit größerer Nutbreite aufweist, bei
der die Befestigungsschrauben (23), die jeweils mit einer Mutter (24) an ihrer Spitze versehen sind, an der Steckverbinderhalterung (15) eingeschraubt sind und bei der die Steckverbinderhalterung (15) durch Einsetzen der Muttern (24) in den Ansatzbereich (10a) der Montagenut von einer Stirnseite der Nut her und Festziehen der Befestigungsschrauben (23) in der Montagenut (10) befestigt wird.

6. Magnetventilunterplatte nach Anspruch 5, bei der die Montagenuten (10) an jeder Batterieplatte (1) oben und unten vorgesehen sind und an der Steckverbinderhalterung (15) zwei Befestigungsschrauben (23) so eingeschraubt sind, dass eine der oberen Montagenut und die andere der unteren Montagenut entspricht.

Revendications

1. Une embase pour électrovannes comprenant une pluralité de blocs forés (1) connectés de façon décalable, ayant chacun une surface de montage de soupape (1a) pour monter une électrovanne, et un canal (6) pour alimenter l'électrovanne montée avec un fluide sous pression, une électrovanne (3) montée sur la surface de montage de soupape (1a) de chacun des blocs forés (1), et un connecteur de réception d'énergie prévu pour chacune des électrovannes, caractérisée en ce que l'embase comprend de plus au moins une rainure de fixation (10) prévue sur au moins une des surfaces avant et arrière de chaque bloc foré (1), la rainure de fixation (10) s'étendant dans la direction de connexion de bloc et étant connectée aux rainures de fixation des blocs forés adjacents, un porte-connecteurs (15) fixé à la rainure de fixation (10) d'au moins un bloc foré de sorte à ce que la position du porte-connecteurs puisse être ajustée librement le long des rainures de fixation interconnectées, un connecteur multipolaire (16) porté par le porte-connecteurs (15) pour le raccordement à une source d'énergie extérieure, une pluralité de connecteurs de distribution (19) portés par le porte-connecteurs et connectés au connecteur multipolaire (16), et dont le nombre correspond au nombre d'électrovannes (3), et des éléments de raccordement (31) pour raccorder électriquement chaque connecteur de distribution (19) au connecteur récepteur d'énergie (12) d'une électrovanne (3) respective.

2. Une embase pour électrovannes selon la Revendication 1, dans laquelle la pluralité de connecteurs de distribution (19) sont montés sur une plaque de base (18) pour connecteurs et la plaque de base (18) pour connecteurs est montée de façon décalable sur le porte-connecteurs (15).

3. Une embase pour électrovannes selon la Revendication 2, dans laquelle le porte-connecteurs (15) est pourvu d'un évidement (17) dans une de ses régions avant pour recevoir le connecteur multipolaire (16), d'un trou dans l'un de ses côtés pour l'insertion de la plaque de base (18) pour connecteurs à l'arrière du connecteur multipolaire (16), et d'une fenêtre (20) dans sa région avant, à travers laquelle les connecteurs de distribution (19) sont montés sur la plaque de base (18) pour connecteurs.

4. Une embase pour électrovannes selon la Revendication 3, dans laquelle le porte-connecteurs (15) est agencé pour recevoir la plaque de base (18) pour connecteurs de sorte à ce qu'elle fasse saillie de plus une de ses surfaces d'extrémité latérales, dans laquelle un boîtier auxiliaire (26) peut être connecté à la surface d'extrémité latérale pour recouvrir la partie en saillie de la plaque de base pour connecteurs, et dans laquelle un couvercle d'extrémité (27) est prévu pour fermer une extrémité ouverte du boîtier auxiliaire.

5. Une embase pour électrovannes selon l'une quelconque des revendications précédentes, dans laquelle chaque rainure de fixation (10) est pourvue d'une section d'extension (10a) dont la rainure est plus large, dans laquelle des vis de fixation (23), ayant chacune un écrou (24) sur une de leurs extrémités, sont attachées au porte-connecteurs (15) et dans laquelle le porte-connecteurs (15) est fixé à la rainure de fixation (10) par introduction des écrous (24) dans la section d'extension (10a) de la rainure de fixation à partir de l'extrémité d'une rainure, avec serrage des vis de fixation (23).

6. Une embase pour électrovannes selon la Revendication 5, dans laquelle des rainures de fixation (10) sont prévues en des positions supérieure et inférieure sur chaque bloc foré (1), et deux vis de fixation (23) sont attachées au porte-connecteurs (15) de sorte que l'une des vis correspond à la rainure de fixation supérieure et l'autre correspond à la rainure de fixation inférieure.