NEW EUROPEAN PATENT SPECIFICATION
After limitation procedure (B3-1)

(45) Date of publication and mention of the limitation decision:
B3-1 01.04.2009 Bulletin 2009/14

(45) Mention of the grant of the patent:

(21) Application number: 99933325.5

(22) Date of filing: 14.06.1999

(51) Int Cl.:
A23B 4/01 (2006.01) B65D 81/34 (2006.01)

(86) International application number:
PCT/SE1999/000974

(87) International publication number:
WO 2000/003605 (27.01.2000 Gazette 2000/04)

(54) METHOD AND DEVICE FOR COOKING AND VACUUM PACKING OF MUSSELS WITH MICROWAVES
VERFAHREN SOWIE VORRICHTUNG ZUM KOCHEN UND VAKUUMVERPACKEN VON MUSCHELN MITTELS MIKROWELLEN
PROCEDE ET DISPOSITIF DE CUISSON ET D'EMBALLAGE SOUS VIDE DES MOULES AVEC DES MICRO-ONDES

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 23.06.1998 SE 9802212

(43) Date of publication of application:
11.04.2001 Bulletin 2001/15

(73) Proprietor: Micvac AB
412 92 Göteborg (SE)

(72) Inventor: HAAMER, Joel
S-474 96 Nösund (SE)

(74) Representative: Lindberg, Klas Valter Bo et al
AWAPATENT AB,
Södra Hamngatan 37-41,
P.O. Box 11394
404 28 Göteborg (SE)

(56) References cited:
The invention relates to a method and device for the cooking and vacuum packing of mussels by the use of microwaves, such that said mussels can be stored as chilled or frozen goods.

A dish of mussels attains its best quality when prepared from fresh, live mussels. Such mussels still retain seawater within their shells, which yields an delicious liquor when cooked. After being out of the water for a time, mussels tend to open and the trapped water escapes, whereupon the mussels dry out and eventually die.

The smaller-sized young mussels die more rapidly in this way than large, old mussels, which remain closed for a longer time when kept out of the water.

Because of their short survival time out of water, these young mussels are never seen on sale; the fresh mussel market has to make do with older, large and often tough mussels. If it were possible, the consumer would prefer smaller, young mussels with tenderer meat and a larger proportion of meat.

Mussels, like other shellfish, cannot be frozen fresh and live without first undergoing heat treatment, because when frozen fresh the meat does not coagulate satisfactorily during cooking and on final preparation the result is meat that sticks to the shell and is of poor consistency. For satisfactory coagulation of the mussel meat during cooking, the heating phase must be rapid and the mussel should be cooked through within three minutes. To achieve such rapid heating, mussels are cooked industrially in an autoclave by means of steam which is fed rapidly at approximately 125 degrees Celsius. Equally rapid coagulation can be achieved by microwave heating, but when cooked in this way the mussels "explode", whereupon the juice escapes and the mussel meat dries out.

In order to avoid oxidation (rancidity) of the fat that they contain, it is usual to vacuum pack shellfish with an inert gas, e.g. carbon dioxide. Mussels can be vacuum packed if they have strong shells, i.e. older mussels whose shells have thickened. Young mussels have thin shells which break very easily when the bag is evacuated, and these mussels are therefore very difficult to pack in vacuum bags without excessive shell breakage. If a vacuum-packed bag of mussels is heated in a microwave oven, the bag expands and bursts as the water contained in the mussels is vaporised. For this reason such bags are generally heated in water, in which case heating does not take place as quickly as is desirable in order for the mussel meat to coagulate in a satisfactory manner (see above). To achieve sufficiently rapid cooking of vacuum packed mussels a retort cooker with over-pressure facility is used (Patent No. EP 0 721 743 A1 Turner Nelson NZ). The entire process including come-up time and cooling in the cooker takes approximately 30 minutes and the cooking process cannot be made continuous Compare with the present method, wherein evacuation and cooling take place in the same operation in less than five minutes in a process which can be made continuous in a microwave tunnel.

There exist special packages and containers for heating by microwave energy; US Patent No. 85 306 262.8 relates to a gas-tight plastic can having a valve which is opened once to release overpressure as the can is heated. This patent relates to the sealing of the vent opening, which is designed to open spontaneously during microwave heating. US Patent No. 5 750 967 relates to a plastic container for the storage and microwave heating of foodstuffs, which container can be reused. A valve is provided on the upper side of the pack to release over-pressure arising during cooking and to admit air during cooling, so that the pack does not deform. Furthermore, Unilever Patent No. 1,550,000 relates to a packaging which is vented in a special way during heating and cooling so that vacuum does not arise inside the packaging.

One method of producing frozen mussels in their shells is to pack said mussels prior to cooking into a large (approx. 40 kg) container which is then submerged in hot water (EP 0 094 362 A1 Lars Göran Carlsson). After heating, the container is frozen with the mussels inside. When the mussels are frozen, the container is opened and the mussels are removed and shaken apart in their frozen state so that they are single. This process too requires mussels with thick shells so that they do not break during handling. The final product is single cooked mussels with shells. In this patented process, once again, the cooking is too slow (see above), the final product is not pasteurised, and the process requires mussels with thick shells, i.e. old, large mussels.

The purpose of the invention is to make possible the use of young, thin-shelled mussels which according to most connoisseurs have the best consistency, size and taste, for a pasteurised or frozen product which can be stored for a considerable time prior to its final use. The same invention is also suitable for the packaging of other liquid or solid foodstuffs industrially or for home use in order to obtain a pasteurised or frozen product.

Description of method and device

The container is made of a plastics material capable of withstanding microwave cooking and freezing without bursting. The shape and size of the container is determined by the requirement that the temperature at every point inside the container be raised to boiling point by means of microwaves together with thermal conduction within approximately four minutes. At an input of 1 kilowatt of microwave energy the maximum quantity of mussels permitting sufficiently rapid coagulation throughout the whole container is approximately 400 grams.

On the upper side of the container there is an opening (diameter approx. 5 mm) which permits the escape of air and steam when the product inside the container is brought to the boil. When the input of microwave
energy has ceased the opening is sealed and the steam begins to condense inside the container. During condensa-
tion a vacuum arises and the container must be flexible
enough to mould itself to its contents to some degree.

[0012] When mussels have been processed, a round can of diameter 110 mm and height 80 mm with an airtight lid was used. An opening is provided in the lid. The can is completely filled with mussels, sealed, and brought to boiling point in a microwave oven. During boiling, each mussel is able to release the overpressure arising inside its shell without exploding, as there is room for the shell to open slightly. The overpressure inside the container is released through the opening. When boiling ceases, the opening is immediately closed with self-adhesive tape and the can contracts somewhat, while the mussel shells inside the can close up completely The fact that the mussels inside the container are closed also helps to prevent the drying out of the mussel meat during ex-
tended frozen storage of the package.

Claims

1. A method for the cooking and vacuum packing of mussels or other foods, wherein said cooking and vacuum packing take place in the same operation in the container wherein the food remains during sub-
sequent storage. Heating takes place by means of microwave energy and vacuum packing is effected by closing as soon as the input of microwave energy ceases, a venting opening used for the release of overpressure during boiling. When the container begins to cool, the steam therein condenses whereas the vacuum arises inside the container, and wherein a flexible container is used which moulds itself to its contents as vacuum arises inside the container.

2. A method according to claim 1, wherein all the in-
gredients necessary for a ready-to-eat meal are packed in with the mussels or other foods before the container is cooked.

3. A device for cooking and vacuum packing mussels and other foods, consisting of a container such as a plastic can, plastic bag or plastic tray, made of material which can withstand microwave heating and frozen storage and is tough enough to be suitable for vacuum packing; wherein a venting opening is provided on the top side of the container through which air and steam can escape during boiling, and which is sealed manually or automatically by means of self-adhesive tape as soon as boiling ceases, and wherein a flexible container is used which moulds itself to its contents as vacuum arises inside the con-
tainer.

4. A device according to claim 3, wherein the container is flexible so that the mussels can open slightly per-
mitting overpressure inside the mussel shells to es-
cape, and which, when vacuum arises in the con-
tainer as the steam condenses, has the capacity to mould itself to its contents so that the mussel shells are closed up and the space for spillage inside the container is minimised.

Patentansprüche

1. Verfahren zum Kochen und Vakuumverpacken von Muscheln oder anderen Nahrungsmitteln, wobei das Kochen und Vakuumverpacken in demselben Vor-
gang in dem Behälter stattfindet, in dem das Nah-
rungsmittel während der anschließenden Lagerung
bleibt, das Erwärmen mittels Mikrowellenenergie er-
folgt, und das Vakuumverpacken durch Verschlie-
ßen, sobald die Zufuhr von Mikrowellenenergie endet,
einer Entlüftungsoffnung, die zur Freisetzung von
Überdruck während des Kochens verwendet wird,
ausgeführt wird, wobei, wenn der Behälter abzuküh-
len beginnt, der darin enthaltene Dampf kondensiert,
woraufhin ein Vakuum im Inneren des Behälters ent-
steht, und wobei ein flexibler Behälter verwendet
wird, der sich an seinen Inhalt anschmiegt, wenn das
Vakuum im Inneren des Behälters entsteht.

2. Verfahren gemäß Anspruch 1, wobei alle Zutaten,
die für eine essfertige Mahlzeit notwendig sind, den
Muscheln oder anderen Nahrungsmitteln beige-
packt werden, bevor der Behälter gekocht wird.

3. Vorrichtung zum Kochen und Vakuumverpacken von Muscheln oder anderen Nahrungsmitteln, be-
stehend aus einem Behälter, wie einer Kunststoff-
dose, einem Kunststoffbeutel oder einer Kunststoffschale, aus einem Material, das einer Mi-
krowellenwärme und Gefrierlagerung standhal-
ten kann und fest genug ist, um für eine Vakuumver-
packung geeignet zu sein; wobei eine Entlüftungs-
offnung an der oberen Seite des Behälters bereitge-
stellt ist, durch die Luft und Dampf während des Ko-
chens entweichen können, und die manuell oder au-
tomatisch durch ein Selbstklebeband geschlossen
wird, sobald das Kochen endet, und wobei ein flexi-
bler Behälter verwendet wird, der sich an seinen In-
halt anschmiegt, wenn das Vakuum im Inneren des
Behälters entsteht.

4. Vorrichtung gemäß Anspruch 3, wobei der Behälter
so flexibel ist, dass sich die Muscheln leicht öffnen
können, wodurch ein Überdruck im Inneren der Mu-
scheln entweichen kann, und der, wenn das Vakuum
in dem Behälter entsteht, während der Dampf kon-
densiert, die Fähigkeit besitzt, sich an seinen Inhalt
anzuschmiegen, so dass die Muschelschalen ver-
schlossen werden und der Raum für ein Auslaufen
im Inneren des Behälters minimiert ist.
Revendications

1. Procédé pour la cuisson et l’emballage sous vide de moules ou autres aliments, ladite cuisson et l’emballage sous vide s’effectuant au cours de la même opération dans le récipient, dans lequel les aliments restent pendant toute la conservation suivante, le réchauffage s’effectue par l’énergie aux micro-ondes et l’emballage sous vide est effectué par fermeture dès que l’entrée d’énergie micro-ondes s’arrête, une ouverture d’évacuation étant prévue pour laisser échapper la surpression pendant la cuisson, tandis que le récipient commence à refroidir, la vapeur se condense à l’intérieur pendant que le vide se forme dans le récipient et un récipient flexible étant utilisé qui se moule à son contenu quand le vide augmente à l’intérieur du récipient.

2. Procédé selon la revendication 1, dans lequel tous les ingrédients nécessaires aux plats préparés sont emballés dedans avec les moules ou autres aliments avant que le récipient soit cuisiné.

3. Dispositif pour la cuisson et l’emballage sous vide de moules et autres aliments, se composant d’un récipient tel qu’une boîte plastique, un sac plastique ou un plateau plastique faits d’un matériau qui peut résister à la chaleur des micro-ondes et à la congélation et est assez solide pour convenir à l’emballage sous vide, dans lequel l’ouverture d’évacuation est prévue sur la face de dessus du récipient à travers laquelle l’air et la vapeur peuvent s’échapper pendant la cuisson et qui est scellé hermétiquement manuellement ou automatiquement au moyen de rubans adhésifs dés que la cuisson s’arrête et un récipient flexible étant utilisé qui se moule à son contenu quand le vide augmente à l’intérieur du récipient.

4. Dispositif selon la revendication 3, dans lequel le récipient est flexible de sorte que les moules peuvent s’ouvrir légèrement permettant à la surpression se trouvant à l’intérieur des coquilles de moules de s’échapper et, quand le vide augmente dans le récipient de sorte que la vapeur se condense, qui a la capacité de se mouler lui-même à son contenu de sorte que les coquilles de moule sont fermées et l’espace pour les pertes à l’intérieur du récipient est minimisé.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 0721743 A1 [0006]
• US 85306262 B [0007]
• US 5750967 A [0007]
• EP 0094362 A1 [0008]