EUROPEAN PATENT SPECIFICATION

Pigment for warpage-free polyolefins coloration

Pigment zum Färben von Polyolefinen ohne Verziehen

Pigment pour la coloration de polyoléfines sans gauchissement

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

Priority:
11.08.1999 GB 9918804
21.08.1999 GB 9919777
08.03.2000 GB 0005447

Date of publication of application:
14.02.2001 Bulletin 2001/07

Proprietor: Clariant Finance (BVI) Limited
Road Town, Tortola (VG)

Inventors:
• Kaul, Bansi Lal
 4105 Biel-Benken (CH)

Representative: D’haemer, Jan Constant et al
Clariant International Ltd.,
Industrial Property Department,
Rothausstrasse 61
4132 Muttenz (CH)

References cited:
WO-A-98/32800
US-A-3 803 139

Printed by Jouve, 75001 PARIS (FR)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to the use of a pigment for the warpage-free coloration of polyolefins.

Unexpected shrinkage and warpage problems can occur when organic pigments are used for the coloration of polyolefins, especially high density polyethylene. This may be due to changes in crystallization behaviour due to the presence of pigments. A number of studies have shown that pigments can affect both the size of the crystallites and the rate of crystallization by acting as nucleating agents, inducing crystallization at higher temperatures than expected.

All these aspects have an important commercial issue. For example the coloration of bottle crates is a very important market for a pigment producer. A pigment has to fulfill an important condition when used in high density polyethylene application: it must not influence the crystallization process of the polymer. Such an influence can cause shrinkage or warpage, showing deformations of the injected article and deterioration of the mechanical properties.

In order to avoid this problem, when using organic pigment for the coloration of polyolefins, surface treatments have been developed in order to modify the surface of the pigment: precipitation on the surface of the organic particles of a thin layer of a metal oxide (e.g. zirconium, silicon or aluminium) or adsorption or precipitation of some polar polymers (polyacrylates or cellulose derivatives) on the pigment surface. However these treatments are not always efficient.

It has now been found that thiazine-indigo pigments of formula (I) and of formula (II) do not provoke warpage when used in high density polyethylene.

\[\text{(I)} \]

in which \(X \) stands for Cl or CH\(_3\).

\[\text{(II)} \]

wherein \(R \) is phenyl or C\(_{12}\)H\(_{25}\).

Other derivatives of this family have also been tested, for example the two pigments of formula (III) and (IV) and the pigment of formula (II) with \(R = p-C_{6}H_{4}CF_{3} \), but they show warpage when used in high density polyethylene.
The invention, therefore, resides in the use of a pigment of formula (I) or (II) for the coloration of polyolefins which do not warp and provides warpage-free polyolefins, more preferably high density polyethylene (HDPE), which have been colored with a pigment of formula (I) or (II).

When coloring polyolefins with the pigment of formula (I) the usual amounts can be used, i.e. from 0.01 to 30% by weight, preferably from 0.1 to 10% by weight based on the material to be colored.

EXPERIMENTAL PART

Injection mould 10 test plates 60 x 60 mm in HDPE with and without 0.1 % pigment
- processing temperature 220 °C and 280°C
- result: difference of the length and width measurement between test plates in natural HDPE and in HDPE colored with 0.1% pigment.

\[
\% FV = \frac{\% \text{vertical shrinkage} - \% \text{horizontal shrinkage}}{\% \text{horizontal shrinkage}} \times 100\%
\]

\% FV = 0 - 10% : good
\% FV = 10 - 20% : suitable
\% FV > 20% : unsuitable

<table>
<thead>
<tr>
<th>Pigment of formula (I) with X = CH₃</th>
<th>% FV at 220°C</th>
<th>% FV at 280°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigment of formula (I) with X = Cl</td>
<td>1.78 %</td>
<td>6.36 %</td>
</tr>
<tr>
<td>Pigment of formula (II) with R=Ph</td>
<td>10.47 %</td>
<td>7.61 %</td>
</tr>
<tr>
<td>Pigment of formula (II) with R=C₁₂H₂₅</td>
<td>6.88 %</td>
<td>4.53 %</td>
</tr>
<tr>
<td>Pigment of formula (II) with R=p-C₆H₄CF₃</td>
<td>32.10 %</td>
<td>25.64 %</td>
</tr>
</tbody>
</table>
With the pigments of formula (I) and (II) an excellent result is obtained regarding warpage of the test plates.

Claims

1. Use of a pigment of formula (I)

 \[
 \text{Formula (I)}
 \]

 in which X stands for Cl or CH₃,

 and of formula (II)

 \[
 \text{Formula (II)}
 \]

 wherein R is phenyl or C₁₂H₂₅,

 for the coloration of polyolefins which do not warp after coloration.

2. Warpage-free polyolefins which have been colored with the pigment of formula (I)
in which X stands for Cl or CH₃, or of formula (II)

wherein R is phenyl or C₁₂H₂₅.

3. High density polyethylene (HDPE) which does not warp and has been colored with the pigment of formula (I)

in which X stands for Cl or CH₃, or of formula (II)
wherein R is phenyl or C\textsubscript{12}H\textsubscript{25}.

Patentansprüche

1. Verwendung eines Pigments der Formel (I)

 wobei X für Cl oder CH\textsubscript{3} steht,

 und der Formel (II)

 worin R Phenyl oder C\textsubscript{12}H\textsubscript{25} bedeutet,

 für die verzugsfreie Einfärbung von Polyolefinen.

2. Verzugsfreie Polyolefine, eingefärbt mit dem Pigment der Formel (I)
wobei X für Cl oder CH_3 steht,
und der Formel (II)

worin R Phenyl oder $C_{12}H_{25}$ bedeutet.

3. Sich nicht verziehendes Polyethylen hoher Dichte (HDPE), eingefärbt mit dem Pigment der Formel (I)
Revendications

1. Utilisation d'un pigment de formule (I)

2. Polyoléfines sans gauchissement qui ont été colorées avec le pigment de formule (I)
3. Polyéthylène haute densité (PE HD) qui ne gauchit pas et qui a été coloré avec le pigment de formule (I)

```
(II)
```

dans laquelle R signifie un groupe phényle ou C\textsubscript{12}H\textsubscript{25}.
dans laquelle R signifie un groupe phényle ou $C_{12}H_{25}$.