Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Technical Field

[0001] The present invention relates to a genomic gene encoding HM1.24 antigen protein, a promoter of the gene encoding HM1.24 antigen protein, and uses thereof.

Background Art

[0002] Mouse anti-HM1.24 monoclonal antibody has been prepared using a human myeloma cell line KPC-32 as an immunogen (Goto, T. et al., Blood 84: 1922-1930, 1994). The HM1.24 antigen that is recognized by this antibody is a membrane protein having a molecular weight of 29 to 33 kDa that is overexpressed on the surface of myeloma cells. Furthermore, for normal cells its expression has been confirmed in immunoglobulin-producing B cells (plasma cells, lymphoplasmacitoide cells), but expression is rarely observed in the other cells and tissues (Goto T. et al., supra). However, nothing is known about HM1.24 antigen except its expression distribution and molecular weight.

[0003] According to the present invention, as a result of the cloning of genomic DNA encoding HM1.24 antigen, the determination of its nucleotide sequence and the deduced amino acid sequence, and further homology search, HM1.24 antigen was demonstrated to be a molecule identical with BST2 that is a surface antigen expressed on the stroma cells isolated from the bone marrow of patients with myeloma, and the bone marrow and the synovial membrane of patients with rheumatoid arthritis. BST2 has been shown to have an ability of supporting the growth of pre-B cells and is thought to be involved in the pathology of rheumatoid arthritis, but its other physiological functions are not known (Ishikawa J. et al., Genomics 26: 527-534, 1995).

[0004] In the production of a useful gene product derived from an animal by means of genetic engineering, it often happens that the gene is not expressed, a gene product, protein, does not take a correct conformation, post-translational modification does not occur correctly and the like, when a microorganism host such as Escherichia coli, Bacillus subtilis, or yeast is used. In order to solve such problems, animal cells are often used as hosts, in which case, the selection of a promoter has a great impact on expression efficiency. Conventional, frequently used promoters for animal cells include SV40 promoter, cytomegalovirus promoter, actin promoter, and the like.

Disclosure of the Invention

[0005] Considering the above state of art, there is provided a genomic DNA encoding HM1.24 antigen protein.

[0006] There is also provided a process for producing HM1.24 antigen protein using animal cells by means of said genomic DNA.

[0007] When a useful gene product is to be produced in large quantities using animal cells as a host, conventionally used promoters for animal cells are not always satisfactory in terms of transcription activity, and hence there is a great need for the development of stronger promoters. Thus, it is an object of the present invention to provide a DNA having a stronger promoter activity as a promoter for animal cells and uses thereof.

[0008] In order to solve the above problems, the present invention provides a genomic DNA encoding HM1.24 antigen protein, said DNA comprising 4 exon regions encoding the amino acid sequence as set forth in SEQ ID NO: 3, and three introns; wherein the first intron is positioned between the DNA encoding the amino acids Val 95 and Met 96 of SEQ ID No 3; wherein the second intron is positioned between the DNA encoding the amino acids Gly 118 and Glu 119 of SEQ ID No 3; and wherein the third intron is positioned between the DNA encoding the amino acids Arg 138 and Arg 139 of SEQ ID No 3. As an example of the above genomic DNA, the present invention provides a genomic DNA having the nucleotide sequence as set forth in SEQ ID NO: 2.

[0009] The present invention also provides a splicing variant of the above genomic DNA said DNA encoding HM1.24 antigen protein. A specific example of the present invention is a splicing variant lacking exons 2 and 3.

[0010] By way of information, other examples include a splicing variant lacking exon 2, and the like.

[0011] The present invention also provides a process for producing HM1.24 antigen protein which method comprises culturing animal cells transformed with an expression vector comprising the above genomic DNA.

[0012] There is also provided a promoter sequence DNA having the nucleotide sequence of the 5'-non-coding region as set forth in SEQ ID NO: 4 or a DNA fragment of said sequence having a promoter activity in animal cells.

[0013] There is also provided a DNA that hybridizes with the above DNA or a fragment thereof under a stringent condition and that has a promoter activity in animal cells. The above DNA having promoter activity is preferably derived from animal cells, in particular mammalian cells.

[0014] There is also provided a DNA that has been modified by the deletion, addition and/or substitution with other nucleotides, of one or a plurality of nucleotides in the nucleotide sequence of the 5'-non-coding region as set forth in SEQ ID NO: 4 and that has a promoter activity in animal cells.
There is also provided a recombinant DNA wherein a useful gene is operably linked to the above DNA having a promoter activity. As the above useful genes, there can be mentioned, for example, nucleic acids selected from the group consisting of nucleic acids encoding useful proteins, antisense DNA, antisense RNA, nucleic acids encoding decoys, and ribozyme.

There is also provided a vector comprising the above recombinant DNA. The vector is a plasmid vector or a virus vector.

There is also provided animal cells into which the above recombinant DNA has been introduced.

There is also provided animal cells that have been transformed with the above vector.

There is also provided an animal having the above animal cells.

There is also provided a method of expressing a useful gene which method comprises culturing animal cells into which the above recombinant DNA has been introduced.

There is also provided a process for producing a useful protein which process comprises culturing animal cells transformed with an expression vector comprising a nucleic acid encoding a useful protein operably linked to the above DNA having a promoter activity.

There is also provided animal cells into which the above recombinant DNA has been introduced.

There is also provided animal cells that have been transformed with the above vector.

There is also provided an animal having the above animal cells.

There is also provided a method of expressing a useful gene which method comprises culturing animal cells into which the above recombinant DNA has been introduced.

There is also provided a process for producing a useful protein which process comprises culturing animal cells transformed with an expression vector comprising a nucleic acid encoding a useful protein operably linked to the above DNA having a promoter activity.

There is also provided a recombinant DNA wherein a useful gene is operably linked to the above DNA having a promoter activity. As the above useful genes, there can be mentioned, for example, nucleic acids selected from the group consisting of nucleic acids encoding useful proteins, antisense DNA, antisense RNA, nucleic acids encoding decoys, and ribozyme.

There is also provided a vector comprising the above recombinant DNA. The vector is a plasmid vector or a virus vector.

There is also provided animal cells into which the above recombinant DNA has been introduced.

There is also provided animal cells that have been transformed with the above vector.

There is also provided an animal having the above animal cells.

There is also provided a method of expressing a useful gene which method comprises culturing animal cells into which the above recombinant DNA has been introduced.

There is also provided a process for producing a useful protein which process comprises culturing animal cells transformed with an expression vector comprising a nucleic acid encoding a useful protein operably linked to the above DNA having a promoter activity.

Brief Description of the Drawings

Fig. 1 is a drawing that shows the nucleotide sequence of cDNA encoding HM1.24 antigen protein and the corresponding amino acid sequence. The underlined part shows a N-type sugar chain binding motif.

Fig. 2 is a drawing that shows the nucleotide sequence of cDNA encoding HM1.24 antigen protein and the corresponding amino acid sequence.

Fig. 3 is a schematic diagram showing a clone P3.19 isolated using the panning method and 5 clones (IS1 to IS5) isolated by the immuno screening method.

Fig. 4 is a drawing that shows the result of flow cytometry analysis using anti-HM1.24 antibody (A: CHO/NEO, B: CHO/HM). The histogram of anti-HM1.24 antibody is shown by a solid line, and that of the control antibody (UPC10) that showed a matching isotype is shown by a broken line. In the figure, the abscissa refers to fluorescence intensity and the ordinate to cell count.

Fig. 5 is a photograph which shows the expression of HM1.24 antigen in each cell line and HM1.24 antigen-expressing CHO cells was detected by the immuno precipitation / Western blotting method using anti-HM1.24 antibody. After immunoprecipitation using the anti-HM1.24 antibody-bound Sepharose 4B (lanes 1-6) or unbound Sepharose 4B (lanes 7 and 8), Western blotting was carried out using anti-HM1.24 antibody to detect HM1.24 antigen (shown on the right). (*: anti-HM1.24 antibody H chain).

Fig. 6 is a drawing that shows a restriction map of the 5'-untranslated region comprising the promoter region of the HM1.24 antigen protein gene.

Fig. 7 is a drawing that shows the nucleotide sequence of the 5'-untranslated region comprising the promoter region of the HM1.24 antigen protein gene. Each transcription factor binding motif has been underlined.

Fig. 8 is a drawing that shows the nucleotide sequence of the 5'-untranslated region comprising the promoter region of the HM1.24 antigen protein gene. Each transcription factor binding motif has been underlined, the TATA-like sequence has been boxed, the transcription initiation point is represented by an arrow, and the region encoding 7 amino acids at the N-terminal of the protein is represented by the one-letter code of amino acids.

In Fig. 9, (A) shows the position of a primer corresponding to the genome encoding HM1.24 antigen protein, and (B) shows the base sequence of each primer.

Fig. 10 is a drawing that shows a restriction map of genomic DNA encoding HM1.24 antigen protein and the positions of the corresponding exons and introns.

Fig. 11 is a drawing that shows a restriction map of genomic DNA encoding HM1.24 antigen protein and the corresponding amino acid sequence (upstream side). The arrow shows the transcription initiation point and the underline shows the N-type sugar chain binding motif.

Fig. 12 is a drawing that shows the nucleotide sequence of genomic DNA encoding HM1.24 antigen protein and the corresponding amino acid sequence (downstream side). The double underline shows the poly A-addition signal.

Fig. 13 is a drawing that shows the nucleotide sequence of a splicing variant of human HM1.24 antigen protein and the corresponding amino acid sequence. The underlined part shows where the amino acid sequence is different from that of human HM1.24 antigen protein.

Fig. 14 is a drawing that shows the nucleotide sequence of the genomic DNA of HM1.24 antigen protein. A genome was present which has mutations, a → g at position 178, g → a at position 262, and t → c at position 323, as well as a deletion of one of 9 a’s near position 360. The symbol *** represents a transcription initiation point. There was
also a genome in which 19 bp at positions 93-111 repeat in tandem. The symbol "\rightarrow" shows the position of the sense primer.

Fig. 15 shows the nucleotide sequence of genomic DNA of HM1.24 antigen protein and the corresponding amino acid sequence. There was also a genome in which 8 base pairs at positions 551-558 were deleted. The symbol "←" shows the position of the antisense primer.

Fig. 16 is, a drawing that shows the nucleotide sequence of genomic DNA (intron site) of HM1.24 antigen protein. The → shows the position of the sense primer.

Fig. 17 shows the nucleotide sequence of genomic DNA of HM1.24 antigen protein and the corresponding amino acid sequence. The ← shows the sense primer, and the → indicates the antisense primer.

Fig. 18 shows the nucleotide sequence of genomic DNA of HM1.24 antigen protein and the corresponding amino acid sequence. There was also a genome in which 3 out of 5 c’s near position 2315 were deleted. The ← shows the position of the antisense primer.

Embodiment for Carrying Out the Invention

A genomic gene comprising a genomic DNA and a promoter region of human HM1.24 antigen can be easily amplified by a PCR method using suitable primers. Thus, a genomic DNA of human HM1.24 antigen can be amplified by designing a sense primer that hybridizes to the 5'-end of a genomic DNA sequence as set forth in SEQ ID NO: 2 and an antisense primer that hybridizes to the 3'-end, and then by performing a PCR reaction using a polymerase, such as AmpliTaq (Perkin Elmer), LA-Taq (Takara Shuzo), and the like, and using as a template human genomic DNA prepared according to a standard method. A PCR product can be directly inserted into a cloning vector such as pCRII (Invitrogen) or pGEM-T (Promega).

By introducing a restriction enzyme recognition site into a sense primer or an antisense primer, it can be inserted into a desired vector.

Genomic DNA that contains a promoter region of human HM1.24 antigen can also be amplified by the same method. Thus, a desired DNA fragment can be obtained by designing a sense primer that hybridizes to the 5'-end of the sequence as set forth in SEQ ID NO: 4 and an antisense primer that hybridizes to the 3'-end, and then by amplifying by a PCR reaction using human genomic DNA as a template.

A genomic DNA encoding HM1.24 antigen protein of the present invention comprises, as shown in Fig. 10, 4 exons and 3 introns linking them, and their specific nucleotide sequences and deduced amino acid sequences of the exon regions are as shown in Figs. 11 and 12 (SEQ ID NOs: 2 and 3). Thus, exon 1 encodes from amino acid Met at position 1 to amino acid Val at position 95; exon 2 encodes from amino acid Met at position 96 to amino acid Gly at position 118; exon 3 encodes from amino acid Glu at position 119 to amino acid Arg at position 138; and exon 4 encodes from amino acid Arg at position 139 to amino acid Gin at position 180.

The present invention also provides splicing variants of genomic DNA encoding HM1.24 antigen protein wherein exons 2 and 3, are removed.

There is also provided splicing variants of genomic DNA encoding HM1.24 antigen protein having a nucleotide sequence of DNA in which the codon corresponding to each amino acid of an exon is out of position because the nucleotide sequence in an exon was deleted due to splicing.

Since the splicing variants have the reading frames of different amino acid sequences, they have amino acid sequences different from that of HM1.24 antigen protein encoded by exons 1 to 4. As an example of such splicing variants, there can be mentioned a splicing variant having the nucleotide sequence in an exon was deleted due to splicing.

A genomic DNA encoding the HM1.24 antigen protein of the present invention can be obtained by cloning a cDNA that encodes HM1.24 antigen protein, then using this cDNA to design a primer oligonucleotide, which is amplified by the PCR method using genomic DNA as a template. In order to clone cDNA, animal cells expressing HM1.24 antigen, for example KPM2 cells, are cultured, and from the cell culture total RNA is extracted according to a standard method and then mRNA is enriched.

By way of information, based on the above mRNA, cDNA is synthesized by a standard method, which is fractionated using a low-melting point agarose gel. Then cDNA having a size of 0.7 kbp or greater is inserted into an expression vector pCOS1 or λExCell vector to prepare a library A which is used for screening by direct expression cloning, i.e. panning, and library B which is used for immunoscreening.

For screening by the panning method, an expression plasmid that constitutes library A was introduced into COS-7 cells using electroporation. After culturing, attached cells were scraped off and were contacted to a panning plate coated with anti-HM1.24 antibody to allow the cells expressing HM1.24 to be attached to the plate. Then plasmid DNA was extracted from the cells attached to the plate, amplified in E. coli, and used for the subsequent panning. The panning procedure was repeated three times to select clones that express antigen reacting with anti-HM1.24 antibody, and one of the clones was designated as clone P3.19.

Sequencing revealed that clone P3.19 consists of 1,912 bp and contains an open reading frame encoding 180 amino acids. The protein encoded by this open reading frame is a transmembrane protein containing a putative extracellular region of 19 amino acids.
amino acids. The nucleotide sequence of the cDNA insert in this clone P3.19 and the corresponding amino acid sequence are shown in Fig. 1 and SEQ ID NO: 1. The amino acid sequence alone is shown in SEQ ID NO: 3.

[0044] For immunoscreening, on the other hand, a phage constituting library B was cultured together with E. coli NM522 on an agar plate, the expression product was transferred to a nitrocellulose filter, and the filter was contacted to an anti-HM1.24 antibody solution. Anti-HM1.24 antibody that was bound to the filter via binding with the expression product was detected with labeled anti-mouse immunoglobulin (Ig) serum.

[0045] This produced 5 positive clones: IS-1 to IS-5. The nucleotide sequences of these cDNA inserts were determined and were compared to the nucleotide sequence of the cDNA of the above P3.19. The comparison revealed, as shown in Fig. 3, that any cDNA in clones IS-1 to IS-5 was part of the cDNA of P3.19 and the 5'-end has been deleted in P3.19.

[0046] Then, after P3.19 was introduced into CHO cells to transform the cells, flow-cytometry was performed using anti-HM1.24 antibody. The result confirmed, as shown in Fig. 4, that HM1.24 antigen was expressed. Furthermore, as shown in Fig. 4, P3.19 was confirmed to encode HM1.24 antigen by immunoprecipitation as well.

[0047] Then, as shown in Fig. 9A, the cDNA sequence was divided into four regions, and primer pairs were designed as shown in Fig. 9B to amplify each part. The genome library prepared according to a standard method was PCR-amplified using the above each pair of primers, which were then ligated together to obtain a full-length genomic DNA.

[0048] The result is shown in Figs. 11 and 12, and SEQ ID NO: 2. As can be seen, the genomic DNA encoding HM1.24 antigen protein has 4 exons and 3 introns linking them. These relationships are schematically shown in Fig. 10, which also shows a restriction map of genomic DNA.

[0049] The present invention also relates to a process for producing HM1.24 antigen protein which method comprises culturing animal cells transformed with an expression vector into which the above genomic DNA has been inserted. As animal cells for use in this process, various animal cells, for example, described below with respect to the promoters mentioned herein below may be used, and cell cultures of humans, mammals other than humans, insects and the like are preferred. For example, HeLa etc. are used as the cell culture of humans; CHO, COS, myeloma, BHK, Vero, etc. are mentioned as the cell cultures of mammals other than humans; and cell cultures of silkworm etc. are mentioned as the cell cultures of insects. As vectors for introducing DNA encoding the HM1.24 antigen protein of the present invention into animal cells, for example phage vectors such as M13 are used.

[0050] Culturing of animal cells for producing HM1.24 antigen protein can be performed according to a standard method, and the isolation of HM1.24 antigen protein from the culture can also be performed according to a standard method.

[0051] Hybridoma HM1.24 producing mouse anti-HM1.24 monoclonal antibody that specifically recognizes HM1.24 antigen protein has been internationally deposited under the provisions of the Budapest Treaty as FERM BP-5233 on September 14, 1995 with the National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, of 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki pref., Japan.

[0052] The promoter mentioned herein and the uses thereof will now be explained below.

[0053] The word “promoter” as used herein includes, but is not limited to, a region that is located 20-30 base pairs upstream to the transcription initiation point (+1) and that includes a TATA box or a TATA box-like region responsible for directing RNA polymerase to start transcription at a correct position, and, in addition to this region, it may include regions that are required for proteins, other than RNA polymerase, to associate with for adjusting expression. When the term “promoter region” is mentioned herein, it means a region that includes the promoter as used herein.

[0054] The words “promoter activity” as used herein means an ability or a function of being ligated to a useful gene downstream to the promoter in a state that enables expression, so that when introduced into a host (animal cell) it can produce either intracellularly or extracellularly a gene product of the useful gene. In general, the presence or absence and/or intensity of a promoter is expressed as the promoter activity by ligating, downstream to the promoter, a gene (reporter gene) encoding an easily quantifiable protein in a state that enables expression, introducing it into a host, and then determining the amount expressed of the protein. Thus, when the expression of gene products of a useful gene were confirmed either intracellularly or extracellularly after the useful gene was ligated downstream to the promoter and introduced into a host, the promoter should have a promoter activity in the host into which the gene was introduced.

[0055] The words “animal cells” as used herein includes cells derived from humans, but they are not limited to them as long as the promoter mentioned herein has a promoter activity in an animal cell. For example, there can be mentioned mammals other than humans (for example, mice, rats, rabbits, goat, pigs, cattle, horses, dogs, monkeys, and chimpanzees), birds (for example, chickens, turkeys, quails, ducks, and geese), reptiles (for example, snakes, crocodiles, and turtles), amphibians (for example, frogs, salamanders, and newts), fish (for example, scads, mackerel, sea bass, sea breams, sea perch, yellowtails, tuna, salmon, trout, carp, sweetfish, eel, soles, sharks, rays, and sturgeons).

[0056] The words “useful genes” as used herein includes, for example, nucleic acids encoding proteins that can be expressed in animal cells, antisense DNA or sense DNA of genes derived from animal cells, nucleic acids encoding decoys that have genes encoding the binding proteins of transcription factors derived from animal cells or sequences of the binding sites of transcription factors or similar sequences, and ribozymes that cleave mRNA derived from animal cells.
Nucleic acids encoding protein that can be expressed in animal cells include, but are not limited to, those derived from animals and as long as they can be expressed in animal cells, those derived from microorganisms such as bacteria, yeasts, actinomycetes, fungi, Ascomycetes, and Basidiomycetes, or those derived from living organisms such as plants and insects are also included in the useful genes mentioned in this specification.

The words “nucleic acids encoding decoys” as used herein means DNA that has genes encoding the binding proteins of transcription factors derived from animal cells or sequences of the binding sites of transcription factors or similar sequences, which are introduced as “decoys” into cells so as to suppress the action of the transcription factors. The word “ribozymes” as used herein means those that cleave mRNA of specific proteins, and that inhibits the translation of these specific proteins.

Ribozyme can be designed from gene sequences encoding specific proteins and, for a hammerhead type ribozyme, for example, the method as described in FEBS Letter, 228: 228-230 (1988) can be used. In addition to the hammerhead type ribozymes, any type of ribozymes including the hairpin type ribozymes, the delta type ribozymes, and the like that cleave mRNA of these specific proteins and that inhibit the translation of these specific proteins can be included in the ribozyme as used herein.

By ligating a useful gene downstream to a DNA fragment having the promoter activity as described herein in a state that enables expression, the expression of the useful gene can be enhanced. Thus, useful genes are expressed in animal cells into which recombinant DNA comprising DNA having the promoter activity described herein and a useful gene ligated in a state that enables expression has been introduced with or without using a vector. As a vector, a plasmid vectors or a virus vectors is preferably used. When vectors are not used, DNA fragments can be introduced according to the methods described in the literature [Virology, 52: 456 (1973); Molecular and Cellular Biology, 7: 2745 (1987); Journal of the National Cancer Institute, 41: 351 (1968); EMBO Journal, 1: 841 (1982)].

Animal cells having such recombinant DNA fragments described herein and animals having such animal cells are also encompassed herein. As useful genes whose expression can be enhanced, there can be mentioned, as described above, DNA encoding protein, antisense DNA, antisense RNA, polynucleotides encoding a decoy, nucleotide sequences functioning as a decoy, ribozymes, and the like. There is also disclosed methods of producing proteins of interest, and methods of expressing useful genes using a DNA fragment having the promoter activity described herein.

Thus, a process for producing protein is also encompassed herein wherein said process comprises ligating a nucleic acid encoding protein downstream to DNA having the promoter activity as described herein in a state that enables expression, culturing an animal cell transformed with a vector containing the recombinant DNA thus obtained, and harvesting said protein from the culture. Similarly, a method of expressing a useful gene comprising ligating a useful gene downstream to DNA having the promoter activity described herein in a state that enables expression, introducing the recombinant DNA thus obtained into an animal cell, and culturing, or the method of expressing a useful gene using an animal cell said method comprising transforming an animal cell with a vector containing said recombinant DNA and culturing said animal cell is described herein.

DNA having the promoter activity described herein is DNA having the nucleotide sequence shown in the 5'-end non-coding region as set forth in SEQ ID NO: 4 or a fragment thereof retaining a promoter activity. The 5'-end non-coding region means the nucleotide sequence up to position 2040 in SEQ ID NO: 4. It is known that a size of 5 nucleotides or greater is required to exhibit a promoter activity in animal cells. Thus, fragments of DNA having the promoter activity described herein have a size of at least 5 nucleotides or greater, preferably 30 nucleotides or greater, and more preferably 2000 nucleotides or greater.

There is also described herein DNA that can hybridize with DNA having the nucleotide sequence as set forth in SEQ ID NO: 4 under a stringent condition and that has a promoter activity. The hybridizing DNA is for example a genomic DNA library derived from natural sources, for example mammals such as humans, mice, rats, and monkeys. As a stringent condition, there may be mentioned for example a low stringent condition. By way of example, a low stringent condition is a washing condition provided by 60°C in 0.1 x SSC and 0.1% sodium dodecyl sulfate.

There is also described herein a DNA fragment that has been modified by the deletion, addition, and/or substitution with other bases, of one or a plurality of nucleotides in the nucleotide sequence of the promoter as set forth in SEQ ID NO: 4 that retains a promoter activity. The degree of modification is in the range of 70% homology to the nucleotide sequence as set forth in SEQ ID NO: 4; preferably a homology of 80% or greater, and more preferably a homology of 90% or greater.

“Homology” as used herein means the degree of identity of residues exhibited by two or more non-complementary nucleotide sequences or amino acid sequences (Gene Cloning 2nd edition, T. A. Brown, Chapman and Hall, 1990). Thus, a homology of 90% means that 90 residues or more out of 100 are identical in two or more sequences.

Now, a process for producing DNA having the promoter activity described herein, a fragment and a modified version thereof will be explained below. The DNA having the nucleotide sequence as set forth in SEQ ID NO: 4 was PCR-amplified using a primer AP1 (5'-GTAATACGACTCCTATAGGGC-3') (SEQ ID NO: 5) corresponding to an adapter.
and the HM1 primer (sequence: 5'- ATC CCC GTC TTC CAT GGG CAC TCT GCA -3' (SEQ ID NO: 6) corresponding to nucleotide Nos. 47-72 of cDNA clone P3.19 cloned by the above-mentioned panning method, and a human genomic DNA library as a template, and then, using the PCR-amplified product as a template, a nested PCR is performed using the AP2 primer (sequence: ACTATAGGGC AGGCGTGGT) (SEQ ID NO: 7) and the HM2 primer (sequence: 5'- ATA GTC ATA CGA AGT AGA TGC CAT CCA G -3' (SEQ ID NO: 8) corresponding to nucleotides 19-40 of clone P3.19 to subclone into a cloning vector pCRII (Invitrogen). By sequencing, DNA having the nucleotide sequence as set forth in SEQ ID NO: 4 was obtained.

[0068] A DNA fragment having a promoter can be obtained, for example, in the following manner. A method of digesting a DNA subcloned into the above cloning vector pCRII with restriction enzymes, Scal, BamHI, Pvull, PstI, etc., a method using an ultrasonication treatment, a chemical synthesis by the phosphoramidite method, a method of preparation using a polymerase chain reaction method etc. can be used. For example, a desired DNA fragment can be easily prepared by preparing a primer as appropriate from the DNA sequence of SEQ ID NO: 4 and then performing a polymerase chain reaction.

[0069] A hybridization method that utilizes the nucleotide sequence of the promoter described herein may be used to obtain a promoter from a gene derived from other cells. In this case, for example, the following method can be used. First, a chromosomal DNA obtained from a gene source of other cells is ligated into a plasmid or a phage vector and then introduced into a host according to a standard method to construct a library. The library is cultured on a plate, and colonies or plaques grown are transferred to a nitrocellulose or a nylon membrane, which is subjected to denaturation to immobilize DNA onto the membrane. The membrane is incubated in a solution containing a probe (as the probe, a DNA fragment as set forth in SEQ ID NO: 4 or a portion thereof) previously labeled with 32P etc. to form a hybrid between the DNA on the membrane and the probe.

[0070] For example, a DNA immobilized membrane is subjected to hybridization with a probe in a solution containing 6 x SSC, 1% sodium dodecyl sulfate (SDS), 100 μg/ml salmon sperm DNA, 5 x Denhardt’s at 65°C for 20 hours. After hybridization, non-specific adsorption is washed off, and autoradiography etc. is performed to identify clones that hybridized with the probe. The procedure is repeated until a single clone that formed a hybrid is obtained. Into a clone thus obtained, DNA encoding a desired promoter should be inserted.

[0071] The above promoter that has been modified by the deletion, addition, and/or substitution of nucleotides can be prepared by, for example, conventionally known methods such as site-directed mutagenesis, or a PCR method.

[0072] The gene obtained is sequenced for its nucleotide sequence, for example, in the following manner to confirm the gene obtained is a promoter of interest. For the determination of the nucleotide sequence, in the case of a clone obtained by hybridization, the transformant is cultured in a test tube if it is E. coli, and a plasmid is extracted therefrom according to a standard method. This is cleaved with a restriction enzyme to extract an inserted fragment, which is subcloned into M13 phage vector etc., and the nucleotide sequence is determined by the dideoxy method or the like.

[0073] When the transformant is a phage, essentially similar steps can be employed to determine the nucleotide sequence. Basic procedures from culturing to nucleotide sequence determination are carried out as described in, for example, Molecular Cloning: A laboratory Manual, Second edition, T. Maniatis, Chapter One, pp. 90-104, Cold Spring Harbor Laboratory, 1989.

[0074] Whether the obtained gene is a promoter of interest or not can be determined by comparing the determined nucleotide sequence with the promoter of the present invention and estimating from its homology. If the obtained gene is thought not to contain an entire promoter, a synthetic DNA primer is constructed based on the obtained gene, missing regions are amplified by PCR, and using the obtained gene fragment as a probe DNA libraries or cDNA libraries are screened so that the nucleotide sequence of the entire coding region of the promoter that hybridizes to the promoter described herein can be determined.

[0075] The method of expressing useful genes described herein is characterized in that a DNA fragment obtained by ligating, in a state that enables expression, a useful gene downstream to the promoter described herein and thus obtained is introduced into an animal cell and the resulting cell is cultured. In order to ligate, in a state that enables expression, a useful gene downstream to the DNA fragment of the promoter described herein prepared as above, the DNA ligase method or the homopolymer method can be used.

[0076] If DNA ligase is used for ligating of the two, they are ligated by digesting with restriction enzymes and, if they have the same restriction enzyme site, then both the DNA fragments are mixed in a reaction buffer as described in Molecular Cloning: A laboratory Manual, Second edition, T. Maniatis et al. ed., Chapter One, pp. 62, Cold Spring Harbor Laboratory, 1989, and adding DNA ligase thereto or, if the they do not share the same restriction enzyme site, the ends are blunt-ended with T4 DNA polymerase (manufactured by Takara), and then treated with DNA ligase as described above.

[0077] On the other hand, when the homopolymer method is used, ligating is effected by attaching a poly G chain to the 3’-end of a vector linearized with a restriction enzyme using terminal deoxynucleotidyl transferase and dGTP, attaching similarly a poly C chain to the 3’-end of the insert DNA, and then annealing these poly G chain and poly C chain by, for example, the calcium chloride method for introduction into E. coli [Proc. Natl. Acad. Sci. U.S.A., 75: 3727.
The useful genes of interest that can be used as described herein includes, but is not limited to, the interleukin-1-12 gene, the interferon-α, β, γ genes, the tumor necrosis factor gene, the colony stimulating factor gene, the erythropoietin gene, the transforming growth factor-β gene, the immunoglobulin gene, the tissue plasminogen activator gene, the urokinase gene, the horseradish peroxidase gene, and the like.

There can be mentioned, for example, genes of superoxide dismutase, tumor necrosis factor, insulin, calcitonin, somatostatin, secretin, growth hormone, endorphine, viral protein, amylase, lipase, alcohol dehydrogenase, and the like.

The DNA fragment obtained as above in which the genomic DNA of the present invention and a useful gene is ligated can be integrated into an appropriate vector to obtain a plasmid for gene expression. Examples of such vectors include pTM [Nucleic Acids Research, 10: 6715 (1982)], cos202 [The EMBO Journal, 6: 355 (1987)], p91203 (B) [Science, 228: 810 (1985)], BCMGSNeo [Journal of Experimental Medicine, 172: 969 (1990)], and the like.

Examples of such host cells include COS cells, HeLa cells, CHO cells, BHK-21 cells, and the like. By culturing the resulting transformed cells in a suitable medium, the useful gene product of interest can be obtained in an efficient manner.

Examples

The present invention will now be explained in more detail with reference to the following Working Examples and Reference Examples.

Reference Example 1. Cloning of cDNA encoding HM1.24 antigen protein

1) Cell lines

Human multiple myeloma cell lines RPMI8226 and U266 were cultured in a RPMI1640 medium (GIBCO-BRL) supplemented with 10% fetal bovine serum (FBS), and a human multiple myeloma cell line KPMM2 (Japanese Unexamined Patent Publication (Kokai) No. 7-236475) was cultured in a RPMI1640 medium (GIBCO-BRL) supplemented with 20% fetal bovine serum.

2) Construction of cDNA library

Total RNA was isolated from 1 x 10⁸ KPMM2 cells by a guanidine thiocyanate/cesium chloride method, and mRNA was purified using the Fast Track mRNA Isolation Kit (Invitrogen). After synthesizing cDNA from 10 μg of mRNA using NotI/oligo-dT₁₄ primer (Time Saver cDNA Synthesis Kit; Pharmacia Biotech), an EcoRI adapter was ligated thereto.

A cDNA larger than 0.7 kbp was fractionated using 1.0% low-melting point agarose gel (Sigma), and digested with NotI. It was then inserted into the EcoRI/NotI site of a pCOS1 expression vector or a λExCell vector (Pharmacia Biotech) to prepare a library (library A) for use in direct expression cloning (screening by panning) and a library (library B) for use in immunoscreening, respectively.

The pCOS1 expression vector was constructed from HEF-PMh-γ₁ (see WO92-19759) by deleting the contained gene with EcoRI and Smal digestion, and then by ligating the EcoRI-NotI-BamHI Adaptor (Takara Shuzo).

3) Panning

Library A was introduced into COS-7 cells by the electroporation method. Thus, 20 μg of a plasmid DNA (containing 5 x 10⁵ independent clones) was mixed with 0.8 ml of cells (1 x 10⁷ cells/ml in PBS), and the mixture was subjected to electroporation under a condition of 1.5 kV and 25 μFD capacity using the Gene Pulser (Bio-Rad). After being allowed to stand at room temperature for 10 minutes, the cells were suspended in a DMEM (manufactured by GIBCO-BRL) containing 10% FBS, divided into four 100 mm culture dishes, and cultivated at 37°C for 72 hours.

After culturing, the cells were washed with a phosphate saline buffer (PBS), and were scraped off by adding PBS containing 5 mM EDTA to adjust the cell suspension to 1 to 2 x 10⁶ cells/ml in PBS containing 5% FBS and 0.02% NaN₃. The cells were then allowed to stand on a panning plate (see below) coated with anti-HM1.24 antibody for 2 hours, and the plate was gently washed three times with 3 ml of PBS containing 5% FBS and 0.02% NaN₃. After washing, plasmid DNA was recovered from the cells bound to the plate using Hirt’s solution (Hitt J., Mol. Biol. 26: 365-369, 1983) (0.6% SDS, 10 mM EDTA). The recovered plasmid DNA was amplified in E. coli and used for the following panning.
A panning plate was prepared as follows. Three milliliters of an anti-HM1.24 antibody solution (10 μg/ml in 50 mM Tris-HCl, pH 9.5) was added to a cell culture dish (Falcon) with a diameter of 60 mm and was incubated at room temperature for 2 hours. After washing three times in 0.15 M NaCl, 3 ml of PBS containing 5% FBS, 1 mM EDTA, and 0.02% NaN₃ was added to the dish. After blocking by allowing to stand at room temperature for 2 hours, the panning plate was stored at -20°C until use.

By repeating panning three times using a plasmid library (library A) containing 5 x 10⁵ clones as a starting material, a plasmid DNA having an about 0.9 kbp cDNA as an insert was concentrated. Using a Dye Terminator Cycle Sequencing Kit (manufactured by Applied Biosystems), the nucleotide sequence was determined using the 373A or 377DNA Sequencer (Applied Biosystems). The result revealed that clone P3.19 comprises 1,012 bp cDNA and has an open reading frame (23-549) encoding 180 amino acids (Figs. 1 and 2) (SEQ ID NO: 1). The amino acid sequence deduced from the cDNA had a structure characteristic to type II membrane proteins and had two N-type sugar chain binding sites.

4) Immunoscreening

Library B was subjected to immunoscreening using anti-HM1.24 antibody. Thus, a phage library containing 1.5 x 10⁶ independent clones was layered on agar together with E. coli NM522 (Pharmacia Biotech) and was cultured at 42°C for 3.5 hours. After culturing, a nitrocellulose filter (Schleicher & Schuell) pretreated with 10 mM IPTG was layered on the plate, and was further cultured at 37°C for 3 hours. After the filter was washed with 0.05% (v/v) Tween 20-added TBS (20 mM Tris-HCl, pH 7.4, 150 mM NaCl), 1% (w/v) BSA-added TBS was added thereto, and was blocked by incubating at room temperature for 1 hour.

After blocking, an anti-HM1.24 antibody solution (a 10 μg/ml blocking buffer) was added, incubated at room temperature for 1 hour, and 5,000-fold diluted alkaline phosphatase-conjugated anti-mouse Ig antiserum (picoBlue Immunoscreening kit; Stratagene) was added, which was further incubated at room temperature for 1 hour. Spots that reacted with the antibody were allowed to develop color with a developing solution (100 mM Tris-HCl, pH 9.5, 100 mM NaCl, 5 mM MgCl₂) containing 0.3 mg/ml nitroblue tetrazolium and 0.15 mg/ml 5-bromo-4-chloro-3-indolyl phosphate.

By immunoscreening, five positive clones were isolated, all of which were consistent with the partial sequence of P3.19 (Fig. 3). Homology search of them revealed that P3.19 is identical with the DNA sequence of BST-2 (Ishikawa J. et al., Genomics, 26: 527-534, 1995) expressed on the bone marrow or synovial stromal cells. The same molecule was obtained from two types of screening, which strongly suggested that the membrane protein encoded by P3.19 is the HM1.24 antigen molecule.

E. coli having the plasmid pRS38-pUC19 in which DNA encoding a human protein having the same sequence as the above-mentioned human HM1.24 antigen protein has been inserted in between the XbaI sites of pUC vector was designated as Escherichia coli DH5α (pRS38-pUC19) and was internationally deposited under the provisions of the Budapest Treaty on October 5, 1993 with the National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, of 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki pref., Japan, under an accession No. FERM BP-4434.

5) FACS analysis

Furthermore, in order to confirm that the protein encoded by p3.19 indeed binds to anti-HM1.24 antibody, a CHO transformant cell line in which P3.19 was introduced was established. Thus, after the P3.19 clone was introduced into CHO cells by the electroporation method, it was cultured in the presence of 500 μg/ml G418 (GIBCO-BRL) to obtain a CHO cell line that expresses HM1.24 antigen.

The cultured cells (1 x 10⁶) were suspended to the FACS buffer (PBS (-) / 2% FCS / 0.1% NaN₃), HM1.24 antibody was added thereto, which was reacted on ice for 30 minutes. After washing in the FACS buffer, it was resuspended in a GAM-FITC solution (25 μg/ml in the FACS buffer; Becton Dickinson), and was further reacted on ice for 30 minutes. After washing twice with the FACS buffer, it was resuspended in 600 μl of the FACS buffer for measurement by the FACScan (Becton Dickinson).

As a negative control, UPC10 was used.

As result of FACS analysis, CHO cells in which P3.19 was introduced were shown to react strongly with anti-HM1.24 antibody, whereas no binding was observed in CHO cells (CHO/NEO) in which the control expression vector was introduced (Fig. 17). It was confirmed therefore that the protein encoded by P3.19 binds to anti-HM1.24 antibody.

6) Immunoprecipitation

After washing the cells twice in PBS (-), they were destructed by ultrasonication in the cell lysate buffer method.
Each of myeloma cell lines KPMM2, RPMI8226, and U266 strongly expressed HM1.24 antigen, and the immunoprecipitation of the cell lysates thereof with anti-HM1.24 antibody allowed the specific detection of protein with a molecular weight of about 29 to 33 kDa (Fig. 5). In a similar experiment for CHO cell lines (CHO/HM) in which P3.19 was introduced, immunoprecipitants were confirmed in the CHO/HM cells as for the myeloma cell lines (Fig. 5, lane 4). Such immunoprecipitants could not be observed in the control cells (CHO/NEO) in which the expression vector pCOS1 was only introduced (Fig. 5, lane 5).

Example 2. Preparation of hybridomas that produce mouse anti-HM1.24 monoclonal antibody

In accordance with the method of Goto, T. et al., Blood (1994) 84, 1992-1930, hybridomas that produce mouse anti-HM1.24 monoclonal antibody were prepared. A plasma cell line KPC-32 (1 x 10^7) derived from the bone marrow of a human patient with multiple myeloma (Goto, T. et al., Jpn. J. Clin. Hematol. (1991) 32, 1400) was injected to the abdominal cavity of a BALB/c mouse (bred by Charles River) twice every six weeks.

Three days prior to sacrificing the animal, 1.5 x 10^6 KPC-32 was injected to the spleen of the mouse in order to further enhance the antibody-producing ability of the mouse (Goto, T. et al., Tokushima J. Exp. Med. (1990) 37, 89). After sacrificing the animal, the spleen was extracted and the extracted organ was subjected to cell fusion with the myeloma cell line SP2/0 according to the method of Groth, de St. & Schreidegger (Cancer Research (1981) 41, 3465).

By Cell ELISA (Posner, M.R. et al., J. Immunol. Methods (1982) 48, 23) using KPC-32, a culture supernatant of CHO cell lines (CHO/HM) in which P3.19 was encoded a protein having an estimated molecular weight of 19.8 kDa comprising 180 amino acids (Fig. 1) and has two N-type sugar chain binding motifs (Fig. 1). Thus, it suggested that the presence of substances having different molecular weights observed by immunoprecipitation was due to differences in the modification of N-type sugar chains. In fact, the immunoprecipitants were confirmed to bind to several lectins.

Example 1. Cloning of the promoter region of HM1.24 antigen gene

Since HM1.24 antigen was strongly expressed in all the myeloma cells analyzed so far, it is very likely that the...
expression of HM1.24 antigen is deeply involved in physiological characteristics of multiple myeloma. Thus, the elucidation of the mechanism of HM1.24 antigen expression is an important challenge, and the inventors have clarified the gene structure of the promoter region.

[0111] The promoter region of the HM1.24 antigen gene was isolated using the PromoterFinder DNA Walking kit (Clontech). From the nucleotide sequence of the 5'-end of clone P3.19 isolated by Panning, two PCR primers were designed: HM1 (5'-ATC CCC GTC TTC GGG CAC TCT GCA - 3') (SEQ ID NO: 6) and HM2 (5'-ATA GTC ATAT CGA AGT AGA TGC CAT CCA G - 3') (SEQ ID NO: 8). The first PCR was performed using primer AP1 (attached to the kit) corresponding to the adapter and the HM1 primer according to the instruction manual attached to the kit, and then the PCR product was subjected to a nested PCR using the AP2 primer (attached to the kit) and the HM2 primer. After the final PCR product was purified, it was subcloned into the pCRII cloning vector (Invitrogen).

[0112] The promoter region gene was simply isolated by the PCR method. Thus, PCR products of about 2.0 kb, 0.7 kb, and 0.3 kb were specifically amplified from the EcoRV, PvuII, and Dral libraries (Promoter Finder Kit; Clontech), respectively. They were demonstrated to be derived from the same genomic DNA based on the cleavage patterns with restriction enzymes (Fig. 6). As a result of sequencing the nucleotide sequences, gene sequence of cDNA from 5'-end to 1959 bp upstream was determined (Figs. 7 and 8) (SEQ ID NO: 4). By a binding motif search of known transcription factors, the presence of transcription controlling elements of AP-2, Spi, NF-IL6, NF-kB, STAT3 or ISGF3, and the like was observed, suggesting the possibility that the expression is controlled by the stimulation by inflammatory cytokines such as IL-6 or IFN-α.

[0113] IL-6 is known to serve as a growth factor of myeloma cells, and therefore it was strongly suggested that NF-IL6 and STAT3 that are transcription factors acting downstream of IL-6 are involved in the expression control of HM1.24 antigen in myeloma cells (Figs. 7 and 8). The transcription initiation point was estimated nucleotide on the nucleotide sequence of PCR products amplified using the CapSwitch oligonucleotide (CapFinder Kit; Clonetech), and at 27 positions upstream thereof a TATA box-like sequence (TAATAAA) was observed (Figs. 7 and 8).

Example 2. Cloning of genomic DNA for HM1.24 antigen

[0114] Genomic DNA for HM1.24 antigen was amplified from human genomic DNA (Clontech) prepared from a human genomic DNA library (Promoter Finder DNA walking kit; Clontech) or peripheral blood using each PCR primer shown in Fig. 9. After purification, PCR products were each subcloned into the pCRII vector and the nucleotide sequence was determined.

[0115] Genomic DNA encoding HM1.24 antigen was divided into four fragments, which were amplified from human genomic DNA prepared from a human genomic DNA library (Promoter Finder Kit; Clontech) or human peripheral blood (Fig. 9). After confirming their nucleotide sequences, they were compared to the nucleotide sequence of HM1.24 antigen cDNA with a result that the HM1.24 antigen gene is composed of four exons and three introns of 850 bp, 183 bp, and 307 bp (Fig. 10).

[0116] However, from the human genomic DNA library prepared from the human placenta tissue, a gene consisting of 3 exons lacking intron 3 was only amplified, suggesting the presence of a genomic gene having a different exon/intron structure. In any structure, two N-type sugar chain binding sites and three cysteine residues present in the extracellular region of HM1.24 antigen were all present in exon I (Figs. 11 and 12) (SEQ ID NO: 2).

Example 3. Confirmation of HM1.24 antigen splicing variants

[0117] In order to confirm the presence of splicing variants of HM1.24 antigen, HM1.24 antigen cDNA was amplified by the PCR method using as a template cDNA prepared from a human myeloma cell line KPMM2 according to the method described above. The sense primer BST2-N (SEQ ID NO: 17; ATG GCA TCT ACT TCG TAT GAC) used in the PCR corresponds to bases 10 to 30 of P3.19 (SEQ ID NO: 1) isolated herein, and the antisense primer S3 (SEQ ID NO: 18; AAC CGT GTT GCC CCA TGA) corresponds to bases 641-658 of P3.19.

[0118] PCR-amplified products were subcloned into a cloning vector pCRII (Invitrogen) and from the resulting independent clones, plasmid DNA was recovered, with a result that two inserts having different sizes of about 650 bp and about 550 bp were observed. After the determination of each nucleotide sequence, it was found that the insert of about 650 bp had the sequence identical with that of P3.19 whereas the insert of about 550 bp had a deletion corresponding to bases 294 to 422 of P3.19 (SEQ ID NO: 19). The region in which the deletion was observed corresponds to exons 2 and 3 of human HM1.24 antigen genomic DNA, indicating the presence of variants due to different splicing.

Example 4. Analysis of polymorphism of HM1.24 gene

[0119] In connection with polymorphism found in the HM1.24 gene, its relationship to multiple myeloma was investigated. The peripheral blood samples of normal healthy humans were supplied as the buffy coat of donated blood samples
from Japan Red Cross Tokushima Blood Center. For patients with myeloma, the peripheral blood or bone marrow fluid was collected from patients in Tokushima University First Internal Medicine Hospital or affiliated hospitals. Blood samples were subjected to the Ficoll-Conrey density centrifugation to separate mononuclear cells. Myeloma cell lines were cultured in a RPMI1640 medium (GIBCO-BRL, Rockville, MD, U.S.A.) containing 10% fetal bovine serum at 37°C in a 5% CO₂ incubator. The peripheral blood mononuclear cells or the myeloma cell lines were treated with the DNAzol reagent (GIBCO-BRL) according to the protocol to extract genomic DNA from the cells.

[0120] The nucleotide sequence was determined by the PCR-direct sequencing method. 5’-promoter region was amplified by PCR (30 cycles of 94°C for 1 minute, 55°C for 1 minute, and 72°C for 1 minute) with ampliTaq DNA polymerase (Perkin Elmer, Chiba) using primer 6S (TCCTATGTCCTCCTCGGTG) (SEQ ID NO: 22) and BST2B (AT-AGTCATACGAAGTAGATGCCATCCAG) (SEQ ID NO: 23). The HM coding region was amplified by PCR with LA Taq DNA Polymerase (Takara Shuzo, Otsu) using primer HM2P2K (AAAAGTACACGTCTTTCTGTCTGT) (SEQ ID NO: 24) and BST2-R4 (GTGTCTCCCGCTAACC) (SEQ ID NO: 25). With the reaction mixture as a template, PCR was further performed with Ex Taq DNA polymerase (Takara Shuzo) using primer 8S (GGACGTTTCTATGTGCTAA) (SEQ ID NO: 26) and BST2-R1 (AAAGGCGCGCTCATCAGCAGAAGCGCTGAG) (SEQ ID NO: 27).

[0121] The reaction mixture was purified by the QiA Quick PCR Purification Kit (QIAGEN, Tokyo), and reacted with the resulting PCR fragment as a template, using, as a primer, 6S or BST2B for the 5’-promoter region, and 8S, HMINTIF (AGGGGAACTCACCAGACC) (SEQ ID NO: 28), HMEX2F (ATGGCCCTAATGGCTTCC) (SEQ ID NO: 29), HMEX3F (CATTAAACATAGCTCAG) (SEQ ID NO: 30), HMEX2R (CCCTCAAGCTCCTCCACT) (SEQ ID NO: 31), or BST2-R1 for the HM coding region by the BigDye Terminator Cycle Sequencing Kit (Perkin Elmer). The nucleotide sequence was determined using the ABI3777 DNA Sequencer (Perkin Elmer). The frequency of 8 base pair deletion in the vicinity of 20 base pairs upstream to the initiation codon of the HM1.24 gene was detected by PCR. Thus, PCR (30 cycles of 94°C for 1 minute, 55°C for 1 minute, and 72°C for 1 minute) was performed with ampliTaq DNA polymerase (Perkin Elmer, Chiba) using primers 8S and BST-R3 (GACGGATCCTAAAGCTTACAGCGCTTATC) (SEQ ID NO: 32). The reaction mixture was electrophoresed on a 4% agarose gel and detected by ethidium bromide staining.

Polymorphism of the 5’-promoter region of the HM1.24 gene

[0122] For samples from normal healthy humans and patients, the nucleotide sequence of the 5’-promoter region of the HM1.24 gene was determined. The result is shown in Figs. 14-18 (SEQ ID NO: 33). There were samples for which nucleotide substitution in the underlined 187, 262, and 323 in Fig. 14, and deletions near 360 in Fig. 14 and near 555 in Fig. 15 were observed, and there was a sample for which the region of 366 to 558 could not be decoded. When the sequence described in Figs. 14 to 18 (SEQ ID NO: 33) was termed as type A, and the mutation type having the above nucleotide substitution/deletion as type B, the sample for which the region of 366 to 558 could not be decoded is thought to be a heterozygote (AB) of A and B, and the sample that could be decoded as type A or type B is thought to be a homozygote (AA) of A or a homozygote (BB) of B. In addition to the above polymorphism, it was clarified that 19 bp was inserted at tandem at the double-underlined region in a myeloma cell line HS-sultan (type M).

Polymorphism of the HM1.24 gene

[0123] For the genomic gene region of cell lines of type AA (U266, HS-sultan) and two samples of type BB from normal healthy humans, the nucleotide sequence was determined. As a result, it was found that 3 bases of c were missing near 2315 of intron 3 in the sequence of type B, whereas no mutation was observed in the coding region.

Gene frequency of type A and type B

[0124] Polymorphism and disease sensitivity were investigated. When 8-base deletion was detected by PCR near 20 base pairs upstream to the initiation codon of the HM1.24 gene, there was no difference in frequency of polymorphism between 94 cases of normal healthy humans and 46 cases of patients with myeloma (Table 1). In both the normal healthy humans and the patients with myeloma, type A gene was dominant as the gene distribution was about A : B = 2 : 1. For cell lines, there was a bias to type A with 9 cases out of 11 being type AA.

[0125] No relationships were observed between the polymorphism of the HM1.24 promoter region and sensitivity to myeloma diseases.

<table>
<thead>
<tr>
<th>Table 1. Frequency of polymorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>AA</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>43</td>
</tr>
</tbody>
</table>

12
According to the present invention, there was obtained the genomic gene of HM1.24 antigen that is highly expressed in all myeloma cells. The genomic gene that encodes HM1.24 antigen is useful for analysis of HM1.24 antigen. Since HM1.24 antigen is strongly expressed, the promoter region is thought to have a strong promoter activity, and accordingly is useful for the expression of useful genes.

Reference to the microorganisms deposited under the Patent Cooperation Treaty, Rule 13-2, and the name of the Depository organ

Name: the National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology Address: 1-3, Higashi 1-chome, Tsukuba city, Ibaraki pref., Japan

Organism (1)

Name: Escherichia coli DH5α (pRS38-pUC19)
Accession number: FERM BP-4434
Date deposited: October 5, 1993

Organism (2)

Name: Mouse-mouse hybridoma HM1.24
Accession number: FERM BP-5233
Date deposited: September 14, 1995

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>AB</th>
<th>BB</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloma patients</td>
<td>45.7</td>
<td>39.4</td>
<td>14.9</td>
<td>46</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloma cell lines</td>
<td>45.7</td>
<td>45.7</td>
<td>8.7</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE LISTING

Chugai Seiyaku Kabushiki Kaisha
Genomic Gene Coding for HM1.24 Antigenic Protein and Promoter Therefor
JP 10-060617
JP 10-093883
1998-02-25
1998-03-24
1014
DNA
Homo sapiens
cDNA coding for HM1.24 antigenic protein
gaattcgccagtgaggtgtcctacttcatggtatattctatgtatatagga
Met Ala Ser Thr Ser Tyr Asp Tyr Cys Arg

1 5 10

gtgcccatggaagacgggatagaaagtctcttgctgccttgtaatccct
Val Pro Met Glu Asp Gly Asp Lys Arg Cys Iys Leu Leu Leu Gly Ile
15 20 25

ggattgctgctgtatctgttattgtgtgggggctcccttgat
Gly Ile Leu Val Leu Leu Ile Ile Val Ile Gly Val Pro Leu Ile
30 35 40

atctttcaacctagtcctagccagcagctgggttgacggctttccct
Ile Phe Thr Ile Lys Ala Asn Ser Glu Ala Cys Arg Asp Gly Leu Arg
45 50 55
gca gtt atg gag tgt cgc aat gtc acc cat ctc ctg caa caa gag ctg
Ala Val Met Glu Cys Arg Asn Val Thr His Leu Leu Gln Gln Glu Leu
60 65 70
acc gag gcc cag aag ggc ttt cag gat gtt gac gcc cag gcc gcc acc
Thr Glu Ala Gln Lys Gly Phe Gln Asp Val Glu Ala Gln Ala Ala Thr
75 80 85 90
tgc aac cac act gtt gac gcc cta atg gct ttc ctg gat gca gag aag
Cys Asn His Thr Val Met Ala Leu Met Ala Ser Leu Asp Ala Glu Lys
105 110 115 120
gcc caa gga caa aag aaa gtt gac ggc gct gat gca gga gag atc act aca
Ala Gln Gly Gln Lys Val Glu Glu Leu Gly Glu Ile Thr Thr
125 130 135
tta aac cat aag ctt cag gac ggc tct gca gat gtc gac gca cta gta
Leu Asn His Lys Leu Gln Ala Ser Ala Ser Ala Val Glu Arg Leu Arg
140 145 150
aga gaa aac cag gtc tta aag gta atc gcc gac aag aag tac tac
Arg Glu Asn Glu Val Leu Ser Val Arg Ile Ala Asp Lys Lys Tyr Tyr
155 160 165 170
ccc agc tcc cag gcc ttc cgc gct gcc ggc cag ctc ggg cag att
Pro Ser Ser Glu Asp Ser Ser Ser Ala Ala Ala Pro Gln Leu Leu Ile
175 180
acatcttgga aggtcgggtc tgcgccggc gctgtcggtaa cattctcttg atctcatacg
624
ttcgagcgg gtcatgctgg gccacggtta ggcgagaggag cagaggtcggctcc aacggagaa
720
gcctctggag caggtctggga gggccatgg ggcagttcctg ggttgtgaa cagagttgctctt
762
ccgccctcgg ctcccagg gctgcggtcc tccagctgcc cctgcggg ggtgtgctcctt cccccttccc cccttccc ttccttgggc
822
tccacccccagatgggctgag ggtggtggc gttgggtggggg atgtgtggccc tttgtgtgggt
882
gttttttttt ggggggggg gttttttttttt gttttttttttt gttgggttcctt ggagctcctaa aaaaaaatttcc
942
acctcttttg agggagagctc actctttaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaatctcac
1002
gggggccccg ca
1014

<210> 2
<211> 2337
<212> DNA
<213> Homosapiens
<220>
<221> exon
<222> (51) ... (335)
<220>
<221> intron
Nucleic sequence of genomic DNA coding for HM1.24 antigenic protein

```
ccctccccctaatccaggccagactcctttcagctaaagggagatctgga 
 |  |  
 | 56
| Met Ala |

tctactctgtagctatctgagagtcttgcccaggaagggagttaag  
 |  |  
 | 104
| Ser Thr Ser Tyr Asp Tyr Cys Arg Val Pro Met Glu Asp Gly Asp Lys |

cgcctgttaagtctgctgggataagattctgctgcgcatactg  
 |  |  
 | 152
| Arg Cys Lys Leu Leu Leu Gly Ile Gly Ile Leu Val Leu Leu Ile Ile |
```

20

25

30

35

40

45

50

55
gtg att ctg ggg gtc ctc ttg att atc ttc acc acc aac agc
Val Ile Leu Gly Val Pro Leu Ile Ile Phe Thr Ile Lys Ala Asn Ser
35 40 45 50
gag ggc tgc cgg gac ggc ctt cgg gca gtg atg gag tgt ggc aat gtc
Glu Ala Cys Arg Asp Gly Leu Arg Ala Val Met Glu Cys Arg Asn Val
55 60 65
acc cat ctc ctt caa caa gag ctc acc gag ggc cag aag ggc ttc cag
Thr His Leu Leu Gln Gln Glu Leu Thr Glu Ala Gln Lys Gly Phe Gln
70 75 80
gat gtg gag gcc cag ggc gcc acc tgc aac cac act gtc gtaagctcct
Asp Val Glu Ala Gln Ala Ala Thr Cys Asn His Thr Val
85 90 95
caa actccttt ggatggccta gtactagccgtggtgaggga caagaatcctctccccagaa
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
cttgacccag gtgtgggttcccagggaggtg caggggactg tctggagtccttcctgccc
ccacatcaaa ggcgacctggg ccctccatcc aggggtggtc cctgccctcaggggccc
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
gcactgttggtc aggggcaggg tgggttaaact ctcaggtatcc cccaaacgg cccacgctctt
atcccctgag gcactaggtg gacttttaaa tctttctccag ggcaacttggg tcgggggccct
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
tgaaactcct cgttggcgaa cgtccctggg caggtgaaat ctcctctcag gggtgaggccg
30 35 40 45 50 55 60 65 70 75 80 85 90 95
ggactcacc gacacgctgaa aaagggtgat tttgtaaaat tcacttctc tctaaagaaacc
30 35 40 45 50 55 60 65 70 75 80 85 90 95
tgaaatattc aacctgggtcctg tcatattggg gctctgaaat ctcctctgctgg gcactgtacct
30 35 40 45 50 55 60 65 70 75 80 85 90 95
tggtgccggg aatccacagt cactgctcttg gctgtgaggg cctctctact ttcttgggccc
30 35 40 45 50 55 60 65 70 75 80 85 90 95
attgctcagg caactctggag aatgctcact aaccttggctgt atcgatagcc tccaagttttc
30 35 40 45 50 55 60 65 70 75 80 85 90 95
cacgtggggt ggccccaaaa cccccatattt gagacccacc atgctttggt gttggctctgg
30 35 40 45 50 55 60 65 70 75 80 85 90 95
gagagttgtt gtttggtgtct ttctttaaag gttggagacc atgtgtcagaa ggggtgtaga
agagatgtgtt caaggggttt gcattttgc cccctgttcc cgagcaggtaaggacgga
30 35 40 45 50 55 60 65 70 75 80 85 90 95
caggtcctca ggggagcag ccacctccct cagcccagaa cccccagatcc taactttctttc
30 35 40 45 50 55 60 65 70 75 80 85 90 95
tag atg gcc cta atg gct tcc ctt cag g cca gac aac gcc caa gga ca
30 35 40 45 50 55 60 65 70 75 80 85 90 95
met Ala Leu Met Ala Ser Leu Asp Ala Glu Lys Ala Gln Gly Glu
100 105 110
aag aaa gtg gag ggc tta gab g gcgtgaagag aagaaaaggg aagggggggg
45 50 55 60 65 70 75 80 85 90 95
lys lys val glu glu glu glu
115
aggggtgtgt gaggatgtg aagggggtgt ggggctgag aacggaggct ggaggtggg
50 55 60 65 70 75 80 85 90 95
gagggggg ggtgtctgtcc gagattggag cggggcccc cgcctggcaco ggtgctgacc
50 55 60 65 70 75 80 85 90 95
gccccctgtt tcctctccac ccccttaccc g ga ga gag act act aca tta aac cat
145
17
ly glu ile thr thr leu asn his
120 125
<210> 3
<211> 180
<212> PRT
<213> Homosapiens
<223> Amino acid sequence of HM1.24 antigenic protein
<400> 3

Met Ala Ser Thr Ser Tyr Asp Tyr Cys Arg Val Pro Met Glu Asp Gly

1 5 10 15
Asp Lys Arg Cys Lys Leu Leu Leu Gly Ile Gly Ile Leu Val Leu Leu
20 25 30
Ile Ile Val Ile Leu Gly Val Pro Leu Ile Ile Phe Thr Ile Lys Ala
35 40 45
Asn Ser Glu Ala Cys Arg Asp Gly Leu Arg Ala Val Met Glu Cys Arg
50 55 60
Asn Val Thr His Leu Leu Gln Gln Glu Leu Thr Glu Ala Gln Iys Gly
65 70 75 80
Phe Gln Asp Val Glu Ala Gln Ala Ala Thr Cys Asn His Thr Val Met
85 90 95
Ala Leu Met Ala Ser Leu Asp Ala Glu Lys Ala Gln Gly Gln Iys Lys
100 105 110
Val Glu Glu Leu Glu Gly Glu Ile Thr Thr Leu Asn His Lys Leu Gln
115 120 125
Asp Ala Ser Ala Glu Val Glu Arg Leu Arg Arg Glu Asn Gln Val Leu
130 135 140
Ser Val Arg Ile Ala Asp Lys Lys Tyr Tyr Pro Ser Ser Gln Asp Ser
145 150 155 160
Ser Ser Ala Ala Ala Pro Gln Leu Leu Ile Val Leu Leu Gly Leu Ser
165 170 175
Ala Leu Leu Gln
180
<210> 4
<211> 2061
<212> DNA
<213> Homosapiens
<220>
<221> promoter
<222> (1) ... (2040)
<220>
<221> CDS
<222> (2041) ... (2061)
<223> DNA sequence of promoter region of HM1.24 antigenic protein gene
<400> 4
actaaaaagtc tcttgatagtgc agaataataag gcataagagctg tctttttctgc tgccecccctct 60
etctctctctct gcctctcgcc cagaggcaggg aagggccccc tttccagttg accagtgacc 120
cacagtacacc taacctcatcat ttggagatgac tcacacctttt ctacccctcctc cttttgtcccc 180
gtatccataa aataacagca aagccagaca actcgggcccct ctaaacagctc cccggcgatt 240
cctggtagggt cccccgcggt ccagcgtgctc tctttttttct cctcctgctc ttgtcttttt 300
ttttacactctctctttgtc cgcacagcag gagaagacca cctgacaggtt ggggtggtgtc 360
cccatacatt ttttaaaaaag aagagcaaca aactattctgt tcacgaggctc ggaggacttttt 420
acagcgtgcaaa aatattagaga ggacatcaaat tattttattt ccacattttta cagctgaggg 480
aatcaagtct aagagagagtc attttaccttg cccttcctctcctc aacccctctcctctcctct 540

gcaatctcatg caatttgatg ttcgcagccttc gtccecaacta aacccttaag tttagcagggc 600
agaacagctgc tgcctcaataa agtcagctct gcataaatta aacggccaaa ttgggtagttt 660
tgcacccctga gttctcggcttc ggtctctgtt cttctgctcc tgggacagtt tcaccectcag 720
aatattccgct aagactacctcc cccacagcag cttaatttgt ccacggaggg ttattttatat 780
ttgctttattt ttgtaataag atgggaatccc actcattcag ccagattggc ctgctgctgctc 840
acaatcagatg ttgctctcaag cctttaacctc ctggccctctt cttcaggtgct cctctagg 900
tccagctctc agcctgaggc cccagccactg ctcacacattc ccttgctctta atgtggccctt 960
atgggtttcttg ttgcagcagcttg gggccgtgagcttgatctggg caattgagctc ttcctctcttc 1020
gagggcttggt gctcggcactc ctggctcggg cttcggctggg ctggagggcttg ctgctcttt 1080
aacatgaaaaa tggagcaactc aaacatattt ttgggtggtgtt gacgttttgc ttgaagacagc 1140
cacaagaaaa acatgcagctc ccttttcagc ggtcagcctgc ggcgggtttgg cggagttttttt 1200
gggctgttctt tctctgtacta aagcctgtgggc cagtcagccttc gttggttttgt cctgcctttt 1260
ggccctgtta cttcctttttg cagatgagaa aacaacagctg gagagtttaat ctggatctttc 1320
ggacttctttc tctgtgatttt tctgggaagtt ggaagcttttt tctgtgttttc cttcaacagct 1380
agacccagatg ttttgtctttc gttggtgctgt ctcccagtttt tcacggctggct cctccataac 1440
tcttgtctctc catttggccca cgtgccttcct ctggcgtgctg caacgcctttc gagctttcga 1500
atgacaacctgc gttgctcacc acagacacata ctgagacatc cccagcctgg ggggatcgataa 1560
accaggcccc ccgccccccc cttgggtgtt ccagccttcct ccagaggccct ccctggggggag 1620
tcagttttgcc ctaggtggag ccggccaaaa atgatggggct tctgtctctct cagttccatag 1680
tcaagatgaa aacatcctgag gcacgccttt ctagatacag acctgagcctgg agacacacacag 1740
aacgggtttt tgggatgctgg gaaaaaaaac gggccccccttctctctgctgagttgctt 1800
aaacccataat aataactctgt cctgtaggctt ctctcaagcag aaggtgtggctg tctggacactt 1860
tctgctgagatg ctagagttgct cgtctgtctcata taaggccctcg cggcgctgtag 1920
gattccccaga cggccacctttacgctcgc cagctcttt ccctcttgtgg cagagattttc 2040
atg gca tct act tgt tat tag

Met Ala Ser Thr Ser Tyr Asp
gtaatacgac tcactatagg gc

atcccgctct tccatgggca ctcgtga

actatagggc acgcgttggt

atagtcatac gaagtagatg ccatccag

actatagggc acgcgttggt
<223> Primer
<400> 10

5
cctgccgttt ggcccttgatg gtga

10
<210> 11
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 11

15
gccaaccagc aggctgac

20
<210> 12
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 12

25
gcatccaggg aagccatt

30
<210> 13
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 13

35
actccccagg ccaaaaac

40
<210> 14
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 14

45
cgcgtcctga agcatttgttt

50
<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer

55
<400> 15

cgctctgcag cggtgag

<210> 16
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 16

<400> 16

cgaaaagcgc agcaggac

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 17

<400> 17

atggcatctta cttcgatga c

<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 18

<400> 18

aaccggttgt ccccatga

<210> 19
<211> 471
<212> DNA
<213> Homosapiens
<223> cDNA coding for a splicing variant of human HM1.24 antigenic protein
<400> 19

50

55
Amino acid sequence of a splicing variant of human HM1.24 antigenic protein

```
Met Ala Ser Thr Ser Tyr Asn Tyr Cys Arg Val Pro Met Glu Asp Gly
1     5     10
Gat aag cgc tgt aag ctt ctc ggg ata gga att ctc gtt ctc ctc
Asp Lys Arg Cys Lys Leu Leu Leu Gly Ile Gly Ile Leu Val Leu Leu
20    25    30
Atc atc gtc att ctc ggg gtt ccc ttg att atc ttc acc atc aag gcc
Ile Ile Val Ile Leu Gly Val Pro Leu Ile Ile Phe Thr Ile Lys Ala
35    40    45
Aac agc gag gcc tgt cgg gac ggc ctt cgg gca gtt atg gag tgt cgc
Asn Ser Glu Ala Cys Arg Asp Gly Leu Arg Ala Val Met Glu Cys Arg
50    55    60
Aat gtc acc ctt ctc cta cca cca gag ctg acc gag gcc cag aag gcc
Asn Val Thr His Leu Leu Gln Gln Glu Leu Thr Glu Ala Gln Lys Gly
65    70    75    80
Ttt cag gat gtt gag gcc cag gcc ggc aag tgt ctc aac cac act gtt aag
Phe Gln Asp Val Ala Gln Ala Ala Thr Cys Asn His Thr Val Lys
85    90    95
Aga aaa cca ggt ctt aag cgt gag aat cgc gga cca gaa gta cta ccc
Arg Lys Pro Gly Leu Lys Arg Glu Asn Arg Gly Glu Gln Glu Val Leu Pro
100   105   110
Cag ctc cca gga ctc cag ctc cgc tgc ggc ggc cca gct gct gat tgt
Gln Leu Pro Gly Leu Gln Leu Arg Cys Gly Ala Pro Ala Ala Asp Cys
115   120   125
Gct gct ggg cct cag cgc tct gct gca gtt aga tcc cag gaa gct ggc
Ala Ala Gly Pro Gln Arg Ser Ala Ala Val Arg Ser Gln Glu Ala Gly
130   135   140
Aca tct tgg aag gtc cgt cct gct cgg ctt ttc gct gta
Thr Ser Trp Lys Val Arg Pro Ala Arg Leu Phe Ala
145   150   155
```
Met Ala Ser Thr Ser Tyr Asn Tyr Cys Arg Val Pro Met Glu Asp Gly
1 5 10 15
Asp Lys Arg Cys Lys Leu Leu Leu Gly Ile Gly Ile Leu Val Leu Leu
20 25 30
Ile Ile Val Ile Leu Gly Val Pro Leu Ile Ile Phe Thr Ile Lys Ala
35 40 45
Asn Ser Glu Ala Cys Arg Asp Gly Leu Arg Ala Val Met Glu Cys Arg
50 55 60
Asn Val Thr His Leu Leu Gln Gln Glu Leu Thr Glu Ala Gln Lys Gly
65 70 75 80
Phe Gln Asp Val Glu Ala Gln Ala Ala Thr Cys Asn His Thr Val Lys
85 90 95
Arg Lys Pro Gly Leu Lys Arg Glu Asn Arg Gly Gln Glu Val Leu Pro
100 105 110
Gln Leu Pro Gly Leu Gln Leu Arg Cys Gly Ala Pro Ala Ala Asp Cys
115 120 125
Ala Ala Gly Pro Gln Arg Ser Ala Ala Val Arg Ser Gln Glu Ala Gly
130 135 140

Thr Ser Trp Lys Val Arg Pro Ala Arg Leu Phe Ala
145 150 155

<210> 21
<211> 7
<212> PRT
<213> Homosapiens
<223> N-terminal partial amino acid sequence of HM1.24 antigenic protein
<400> 21

Met Ala Ser Thr Ser Tyr Asp
1 5

<210> 22
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 22

tccatagccc cctcgggtgg 19
atagtcatac gaagtagatg ccatccag

aaagtgacca gctgcttttc tgcctgct

gtgcctctcc cgctaacc
ggacgtttcc tatgctaa

aaagcggccg ctcatcactg cagcagagc ctgag
aggggaactc accagacc

atggoctaat tggcttcc

cattaaacca taagttcag g

ccctcaagtc cctccact

gacggatcct aaagttcaca gcgcttattc
Nucleic sequence of genomic DNA coding for HM1.24 antigenic protein

```
tcccatagtc cccctggtgg ggcacagagc actgcatgaa gccctgcctg tcaaccacga
 tggccatgta ccaaaaaacc agtccctggg gtcaagacca gcggccgccc ccagacccag
 ggcctggcct cactccacca gcaactgtg caacctcagt ttccccaggt gcagacgcgg
 ccaacaatga tggctcttgc ctcttcaggt catagtacag atgaatacag gctggcaggg
 cctaggcact cagtacaca ggcagaggc acaaggactt aagatggagt tgtccaggca
 gcgcacagtgg gctggcaccc agttggaag gcgcacaggg cttttaaagc agggtaaaaa
 aaaaaagcca cctcttttct gggaaactga aactgaaaac ctaattaact cctgctctgt
 aggtgccctoa tgaagacgt gctggtcaga gcacttcctg gaaactgtca ttggtcaggga
 cgtttacctttgataaag gcggcgcccc tagaagattc cagcaccttc ccctaatctcc
 aggccagact cctttcagct aaaaagggaga tctgg atg gca tac act tcg tat gac

Met Ala Ser Thr Ser Tyr Asp
```

```
tat tgc aga gtt ccc atg gaa gac ggg gat aag cgc tgt aag ctt ctt
Tyr Cys Arg Val Pro Met Glu Asp Gly Asp Lys Arg Cys Lys Leu Leu
```

```
ctg ggg ata gga att ctt gtg ctc ctg atc atc gtt att ctt ggg gtg
Leu Gly Ile Gly Ile Leu Val Leu Leu Ile Ile Val Ile Leu Gly Val
```

```
 Met Thr Ser Thr Ser Tyr Asp
```
ccc ttg att atc ttc acc atc aag gcc aac aeg gag gcc tgc cgg gac 740
Pro Leu Ile Ile Phe Thr Ile Lys Ala Asn Ser Glu Ala Cys Arg Asp
40 45 50 55

ggc ctt cgg gca gtc atg gag tgt cgc aat gtc acc cat ctc cta gca 788
Gly Leu Arg Ala Val Met Glu Cys Arg Asn Val Thr His Leu Leu Gln
60 65 70
caa gag ctc acc gag gcc cag aag gcc ttc cag gat gtc gag gcc cag 836
Gln Glu Leu Thr Glu Ala Gln Lys Gly Phe Glu Asp Val Glu Ala Gln
75 80 85
gcc gcc acc tgc aac cac act gtc gtaagctcct caacctctttggatgcccc 890
Ala Ala Thr Cys Asn Hrs Thr Val
90 95
gtactaggcc gtgggggga caaagattc tccccagaaatactggcctcgggttcctc 950
caggagtctg caggggagct ctggaacgtc tcctccggggccacaaatcgaagggactggg 1010
ttcctccac aagctttgttc ggccccctaaac ccaatccgagcactgtgtgcagggcaggg 1070
tgttataaac ctc gacatcg cccaaatccg ggcacccagct cccctrattgg 1130
aatataaaa ttcctttcctgg ggcactggtgg tgggggtctcc acaactactctctgcgtgccc 1190
agtctgggg gagataaaat ccttcttctgg ggttggaggg ggacccctcc agacaattcc 1250
aaaggggctt ttggaatat atccacacttc cctaaagaaaagac aatctgcccttgagacaggg 1310
tgatggggt gatctggaaat ctc tctgggtg gctattcacttg cgggctggga 1370
catttcgat ttgggaggct ccctcttc tctcttgggctc acaatggggctt 1430
agtccactata aaccttgggtcctgatagcct ccctttctgc cccctctcgttgccctggtagacc 1490
ctgggttttctggacct caggtcagcct caccctctccc ggggctgggg gacgcccgacc 1550
cacccttcct gggccccaa aaccagttttatg atgcgtcct ccctttttcggtaa ggggggg aga 1610
gcattttggg ccctcagct gcagcagcctt cggagggcc gacgccagaaccctgagctggggg 1670
ccccaccttc cagggcctg gtcgccatat atcctttcctt cctcctttcctcttgag 1725
Met Ala Leu Met

gct tcc ctc tgt gca gag aag gcc cca gga cca aag aaa cta gta gag 1733
Ala Ser Leu Asp Ala Glu Lys Ala Gln Gly Gln Lys Val Glu Glu
100 105 110 115
cattc agc ggtgaggggtc agaagggcagggg ihggttgact caggtatgga 1830
Leu Glu G
agagggggttg gggagggag gaccaggggtc cagagttggg gtaaggg ggtttggtcctc 1890
ccatgaggg cacggccctgg gcctgagcctt cccctctcttgcctgatgcccttcggcagcagtggc 1950
caccctacga g ga gag atc act act ctaa ctt cag cag gac ggc 1999
ly Glu Ile Thr Thr Leu Asn His Lys Leu Gln Asp Ala
120 125 130
Claims

1. A genomic DNA encoding HM1.24 antigen protein, said DNA containing 4 exon regions encoding the amino acid sequence as set forth in SEQ ID No 3, and three introns; wherein the first intron is positioned between the DNA encoding the amino acids Val 95 and Met 96 of SEQ ID No 3; wherein the second intron is positioned between the DNA encoding the amino acids Gly 118 and Glu 119 of SEQ ID No 3; and, wherein the third intron is positioned between the DNA encoding the amino acids Arg 138 and Arg 139 of SEQ ID No 3.

2. The genomic DNA according to claim 1 having the nucleotide sequence as set forth in SEQ ID NO: 2.

3. The splicing variant of the genomic DNA as set forth in claim 1 or 2, said DNA encoding HM1.24 antigen protein.

4. The splicing variant according to claim 3 lacking exons 2 and 3.

5. A process for producing HM1.24 antigen protein which method comprises culturing animal cells transformed with an expression vector comprising the genomic DNA according to any of claims 1 to 4.

Patentansprüche

1. Genomische DNA, codierend das HM1.24-Antigenprotein, wobei die DNA 4 Exon-Regionen, codierend die Aminosäuresequenz gemäß SEQ ID NO: 3, und drei Introns enthält; wobei das erste Intron zwischen der DNA, codierend die Aminosäuren Val 95 und Met 96 von SEQ ID NO: 3 positioniert ist; wobei das zweite Intron zwischen der DNA, codierend die Aminosäuren Gly 118 und Glu 119 von SEQ ID NO: 3, positioniert ist; und
wobei das dritte Intron zwischen der DNA, codierend die Aminosäuren Arg 138 und Arg 139 von SEQ ID NO: 3, positioniert ist.

2. Genomische DNA gemäss Anspruch 1 mit der in SEQ ID NO: 2 dargestellten Nukleotidsequenz.

3. Splicevariante der genomischen DNA gemäss Anspruch 1 oder 2, wobei die DNA das HM1.24-Antigenprotein codiert.

4. Splicevariante gemäss Anspruch 3, der die Exons 2 und 3 fehlen.

5. Verfahren zur Erzeugung eines HM1.24-Antigenproteins, wobei das Verfahren das Kultivieren von Tierzellen umfasst, transformiert mit einem Expressionsvektor, umfassend die genomische DNA gemäss einem der Ansprüche 1 bis 4.

Revendications

1. ADN génomique codant pour la protéine antigène HM1.24, ledit ADN contenant quatre régions d’exon codant pour la séquence d’acides aminés telle qu’elle apparaît dans SEQ ID N° 3, et trois introns ; dans lequel le premier intron est placé entre l’ADN codant pour les acides aminés Val 95, et Met 96 de SEQ ID N° 3 ; dans lequel le deuxième intron est placé entre l’ADN codant pour les acides aminés Gly 118, et Glu 119 de SEQ ID N° 3 ; et dans lequel le troisième intron est placé entre l’ADN codant pour les acides aminés Arg 138, et Arg 139 de SEQ ID N° 3.

2. ADN génomique selon la revendication 1, ayant la séquence de nucléotides telle qu’elle apparaît dans SEQ ID N° 2.

4. Variante d’épissage selon la revendication 3 dépourvue des exons 2 et 3.

5. Processus de production de la protéine antigène HM1.24, lequel procédé comprend la culture des cellules animales transformées avec un vecteur d’expression comprenant l’ADN génomique selon l’une quelconque des revendications 1 à 4.
Fig. 1

GAATTCCGCGACGAGGGATCTGGATGGCATCTACTTCGTATGACTATTGCAGAGTGCCCAT 60
M A S T S Y D Y C R V P M 13
GGAAGACGGGGATAAGCCGCTGTAAGCTCTCTGTGGGGATAGGAATTCTCTGTGCTCTGAT 120
EDGDKRCKLLGLGIILVLIL 33
CATCGTGATTCTGGGGGTGCCTTGTATTATCCTCCACCATCAAGGIDCAACACAGCGAGGCTG 180
IVILGVPLIIIFTIKANSEAC 53
CCGGGACGGCCTTCGGCAGTGATGGAGTGTCGCAATGTCAACCATCTCCTGCAACAGA 240
RDLARAVMECRNVTHLLQQE 73
GCTGACCGAGGCCCCAGAAGGCTTTTCAGGATGTGAGCGCCCCAGCCGCCACCTGCAACCA 300
LTEAQKGFQDVEAQATCNEH 93
CAGCTGTGATGGCCCTAATGGCCTTCCCTGTGAAGAAGAAAGCCCCAAGGAACAAAGAAAGT 360
TMALMADAEKAGGQKVK 113
GGAGGAGCTTGAGGGAGAGATCAGTACATTTAAACATAGGCTTGGCAGCGCTTGCGAGA 420
ELFGDGLNLHKQLQDASAE 133
GGTGAGCGACTGAGAAGAGAAACCCAGGTCTTAAGCCTGAGAATCGCGACACAAGAAGTA 480
VERLLRERENQLVLSVRIAOUKY 153
CTACCCAGCTCCAGGCATCCAGCTGCACCTGCAGGGCAGCCACCTGCTGATTGTGCTCTGT 540
YPSSQDSSSAAAPQLLLIVLL 173

(SEQ ID NOS: 1 AND 3)
Fig. 2

GGGCCCTCAGCGCTCTGCTGAGATCCCAAGGAAGCTGGCACAATCTTGAGAAGGCTCGT 600
GLSALLQ* . 180
CCTGCTCGGCTTTTCTGTTGAACATCCCTTTGATCCTACAGTTCTGAGCGGGTCATGGG 660
GCAAACACGGTTAGCGGGAGAGCAGCGGGTACGGGAGAGGGCCTCTGGAGCGAGGTCTG 720
GAGGGGCATGGGCGAGTCCTGGGTGGAGAAGGGCAAGGGGAGAGGCTCTGAGCGAGGTCTC 780
CCTCCAGAGCCTCCCTCCGGGACAATGAGTTCCCCCCCTCTTTGCTCTTCCACCCCTGAGATTGGG 840
CATGGGGTGGGTGTGGGGGAGATGTGCTGCTTATGTTATGTTTTTTTTGCGGGGGG 900
GGTTGCTTTTTTCTGGGTCTTTGAGCTCCAAAAAAAATAAAACACTTTCCCTTGGAGAG 960
CACACCTTTTTTTTTTTTTGCCCTTTTTCTGAGCCGCGCCGCGCA 1014

(SEQ ID NOS: 1 AND 3)
Fig. 4

(A) CHO/NEO (Anti-HM1.24)

(B) CHO/HM (Anti-HM1.24)
Fig. 5

Lane 1: KPMM2 (5 x 10^5 cells equivalent)
Lane 2: RPMI8226 (25 x 10^5 cells)
Lane 3: U266 (25 x 10^5 cells)
Lane 4: CHO/HM (5 x 10^5 cells)
Lane 5: CHO/NEO (5 x 10^5 cells)
Lane 6: None
Lane 7: KPMM2 (5 x 10^5 cells)
Lane 8: CHO/HM (5 x 10^5 cells)
Fig. 8

TACTGTCTGGCCCTGCTGAAAGAAAAAAAACATGGGAATGGCAGACCTAACAAGATCTGGGTGTTGTTG - 869
CAGGATGTGGCTGAGAAGCCACACAAAGAAAAACATGCACTCGCCCTTTTCAGCAGTCCACGAGTTGGG - 799
TGCCGATAATGGGCTGATTTTCTGTAGGAAAGCCCCTGGCTCTCTGTCTGGCCACATGCGAGTGCTGAG - 729

NF-IL6

GGCCCTGGTTATTCCCTTTGGCAGATGAGAAACAGGCTCAAGAGAGTCTTACCTGGATATCGGATCCCAAG - 659
GAGCACCTTTTTCTGGGAAGTGAGGACTTGTTCCTGCTGCCAGTTGCAAGACAGAAGCCAGACATTGTGTGGG - 589

NF-IL6

CTGGGTCCGTCCTCCAGTTTCAAGCTGGCTCCACGTCTCACTGTGGTCACACACCCTCCTCATGCTCCCA - 519
TAGTCCCTGCTGTTGGGACAGAGGCACTGGATGAAGCCCTCTGTCTGGTCACCCACAGACCCGACTGAAACAA - 449

AP-2

CREB

AAACAGTCCTCCCTGGGGTCAGACCCAGCCAGCCAGCCAGGCGTGGCCCTGCCCACACTCCACCCAGCAAA - 379

AP-2

Sp1/AP-2

CTGTGCAACCTCAGTTTCCCCAGGTTGGAACCCGCCACAATGATGCCGTCTCGCTCTTGAGTCATAG - 309
TACAGATGAATACAGGCTGCAGCCCTAGCCATGTAACACAGCAGCGCAGGGACACGATGCATATATG - 239
GGAGTGTCCAGGCGACAGGCTGCTGGCACCAGTGTTGGGAAGGCGCGACAAGGGCTTATAAGACAGGGT - 169

AP-2

STAT3

GAAAAAAAGCCCACTCTCCTTTCTGGGAATTGAAATCTGAAACCTTAAATTAATCTTGGCTCAGTTTG - 99

STAT3

ISGF3

CCTCAGTCAGGCTGCTGGCTAGACACTTCTCGGACCTGTATTTGGTCAGAGGTCCCTCCATGATAAGA - 29

STAT3

TRF

TAAAAGGGTTGGCCGCTGAGATTCCAGACACCCCTCCCTAAACTCCAGGCCAGACCTCCTTTCACGCTAAG - 41

AP-2

GGAGATCTGGATGGCACTCTACTTCCTGATGAC +72

MASTSD

(SEQ ID NOS: 4 AND 21)
Fig. 9

(A)

AP2 \rightarrow P1

HM3 \rightarrow S4

INT3 \rightarrow HM4a

HM5 \rightarrow HM3a

(B)

AP2 (19 mer) 5'-ACTATAGGGC ACGCGTGCTG -3' (SEQ ID NO: 9)

P1 (25 mer) 5'-CCTCGCTGTT GGCCCTTGATG GTGAA -3' (SEQ ID NO: 10)

HM3 (18 mer) 5'-GCCAACAGCG AGGCTCTGC -3' (SEQ ID NO: 11)

S4 (18 mer) 5'-GCATCCAGGG AAGCCATT -3' (SEQ ID NO: 12)

INT3 (18 mer) 5'-ACTCCCCAGG CCAAAACC -3' (SEQ ID NO: 13)

HM4a (22 mer) 5'-CGCGTCTCTGA AGCTTATGGT TT -3' (SEQ ID NO: 14)

HM5 (18 mer) 5'-GCCTCTGCAG CGGTGGAG -3' (SEQ ID NO: 15)

HM3a (18 mer) 5'-CGAAAGCCG AGCAGGAC -3' (SEQ ID NO: 16)
Fig. 10

Exon 1 Exon 2 Exon 3 Exon 4
1 285 1139 1205 1387 1447 1755 1881 2337 bp
95 853bp 23 181bp 20 307bp 42 a.a
CCCTCCCTAACTCCAGGCAGACTCTTTTCAGCTAAAGGGGAGATCTTTGATGGGATCTCTACTTCTGGTATGA

MAS T SY D
CTATTGCAGAGTGCCCATGGAAGACGGGGGATAAAGCGCTGTAAGCTTCTGCTGGGGGATAGGAAATCTGTTG
Y C R V P M E D G K K R C L L L L G I G I L V
CTCTGTATCATCGTGATTCTTGGGGTGCCTTTGATTATCTTCACACCAGCAAGGCAACAGCGAGGGAGGCTGC
L L I I V I L G V P L I I F T I K A N S E A C R
GGGACGGCCCTTCGCGGACTGAGTGATGTCGCAATGTCACCCTCCTCGGAACAAGAGGCTGAGCCAGGG
D G L A V M E C R N V T H L L Q Q E L T E A
CCAGAAGGGCTTTTCAGGATGTCAGGCGCCAGCGCAGGCAACCTGCAACACACTGTGGAagctctcaacct
Q K G F Q D V E A Q A A T C N H T V
cctttgtgatggccctagtactagcggtgggagggacagaagaaatctctcccccaggaaatcgaccaggtgg
gttccccaggaggtgagctctgagacgcccacatcaagggaccttaggttcccc
caccagggccctttgtgggagggacagctctctgggaggtttaaaactctcaca
gatcccccaatactgggacctcagtaatcccctgtggagatttatttataaaaatcttctcgagccac
tggtgtcggggcccttgaaacctctctggtggccaccagctctctggggagtagaagaatctccatccattcaggttgg
aaggggacccctaccaagacocctgaaaaaggggctttttaaatcttacctctatccccctagaagaactgaatat
774
caccttgtgctctgatatgggagatcttgaaactctctggtcagctctgggaggggaatccacct
844
gcattctggatattggtagggccctctacaaaaatttttttttgggaccattgctcagggcaatctggaatgtccact
914
aaaccttgggtttatcggatagcctccaaggtttccacagttgggtcggctctccaaactccatatttttagagaccaca
cattctattaggttggcccttgagaggtgtttggttttcttttaagtttaggtgagacagctgttgcag
984
catgtctttatcggtggcccttgagaggtgtttggttttcttttaagtttaggtgagacagctgttgcag
1054
agaggttgagaaaaactctgaaaggggtttgcaatttgaagccccctcttgctccccagagctagggagag
1124
cccagggctccagggccagcagccaaactccccaggccccaaaccagattctactcttttagATGGCC
1194

(SEQ ID NOS: 2 AND 3)
Fig. 12

CTAATGGCTTTCCCTGGATGAGAGAGGAGGACAAAAGAGATAAGTTGAGAGGAGCTTGAGGgtgagaag 1264
LMASLDAEKAQGGKKKVEELEG 1334
ggagaaggagggagggcgggaggggtgtagtcaggtatggaagaggggtggtggggcaggagaccagggc 1404
tggagggtggtccaagggaagggttctgtcctccacaggttgaggacaggcggccagcagcatggcccactgtgcc 1474
cgcccccctgtttctgtccctccacccctaccagGAGAGATCACTACATTAACCAATAAGCTTCCAGGAGCGG 1544
EITTLNHLQDA 1614
TCTGCAGAGGTTGAGCGACTGAGgtcagagatagccttccccgcctacccctccaccctgccacatttcct 1684
SAEVERLRC 1754
caccccccacatccctagcccaagaccagaggctcccttttgctccccaaatccccatggcccaagggaata 1824
aagtttgaatcacaagaaaggataacttacacccctagggtcagagccattgggtggccgtgtcctatcc 1894
ccctccccgtgtactgtgaggctgagggtgagggagaactccccctgggggaggtggtggcttacagggagggcg 1964
gcaggagcacaggcaggagactgcctgtttgcgccccctactgtacccgcagAAGAGAAACCAGGTCTTTA 2034
RENVLS
GCGTGAAGAATCGCGAGAAGAGTAGTACCTACCCACACGCTGCCAGCTAGCTCCCGCGTCCGCCGCCAGCT 2104
VRIADKKYPSSQDSSIAAPQL 2174
GCTGATTGTCGGCTGGCCTACGCGCTCTCTCACTGACAGATCCAGAACAGCTGGCCACTTTTGGGAAGG 2244
LIVLLGLSALLQ 2314
TCCGTCTGTGCTGGGCTTTTTCTGGTTATCTCCTCATTCTAGGAGCCGGTCTGATCGGGGCAAC 2384
ACGGTTAGGGAGAGAGACAGGCGGAGGATACGCGGAGAAGGCTCTTGGAGAGGCGGATCGGGG 2454
AGTCCCTGGGGACACAGTGCTGGGTTGACAACTTGGCCTGGGAGAGGCGGATCGGGG 2524
GAGTCCCCCTCTTTGCTCCCGACCTCTGGAGATTGGGGCGGTATCGGTGGGGGCGATCGGTCTGGCGTCTGT 2594
TTTATGGGTTTTTTTTCGGGGGCGGTTTCTTCTGGGTCTTCTGACGCTCCAAAAAATAAACACT 2664
TCCCTTGAGGGAGAGACACACCTT 2337

(SEQ ID NOS: 2 AND 3)
Fig. 13

ATGCCATCTACTCTCTATGACTATTGCCAGACTGCCATGGAAGCCGGGATAAGCGCTGCT 60
MetaLaSerThrSerTyrAsnTyrCysArgValProMetaGluAspGlyAspLysArgCys
AAGCTTCTGCCGATAGGATTCTGTGCTGATCGATCTGATTACGTGATGGGTGGGCCC 120
LysLeuLeuLeuGlyIleGlyIleLeuValLeuLeuIleLeuIleLeuGlyValPro
TTGATTATCTTACACCATCAAGGCAAGCAGGCTGGCGGACGGGCTTCCGGCAGTG 180
LeuIleIlePheThrIleLysAlaAsnSerGluAlaCysArgAspGluLeuArgAlaVal
ATGGAGTGTGCAATGGCTCTCCATCACCATCTTCTGCAACAAAGAGCTGAGCCAGGCCCAGAGGCC 240
MetaGluCysArgAsnValThrHisLeuGluCinGluLeuThrGluAlaGlnLysGly
TTTCAAGATCTCGGACGGCAGGCGGCGGCACTGCTGCAACAAAGAGCTGAGGAAAAACCGGCT 300
PheCinAspValGluAlaCinAlaAlaThrCysAsnHisThrValLysArgLysProGly
CTTACCGGTCGAGATCGCCGACAAGAAGCTACTACCCGACCCTCCAGGACTCCAGCTCCGCC 360
LeuLysArgGluAsnArgGlyGluValLeuProGlnLeuProGlyLeuGlnLeuArg
TGCGCGCCGCAGCTGCTGATCTGCTGCTGGCCCTCAAGGCTTCTGCTGACGATGTC 420
CysGlyAlaProAlaAlaAspCysAlaAlaGlyProGlnArgSerAlaAlaValArgSer
CAGGAAGCTGGACATCTTGGAGGTCGCTGCTGCTGCTGCTGCTGCTGCTGCCTCA 471
GlnGluAlaGlyThrSerTrpLysValArgProAlaArgLeuPheAla*

(SEQ ID NOs: 19 AND 20)

______: PART DIFFERENT IN AMINO ACID SEQUENCE
FROM HM1.24 ANTIGEN PROTEIN
Fig. 14

(SEQ ID NOs: 3 AND 33)
Fig. 15

AGGCGAGACTTCATTTCAAGTAAAGGGAGATCTGGATGCACTACTCTCTATGCTATGACTATT
Determination

GCAGAGTGCCCGATGGAAGACGGGATAGCCGCTGAAGTCTGCTGCGGAGTAGGAATT

RVPMEDGDKRSCGILGIGIL

TGGTGCCTCCTGATCACGTGTATCTGGGGGTGCCTTGATTATCTCACCACATCAAGGCA

VLLIIIVILGVPLIIITSIKAN

ACAGCGAGGCGCTGCCGGGACACGCGCTTCGCGGCACTGAGTGGATGTCGCAATGTCACCCATC

SPEARDEGLRAVMECRNVPHL

TCCTGCAAGAAGAGCTGACCGAGGCCAGAAGGGTTCAGGATGTGGAGGCCAGGCCG

LQELTEAQQKGFQVDVEAQA

CCACCTGCAACACACTGTGtaagctcctcaactctcctttgtgatggccctagtagtacagc

ICNHIVV

gtagcgggaagaccgaaatctcttcctccagaaatctgaccaggggtgggtcctcagggaga

CAGGGAGGTCTGAAACTGCTCTCTGGGCCACATCAAGGGACCTAGGTTCTCCTTAC

(SEQ ID NOS: 3 AND 33)
Figure 16

agggtttggtggccccattacccagttcagggcactgttgtgtagggcagggttgttaaaact
ctccagactccccaaatgcgggacctcagtataccccctttggacataggtgaaatattataaa
 ttctttccagggcactggtgtgcggggcctttgaaactttcctctgtgggccaaccagttcctgggg
 gagtagaattcctatattcagggttgaaggggacctcaaccagacccgtgaaaggggct
 tttggaaattttcatctctcaacctctaaagaaactgaattaccactggtgtcctgtatagggg
 gatctttgaaacctcgtggtggcatgtcactttggggaagtaattcctcaacctgtggtg
Fig. 17

```
1630 1640 1650 1660 1670 1680 1690 1700 1710 1720 1730 1740
ccctctgtcccccaggaccttagggaggaggccccagggtcccaaggccccagcagccaaacctccc
HMEX2F
1750 1760 1770 1780 1790 1800
GAGAGGCCCCAAGGACAAAAGAAAGTGGGAGGGCTGAGGgtagagaaaggagaagggag
EKAKQQKKWELEG
HMEX2R
1810 1820 1830 1840 1850 1860
agggccggggtagggtagctaggtatggaagggtggggcagggagaccagggct
1870 1880 1890 1900 1910 1920
gaggttaggggtagggaggtctgtctggtccaggtgagcagggcccagcagtaggggac
atgctgaccggccctgtctgtctcctccaccttaaccGAGAGATCATACATTAAAA
HMEX3F
1990 2000 2010 2020 2030 2040
CCATAAGGCTTAGGACCGCTGCAGAGGTGGGAGGCACGAGTTAGTcgcagatagcccccccc
HKLDDASAEVERL
2050 2060 2070 2080 2090 2100
caggctaccctccacagtccccctctctcctccacctccgccccacatccctagcccaagccaggaa
(SEQ ID NOS: 3 AND 33)
```
<table>
<thead>
<tr>
<th>2110</th>
<th>2120</th>
<th>2130</th>
<th>2140</th>
<th>2150</th>
<th>2160</th>
</tr>
</thead>
<tbody>
<tr>
<td>tctccttggctccaaattcccatggcccaagggataaagtggagtcccacaaaagg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2170</td>
<td>2180</td>
<td>2190</td>
<td>2200</td>
<td>2210</td>
<td>2220</td>
</tr>
<tr>
<td>ataacttagccctagggctacagacccatgggtggcgcgtgtccctcccacccggg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2230</td>
<td>2240</td>
<td>2250</td>
<td>2260</td>
<td>2270</td>
<td>2280</td>
</tr>
<tr>
<td>acttggattgggcccgtgcgggggggacgccggggcgtttacagggagggcgg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2290</td>
<td>2300</td>
<td>2310</td>
<td>2320</td>
<td>2330</td>
<td>2340</td>
</tr>
<tr>
<td>cagggacagccaggacagcagatgctgttagttgcccccatctgtaccgcagaaaagaag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2350</td>
<td>2360</td>
<td>2370</td>
<td>2380</td>
<td>2390</td>
<td>2400</td>
</tr>
<tr>
<td>AGGTCTTAAACGCTGAGAATTGGCAGACAGAAGTTACTAACCCCAGCTCCCCAGGACTTCCAGCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2410</td>
<td>2420</td>
<td>2430</td>
<td>2440</td>
<td>2450</td>
<td>2460</td>
</tr>
<tr>
<td>CCGCTGCCGCGCCCGAGCTGCTGAGGCTGGCTGCCCTCAGCGCCTGCGTCGAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(seq id nos: 3 and 33)