European Patent Office
Office européen des brevets

EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 11.01.2006 Bulletin 2006/02

Application number: 99903971.2

Date of filing: 07.01.1999

Designated Contracting States: CH DE FR IT LI

Priority: 20.01.1998 SE 9800126

Date of publication of application: 08.11.2000 Bulletin 2000/45

Proprietor: St. Jude Medical AB
175 84 Järfälla (SE)

Inventor: EKWALL, Christer
S-163 57 Spånga (SE)

Representative: Kalling, Sven Owe
St. Jude Medical AB,
Patent Department
175 84 Järfälla (SE)

References cited:
EP-A1- 0 800 787
EP-A2- 0 713 714

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD OF THE INVENTION

[0001] The present invention relates to an implantable medical device for tissue stimulation such as heart pacemakers or defibrillators, and more particularly, to cardiac stimulating devices comprising means for removing noise in sensed electrical signals.

BACKGROUND OF THE INVENTION

[0002] A pacemaker provides electrical stimulation pulses to the right atrium and/or the right ventricle of the heart in order to stimulate the muscle tissue to cause a contraction.

[0003] Demand pacemakers monitor the heart, through the same electrical leads through which the stimulation pulses are provided, in order to sense the occurrence of a P wave and/or R wave ("P/R wave"). If a P/R wave is sensed, then there is no need to deliver a stimulation pulse. In such an instance (when a P/R wave is sensed), the delivery of the stimulation pulse in a demand pacemaker is inhibited, thereby conserving the limited power of the pacemaker’s battery, and further preventing irregular rhythms (contractions) of the heart muscle tissue that might otherwise result. Thus, a demand pacemaker provides stimulation pulses to the right atrium and/or right ventricle on demand, i.e. only when needed.

[0004] In dual chamber pacemakers there is not only an inhibiting function but also a triggered function. The sensing of a P wave inhibits the atrial stimulation. It furthermore triggers an AV interval, which stimulates the ventricle, if a ventricle activity has not been sensed before the AV interval runs out. If a ventricle activity is sensed, the ventricle stimulation is inhibited.

[0005] Similarly, automatic defibrillators provide a high energy stimulation pulse to cardiac tissue in an attempt to start contractions in a heart that has stopped. If the heart responds to such high energy defibrillation pulses and starts beating on its own, the need for defibrillation also operates in a demand mode, providing defibrillation pulses only when needed.

[0006] The ability of e.g. a demand pacemaker, dual chamber pacemaker or automatic defibrillator to properly perform its function of providing stimulation pulses on demand is critically dependent upon its ability to detect P/R waves. Unfortunately, many electrical signals may be present in a typical ECG signal (that signal sensed through the pacemaker or defibrillator leads) that do not represent valid P/R waves. Such signals are referred to as noise. Body movements may give rise to noise.

[0007] The stimulation of heart tissue and the detection of P/R waves is either provided by a unipolar lead or a bipolar lead. Unipolar stimulation and sensing is achieved between the tip electrode of the lead and the indifferent electrode of the tissue stimulating device, and bipolar stimulation and sensing is achieved between the tip electrode of the lead and the ring electrode of the tissue stimulating device. A bipolar lead may provide unipolar stimulation or sensing.

[0008] Thus, compared to a unipolar lead, a bipolar lead needs two insulated connections and wires for proper operation. The bipolar lead is therefore more sensitive to fatigue breakage, short-circuits and insulation defects. The ring electrode also renders the bipolar lead less flexible because the ring electrode is normally placed a few centimetres from the tip electrode where there is maximum bending of the lead, this results in fatigue breakage around the area of the ring electrode. Consequently, unipolar leads are for mechanical and quality reasons superior to bipolar leads.

[0009] However, in the bipolar system both the tip electrode and the ring electrode are placed inside the heart, and since the distance between the electrodes is small compared to the distance to muscles associated with body movements, the muscle signals effect the electrodes in much the same manner and consequently these muscle signals cancel each other. In the unipolar system the indifferent electrode is in close contact with muscles relating to body movements The indifferent electrode is very likely to pick up signals from e.g. arm movements, and these signals can reach amplitudes far higher than the amplitude registered by the tip electrode as heart signal. Consequently, bipolar leads have a superior noise suppression and in particular of muscular interference.

[0010] One technique that can be used to reduce noise in a pacemaker is disclosed in US-A-5 010 887 which relates to a noise discrimination circuit in implantable pacemakers. The noise discrimination circuit monitors the ECG signal to determine both the amplitude and duration of any signal pulses appearing thereon. If the amplitude of a given ECG signal pulse exceeds a prescribed threshold level for a prescribed duration, the pulse is considered to be a valid ECG signal.

[0012] EP-A-0 713 714 relates to an implantable medical device which comprises a correlator for producing a correlation function indicating the level of an EMI (electromagnetic interference) component of an input heart signal that includes a heart signal component and an EMI component. The correlation function is monitored relative to a predetermined threshold to allow the device to operate in a normal manner as long as the intensity or level of the EMI component is such that it does not effect or interfere with the device operation. One or more remedial measures may be selected in the event the level of the EMI component exceeds a predetermined threshold.

SUMMARY OF THE INVENTION

[0013] Therefore the objective problem to be solved by the invention compared to the prior art disclosures is
to provide a more reliable arrangement for reducing electrical noise signals originating from the human body without having to monitor the duration and/or amplitude of the sensed electrical signal.

[0014] This problem is solved by an implantable medical device for stimulating heart tissue according to claim 1.

[0015] An advantage with providing a noise sensing electrode located outside the heart for sensing noise signals originating outside the heart is that there is no need for determining what is to be considered as noise, since everything sensed by the noise sensing electrode is considered to be noise.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] These and other objects, advantages and features of the present invention will be more readily understood from the following detailed description of the preferred embodiments thereof, when considered in conjunction with the drawings, in which like reference numerals indicate identical structures throughout the several views, and wherein:

Figure 1 is a schematic drawing of a sensed electrical signal in the heart;

Figure 2 is a schematic drawing of a heart pacemaker comprising a noise sensing electrode and a unipolar lead in accordance with an embodiment of the invention;

Figures 3A and 3B are schematic views of the vector relationship between the indifferent electrode, the tip electrode and the noise sensing;

Figure 4 is a schematic block diagram of a pacemaker circuit noise cancellation circuit comprised in a heart pacemaker;

Figure 5 is a schematic circuit diagram of a noise cancellation circuit in accordance with a preferred embodiment;

Figure 6 is a schematic block diagram of an adaptive parameter circuit in accordance with a preferred embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION

[0017] Referring now to Figure 1, it illustrates a possible electrical signal in the heart sensed between the tip electrode 20 and the indifferent electrode 15. The electrical signal comprises not only a signal provided by the heart but also a noise signal provided by body movements, i.e. muscular noise. The heart signal and the noise signal are depicted next to each other for clarity reasons. Usually these two signals are superimposed.

[0018] Referring now to Figure 2, it illustrates a schematic drawing of a heart pacemaker 10 comprising a noise sensing electrode 16 and a unipolar lead 18 in accordance with an embodiment of the invention. The pacemaker 10 comprises a housing 12 which in Figure 2 comprises two parts, namely the case 15 and the header 14. The case 15 comprises the pacemaker circuitry and the indifferent electrode 15. This configuration is well known in the art. A noise cancellation circuit 100 which will be more extensively described below is comprised by the case 15. The header 14 comprises a socket for receiving a connector 19 of the lead 18. The lead 18 is preferably a unipolar lead. However, a bipolar lead may also be used as long as the sensing of the heart activity is performed between the tip electrode of the lead and the indifferent electrode of the housing. The indifferent electrode is considered to be the common reference point when sensing heart activity between the tip electrode 20 and the indifferent electrode 15 and noise between the noise sensing electrode 16 and the indifferent electrode 15.

[0019] In Figure 2 the noise sensing electrode 16 is placed on an additional lead which is connected to the header 14. The length of the additional lead may be so long that the electrode 16 still senses the signals for the same muscles which are sensed by the case 15. The distance between the noise sensing electrode 16 and the case 15 may be up to about 5 cm. The noise sensing electrode 16 is electrically connected to the noise cancellation circuit 100. Alternatively, the additional lead may be connected to the case 15 for electrical connection of the noise sensing electrode 16 to the noise cancellation circuit 100, the prerequisite being that it is insulated from the case 15.

[0020] In a preferred embodiment the noise sensing electrode 16 is placed directly on the header 14, without using an additional lead, the header 14 being a convenient location for the noise sensing electrode 16, since the header is non-conducting and close to the indifferent electrode 15. The need of an extra lead is eliminated and the design becomes more resistant against breakage. However, the noise sensing electrode 16 may also be placed directly on the indifferent electrode 15, the prerequisite being that it is insulated from the indifferent electrode 15. This also applies to pacemakers without header, i.e. headerless pacemakers.

[0021] In yet another embodiment the lead 20 comprises the noise sensing electrode 16, e.g. the connector 19 may comprise the noise sensing electrode 16. In an alternative embodiment the noise sensing electrode 16 is located on the lead 18 between the connector 19 and the tip electrode 20, but at such a distance from the connector 19 that when the lead 18 is implanted the noise sensing electrode 16 is located outside the heart and predominantly senses electrical signals originating outside the heart. Also in this case it is a prerequisite that
the noise sensing electrode 16 still senses the signals for the same muscles which are sensed by the case 15 and the distance between the noise sensing electrode 16 and the case 15 may be up to about 5 cm.

[0022] When using a headerless pacemaker, the noise sensing electrode 16 is connected to the case 15 as described above.

[0023] The housing 12 of the pacemaker 10 is implanted at a certain location in the body of a patient and has a certain orientation... However, neither the housing 12 nor the lead 18 are static. They may for example be moved from their implanted location and/or orientation by body movements.

[0024] In Figures 3A and 3B are shown schematic views of the vector relationship between the indifferent electrode 15, the tip electrode 20 and the noise sensing electrode 16. Supposing that a coordinate system is generated comprising three points, each point represents an electrode, i.e. the indifferent electrode 15, the tip electrode 20 and the noise sensing electrode 16. The indifferent electrode 15 is placed in the origin and the tip electrode 20 is placed on the x-axis. The place of origin on the indifferent electrode 15 corresponds to the equivalent sensing point of the indifferent electrode 15. Usually the equivalent sensing point substantially corresponds to the centre of gravity of the surface of the case 15. Depending on the position of the noise sensing electrode 16, it may be found in any of the four quadrants of the coordinate system.

[0025] In Figure 3A, the noise sensing electrode 16 is located on the header and is in the first quadrant. Hence, the first vector V1 is between the indifferent electrode 15 and the tip electrode 20, and the second vector V2 is between the indifferent electrode 15 and the noise sensing electrode 16. In this example, both vectors have the same polarity, since both the noise sensing electrode 16 and the tip electrode 20 are in the first quadrant.

[0026] However, starting from the example in Figure 3A, it is possible that the housing 12 is moved in such a way that the polarity of the two vectors is no longer the same as can be seen in Figure 3B.

[0027] In a preferred embodiment the noise cancellation circuit 100 comprises means 40, 42 for taking into consideration a difference in polarity of the two vectors. These means 40, 42 will be more extensively explained further down.

[0028] Figure 4 is a schematic block diagram of a pacemaker circuit comprising a noise cancellation circuit 100. Two signals are inputted to the noise cancellation circuit 100, namely the by the amplifying means 30 amplified ECG signal sensed between the tip electrode 20 and the indifferent electrode 15 and the noise signal sensed between the noise sensing electrode 16 and the indifferent electrode 15. Consequently, the noise signal corresponds to the signal originating outside the heart tissue and the ECG signal corresponds to the signal originating within heart tissue, i.e. the ECG signal comprises both the pure heart signal and the noise signal.

[0029] The noise cancellation circuit 100 comprises means 40 for generating a signal proportional to the noise signal into which is inputted the noise signal. Thereafter the means 40 inputs the generated proportional signal to a means 50 for forming a differential signal DS. The differential signal forming means 50 also receives the amplified ECG signal, and forms the difference between the amplified ECG signal and the generated proportional noise signal. The differential signal DS is thereafter inputted into means 60 for optimising the noise cancellation, whereby a control signal CS is generated, which is input into the proportional signal generating means 40 for controlling the means 40. The control signal CS may either be generated by telemetry (not shown) or by an adaptive parameter circuit which will be described in connection with Figure 6.

[0030] The differential signal DS, i.e. the sensed ECG signal free of noise, is also inputted into a detection unit 70 for determining if the ECG signal corresponds to a heart contraction as known in the art.

[0031] Figure 5 is a schematic circuit diagram of a pacemaker circuit comprising a noise cancellation circuit 100 in accordance with a preferred embodiment. The sensed ECG signal is amplified by a linear amplifier U1 using negative feedback. The noise signal is also amplified by a linear amplifier U2. However, the gain of the linear amplifier U2 is adjustable by means of a potentiometer R4 for optimising the noise cancellation. Thereafter, the polarity of the amplified noise signal is determined and adjusted by means of a switch S1 and a linear inverter 42. The switch S1 is controlled by the adaptive parameter circuit 60 which will be explained below. It is important that the polarity of the ECG signal and the noise signal is known, so that a correct noise cancellation may be performed. Normally, the polarity of the two signals is known at implantation, since the pacemaker is implanted into a patient’s body having a certain orientation which orientation may be checked by the pacemaker expert. However, for different reasons, the position of the pacemaker may change, and the pacemaker should therefore preferably comprise means for adjusting the noise cancellation circuit to the change in polarity.

[0032] Thereafter, the signal proportional to the noise signal is cancelled from the amplified ECG signal using an adder 50 comprising an operational amplifier (Op-Amp) U3 using negative feedback, a resistor R1, R3 for each respective input and a resistor R2 between the output and input of the Op-Amp. Adders are well known in the art.

[0033] The output of the adder 50, which is the differential signal DS, is used on one hand for optimising noise cancellation and on the other hand for determining a P/R wave. In Figure 5 is shown how a P/R wave is determined by filtering 72, amplifying and asserting the differential signal D4 to a detection level U4.

[0034] Optimising the noise cancellation is either performed manually by a pacemaker technician using telemetry or automatically by using an adaptive parameter
circuit 60. However, in both cases the gain of the noise signal amplifier U2 is changed by means of the potentiometer R4 until the optimal noise cancellation is obtained.

[0035] Figure 6 is a schematic block diagram of an adaptive parameter circuit 60 in accordance with a preferred embodiment of the invention. The adaptive parameter circuit 60 comprises an up/down counter 68 which is clocked by the flank of a QRS detector 61. A control signal CS is outputted by the up/down counter 68, whereby the control signal CS comprises a most significant bit field and a data field. The most significant bit field comprises the bit informing if the control signal CS is positive or negative. The control signal CS controls the setting of the potentiometer R4, i.e. the potentiometer R4 is increased or decreased depending on the level of the differential signal DS compared to the preceding differential signal DS. Furthermore, the most significant bit of the control signal CS is used to control the switch S1.

[0036] A signal energy measurement unit 62 measures the signal energy of the differential signal DS. The signal energy is then compared in a comparator 66 with the signal energy of the preceding differential signal DS and the result of the comparison is used for letting the up/down counter 68 count up or down. When the potentiometer R4 is adjusted for maximum elimination of noise, there will be a minimum in the signal energy level. A switch S2 is located before the signal energy measurement unit 62, the switch S2 being controlled by the QRS detector 61. Supposing that the switch S2 is always closed, this would mean that the signal energy level is determined by the energy of the total signal QRS+T+noise. If the QRS detector 61 controls the switch S2 to be opened during a time window prior to QRS+T, then the energy in the heart signal QRS+T will not influence the signal energy level and the adaptive parameter circuit 60 will control the setting of the potentiometer R4 and the polarity switch S1 such that a minimum of the noise signal is obtained.

[0037] One skilled in the art will appreciate that that the present invention can be practised by other than the described embodiments, which are presented for purposes of illustration, and the present invention is limited only by the claims which follow.

Claims

1. A medical device adapted for implantation in a human body for stimulating heart tissue comprising a housing (12) including an indifferent electrode (15), said housing (12) being adapted to be connected to an electrode lead (18) comprising a tip electrode (20) for sensing electrical signals originating within said heart tissue, said housing (12) further comprises a noise sensing electrode (16) for sensing electrical noise signals from the human body originating outside said heart tissue and said noise sensing elec-
selecting said proportional factor as a result of said comparison by means of said telemetry unit.

Patentansprüche

1. Medizinische Vorrichtung, ausgelegt für die Implantation in einen menschlichen Körper zum Stimulieren des Herzgewebes, enthaltend ein Gehäuse (12) mit einer indifferennten Elektrode (15), wobei das genannte Gehäuse (12) ausgelegt ist, mit einer Elektrodenleitung (18) verbunden zu werden, die eine Spitzenlektrode (20) zum Abführen elektrischer Signale enthält, welche innerhalb des genannten Herzgewebes ihren Ursprung haben, das genannte Gehäuse (12) ferner eine Störungsabfühlelektrode (16) zum Abführen elektrischer Störsignale aus dem menschlichen Körper enthält, die äußerhalb des genannten Herzgewebes ihren Ursprung haben und die genannte Störungsabfühlelektrode (16) gegenüber der genannten indifferenten Elektrode (15) elektrisch isoliert ist, die genannte Vorrichtung eine Störungsbeseitigungsschaltung enthält, zum Beseitigen der genannten Störsignale aus den genannten elektrischen Signalen, die innerhalb des Herzgewebes ihren Ursprung haben, die genannte Störungsbesiehungsschaltung (100) eine Vorrichtung (40) zum Erzeugen eines zu dem genannten Störsignal proportionalen Signals enthält, dadurch gekennzeichnet, dass die genannte Störungsbeseitigungsschaltung (100) einen Kopf (14) enthält, der die genannte Störsignalabfühlelektrode (16) enthält.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuse (12) einen Kopf (14) enthält, der die genannte Störsignalabfühlelektrode (16) enthält.

3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Vorrichtung eine zusätzliche Leitung enthält, die mit dem genannten Gehäuse elektrisch verbunden ist, wobei die genannte zusätzliche Leitung die genannte Störsignalabfühlelektrode (16) enthält.

4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die genannte zusätzliche Leitung bis zu etwa 5 cm lang ist.

5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die genannte Vorrichtung (40) zum Erzeugen des genannten proportionalen Signals eine Vorrichtung (U2, R2) zum Verstärken des genannten Störsignals und eine Vorrichtung (42 S1) zum Einstellen der Polarität des genannten Störsignals enthält.

6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die genannte Verstärkungsvorrichtung (U2, R2) einen wählbaren proportionalen Faktor (R4) zum Varieren der genannten Verstärkung enthält.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die genannte Störungsbeseitigungsschaltung (100) eine Vorrichtung (60) zum Optimieren der genannten Störungsbeseitigung enthält, die genannte Optimierungsvorrichtung (60) einen wählbaren proportionalen Faktor als Ergebnis des genannten Vergleichs enthält.

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die genannte Auswählvorrichtung (60, 68) einen Schrittzähler (68) enthält.

9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die genannte Störungsbeseitigungsschaltung (100) eine Vorrichtung (60) zum Optimieren der genannten Störungsbeseitigung enthält, die genannte Optimierungsvorrichtung (60) eine Telemetrieeinheit enthält, um das Differenzsignal DS für den Vergleich des genannten Differenzsignals DS mit einem vorhergehend gebildeten Differenzsignal DS und die genannte Optimierungsvorrichtung (60) ferner eine Vorrichtung (68) enthält, zum Wählen des genannten proportionalen Faktors als Folge des genannten Vergleichs mittels der genannten Telemetrieeinheit enthält.

Revindicaciones

1. Dispositivo médico destinado a ser implantado en un cuerpo humano para estimular el tejido cardíaco, comprendiendo un boífer (12) con una electrode (15) indiferente, el boífer (12) estando conectado para poder ser conectado a una derivación (18) a electrode (20) de punto para el detector de las señales eléctricas teniendo su origen en el tejido cardíaco, el boífer (12) comprendiendo en otra electrode (16) de detección de bruit para detectar las señales eléctricas de bruit proveniente del cuerpo humano teniendo su origen al exterior del tejido cardíaco y la electrode (16) de detección de bruit para isolar electricamente la electrode (15) indiferente, el dispositivo comprensivo un circuito de anulación del bruit para anular las señales de bruit en los signaux eléctricos teniendo su origen en el tejido cardíaco.
cardiaque, le circuit (100) d’annulation du bruit comprenant des moyens (40) de production d’un signal proportionnel au signal de bruit, caractérisé en ce que le circuit (100) comprend en outre des moyens (50) de formation d’un signal DS différentiel, le signal DS différentiel étant la différence entre le signal électrique ayant son origine au sein du tissu cardiaque et le signal proportionnel.

2. Dispositif suivant la revendication 1, caractérisé en ce que le boîtier (12) comprend un collecteur (14) qui comprend l’électrode (16) de détection du bruit.

3. Dispositif suivant la revendication 1, caractérisé en ce que le dispositif comprend une dérivation supplémentaire qui est reliée électriquement au boîtier, la dérivation supplémentaire comprenant l’électrode (16) de détection du bruit.

4. Dispositif suivant la revendication 3, caractérisé en ce que la dérivation supplémentaire a jusqu’à environ 5 cm de long.

5. Dispositif suivant les revendications 1 à 4, caractérisé en ce que les moyens (40) de production du signal proportionnel comprennent des moyens (U2, R2) d’amplification du signal de bruit et des moyens (42, S1) de réglage de la polarité du signal de bruit.

6. Dispositif suivant la revendication 5, caractérisé en ce que les moyens (U2, R2) d’amplification comprennent un facteur (R4) proportionnel qui peut être sélectionné pour modifier l’amplification.

7. Dispositif suivant la revendication 6, caractérisé en ce que le circuit (100) d’annulation du bruit comprend des moyens (60) d’optimisation de l’annulation du bruit, les moyens (60) d’optimisation comprenant des moyens (62, 64, 66) de comparaison du signal DS différentiel à un signal DS différentiel formé précédemment, et les moyens (60) d’optimisation comprenant en outre des moyens (68) de sélection du facteur proportionnel en résultat de la comparaison.

8. Dispositif suivant la revendication 7, caractérisé en ce que les moyens (60, 68) de sélection comprennent un compteur (68) pas à pas.

9. Dispositif suivant la revendication 8, caractérisé en ce que le circuit (100) d’annulation du bruit comprend des moyens (60) d’optimisation de l’annulation du bruit, les moyens (60) d’optimisation comprenant une unité de télémétrie pour faire que le signal DS différentiel soit disponible pour comparer le signal DS différentiel à un signal DS différentiel formé précédemment, et les moyens (60) d’optimisation comprennent en outre des moyens (68) pour sélectionner le facteur proportionnel en résultat de la comparaison au moyen de l’unité de télémétrie.