EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 22.06.2005 Bulletin 2005/25

(21) Application number: 00303066.5

(22) Date of filing: 12.04.2000

(54) Method for preparing polymer
Verfahren zur Herstellung von Polymeren
Procédé de préparation de polymères

(84) Designated Contracting States: BE DE FR NL

(43) Date of publication of application: 18.10.2000 Bulletin 2000/42

(73) Proprietor: MITSUI CHEMICALS, INC. Tokyo (JP)

(72) Inventors:
- Nobori, Tadahito Yokohama-shi, Kanagawa (JP)
- Shibahara, Atsushi Ichihara-shi, Chiba (JP)
- Kiyono, Shinji Ichihara-shi, Chiba (JP)
- Hayashi, Takaomi Ichihara-shi, Chiba (JP)
- Funaki, Katsuhiko Ichihara-shi, Chiba (JP)
- Hara, Isao Naka-gun, Kanagawa (JP)
- Mizutani, Kazumi Yokohama-shi, Kanagawa (JP)
- Takaki, Usaji Fujisawa-shi, Kanagawa (JP)
- Hara, Isao Naka-gun, Kanagawa (JP)
- Mizutani, Kazumi Yokohama-shi, Kanagawa (JP)
- Takaki, Usaji Fujisawa-shi, Kanagawa (JP)
- Hara, Isao Naka-gun, Kanagawa (JP)
- Mizutani, Kazumi Yokohama-shi, Kanagawa (JP)
- Takaki, Usaji Fujisawa-shi, Kanagawa (JP)

(74) Representative: Kirkham, Nicholas Andrew et al Graham Watt & Co LLP St Botolph’s House 7-9 St Botolph’s Road Sevenoaks Kent TN13 3AJ (GB)

(56) References cited:
EP-A- 0 691 334
EP-A- 0 879 838

- PIETZONKA T., SEEBACH D.: “The P4-Phosphazene Base as part of a new metal-free initiator system for the anionic polymerization of methyl methacrylate” ANGEWANDTE CHEMIE INT. ED. ENGL., vol. 32, no. 5, 1993, pages 716-717, XP002140910 Weinheim

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a method for preparing a polymer by anionic polymerization of a polar unsaturated compound. The polymer or copolymer is a very important polymer for use as a raw material of a polymeric material or a functional polymer.

A great number of studies have been made on anionic polymerization of a polar unsaturated compound for a long period of time and various technique have hitherto been developed (e.g. "Lectures: Theory of Polymerization Reaction, IV Anionic Polymerization", issued by Teiji TSURUTA, page 12, Kagaku Dojin (1973); and New Polymer Experimental Science, Vol. 2, "Synthesis and Reaction of New Polymer (1), Synthesis of Addition Polymer", pages 165 to 196, Kyoritsu Shuppan Co., Ltd. (1995)).

It has been well known that metal-containing catalysts, for example, metals such as alkali metal or alkali earth metal or a compound thereof, typical metallic complex, rare earth metal complex, cause anionic polymerization (nucleophilic polymerization) of the polar unsaturated compound.

However, various physical properties and thermal stability of the polymer obtained by using the metal-containing catalyst are drastically influenced by remained metallic components, thereby requiring a special method or complicated step of sufficiently removing these metallic components in the preparation of the polymer.

It has also been publicly known that metal-free catalysts, for example, amine compounds, quaternary ammonium salts, quaternary phosphonium salts, cause anionic polymerization. However, the amine compounds have a problem that the polymerization activity is poor and odor of the amine component is remained in the obtained polymer, whereas, the quaternary ammonium salts and quaternary phosphonium salts have a problem that they must be stored at a low temperature because of poor stability and the catalyst is decomposed during the polymerization reaction.

There has also been known an example wherein methyl methacrylate was polymerized in the presence of a phosphazene compound as a non-metallic catalyst (T. Pietzonka, D. Seebach, Angew. Chem. Int. Ed. Engl. 1993, 35, 716). Although the phosphazene compound used in this method is an effective catalyst having strong basicity, a complicated step is required to synthesize the phosphazene compound and, moreover, a stronger basic compound such as potassium amide must be used to impart strong basicity (Nachr. Chem. Lab. 1990, 38, 1216). Therefore, the phosphazene compound is not advantageous from an industrial point of view. Also the compound has poor handling, that is, properties are liable to be changed by a carbon dioxide gas in an air because of its strong basicity.

It has been found that poly(methyl methacrylate) obtained by polymerizing methyl methacrylate using the phosphazene compound with reference to the above documents is a mixture of a two kinds of polymers whose number-average molecular weight are 64,400 and 8,800 as shown in Comparative Example 1. As shown in Comparative Example 2, poly(methacrylonitrile) obtained by polymerizing methacrylonitrile was also a mixture of two kinds of polymers. These results show that the polymerization reaction using the phosphazene compound as the catalyst is not accurately controlled.

An object of the present invention is to find a catalyst which is easily prepared and does not require any care about a storing process or decomposition during the polymerization in anionic polymerization of a polar unsaturated compound, and which does not contain any metallic component and has high activity, and which does not remain odor in the obtained polymer and is superior in ability of controlling the polymerization reaction, and to provide a method of efficiently preparing a polymer by using the catalyst.

That is, the present invention provides a method for preparing a polymer, which comprises subjecting a monomer containing at least a polar unsaturated compound to anionic polymerization in the presence of a phosphazene compound represented by the formula (1):
(wherein Z^- is an anion of an active hydrogen compound in the form where a proton is eliminated from the active hydrogen compound and transferred to the anion; a, b, c and d each represents 1 or 0, but all of them are not simultaneously 0; and R may be the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, and two $R(s)$ on the same nitrogen atom are optionally combined each other to form a cyclic structure), or in the presence of the phosphazenium compound and the active hydrogen compound.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011]

Fig. 1 is a graph illustrating that the polymerization of methyl methacrylate shown in Example 1 of the present invention is living polymerization.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0012] In the method of the present invention, an unsaturated group means a carbon-carbon double bond and a polar unsaturated compound is a compound having a polar functional group selected from the group consisting of carbonyl group, cyano group and pyridyl group, and an unsaturated group in the same molecule, and the both form a conjugated system directly or indirectly.

[0013] The compound includes, for example, (1) (meth)acrylates, (2) (meth)acrylonitriles, (3) acrylamides, (4) vinyl pyridines, (5) N-substituted maleimides, (6) vinyl ketones, or (7) styrene derivatives. In addition, the compound may be any polar unsaturated compound capable of conducting anionic polymerization using the method of the present invention.

[0014] Typical examples thereof include the followings.

(1) (Meth)acrylates are esters of acrylic acid or methacrylic acid. Examples thereof include:

(1)-(i) monoesters of monohydric alcohols and acrylic acid or methacrylic acid, for example, methyl acrylate, methacrylate, ethyl acrylate, propyl methacrylate, butyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate, stearyl methacrylate, 1,1,3,3,3-hexafluoropropyl acrylate, 1,1,3,3,3-hexafluoropropyl methacrylate, 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl methacrylate, 1H,1H,2H,2H-heptadecafluorodecyl acrylate, allyl acrylate, allyl methacrylate, cyclohexyl methacrylate, isofonyl acrylate, glycidyl acrylate, glycidyldimethyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, or β-phenylethyl methacrylate;
(1)-(ii) monoesters of dihydric alcohol whose one terminal is protected with an ether bond, and acrylic acid or methacrylic acid, for example, 2-methoxyethyl acrylate, 2-ethoxyethyl methacrylate, 2-phenoxymethyl acrylate, 2-dicyclopentenoxethyl acrylate, 1-methoxy-2-propyl methacrylate, 3-methoxypropyl acrylate, 4-ethoxybutyl methacrylate, 6-methoxyhexamethyl acrylate, methoxydiethylene glycol acrylate, phenoxypolypropylene glycol methacrylate, ethoxypolypropylene glycol methacrylate, ethoxypolyethylene glycol acrylate, or methoxy-polypropylene glycol methacrylate;
(1)-(iii) polyhydric esters wherein all hydroxyl groups of dihydric or polyhydric alcohols, and acrylic acid or
methacrylic acid are esterified, for example, ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, 1,3-propanediol dimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dimethacrylate, diethylene glycol diacrylate, dipropylene glycol dimethacrylate, triethylene glycol dimethacrylate, tripropylene glycol diacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, glycerin triacrylate, glycerin trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, trimethylolpropane triacrylate, poly(ethylene oxide)triol triacrylate, poly(propylene oxide)triol triacrylate, and poly(propylene oxide)triol trimethacrylate; (1)-(iv) esters of alcohols having an ester bond, and acrylic acid or methacrylic acid, for example, 2-benzoyloxyethyl acrylate, 2-benzoxyl oxyethyl methacrylate, 2-acetoxy acrylate, 5-tetrahydrofurfuryloxycarbonylpentyl acrylate, and 2,2,6,6-tetramethyl-4-oxy-5-oxaheptan-1,7-diyldiacrylate; (1)-(v) esters of alcohols having a cyclic acetal bond, and acrylic acid or methacrylic acid, for example, 2-tert-butyl-1,3-dioxycyclopentan-2'-yl methacrylate, and 2-tert-butyl-5-ethyl-5-vinylcarboxyoxymethyl-1,3-dioxycyclohexan-2'(2)-yl acrylate; (1)-(vi) esters of oxysuccinimide and acrylic acid or methacrylic acid, for example, N-oxysuccinimide acrylate and N-oxysuccinimide methacrylate; (1)-(vii) esters of alcohols having a secondary amino group, and acrylic acid or methacrylic acid, for example, 2-dimethylaminooxyethyl acrylate and 2-ethylpropylaminooxyethyl methacrylate; and (1)-(viii) esters of alcohols having a cyano group, and acrylic acid and methacrylic acid, for example, 2-cyanooxyethyl acrylate or 2-cyanopropyl methacrylate.

(2) The (meth)acrylonitriles are acrylonitrile or methacrylonitrile.

(3) The acrylamides are acrylamide, N-monosubstituted or N,N-disubstituted acrylamides. Examples of the acrylamides are acrylamide:

(3)-(i) N-monosubstituted acrylamides, for example, N-methylacrylamide, N-ethylacrylamide, N-propylacrylamide, N-butyrlacrylamide, N-octylacrylamide, N-phenylacrylamide, N-glycidylacrylamide, and N,N'-ethylenebisacrylamide;

(3)-(ii) N,N-disubstituted acrylamides, for example, N,N-dimethylacrylamide, N-ethyl-N-methylacrylamide, N,N-diethylacrylamide, N,N-di-n-propylacrylamide, N,N-diphenylacrylamide, N-ethyl-N-glycidylacrylamide, N,N-diglycidylacrylamide, N,N-dimethyl-1-(4-glycidoxylbutyl)acrylamide, N,N-dimethyl-N-(5-glycidylloxypentyl)acrylamide, N,N-dimethyl-N-(6-glycidoxylhexyl)acrylamide, N-acryloylpyrrolidine, N-acryloyl-L-prolinemethyl ester, N-acryloylpyrrolidine, N-acryloylmorpholine, and N-acryloylimidazole; and

(3)-(iii) N,N'-dissubstituted bisacrylamides, for example, N,N'-diethyl-N,N'-ethylenbisacrylamide, N,N'-dime-thyl-N,N'-hexamethylenbisacrylamide, and di(N,N'-ethylene)-bisacrylamide.

(4) The vinylpyridines include, for example, vinyl- or isopropenyl-substituted pyridines, such as 2-vinylpyridine, 2-isopropenylpyridine, and 4-vinylpyridine.

(5) The N-substituted maleimides include: (5)-(i) N-aliphatic-substituted maleimides, for example, N-methylmaleimide and N-ethylmaleimide; and (5)-(ii) N-aromatic-substituted maleimides, for example, N-phenylmaleimide and N-(4-methylphenyl)maleimide.

(6) The vinyl ketones include, for example, methyl vinyl ketone, isopropenyl methyl ketone, ethyl vinyl ketone, ethyl isopropenyl keton, butyl vinyl ketone, and phenyl vinyl ketone.

(7) The styrene derivatives include, for example, p-methoxycarboxystyrene, p-tertiary-butoxycarboxystyrene, and p-cyano styrene.

These polar unsaturated compounds may have any substituted other than those described above as far as it does not inhibit the method of the present invention.

Among these polar unsaturated compounds, a polar unsaturated compound having two or more unsaturated groups in one molecule afford a highly crosslinked polymer by the polymerization thereof, but is more suited to crosslink principal chains of a polymer of a polar unsaturated compound having one unsaturated group by copolymerization with the polar unsaturated compound having one unsaturated group.

Among these polar unsaturated compounds, preferred one includes:

(1)-(i) monoesters of monohydric alcohols and acrylic acid or methacrylic acid, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, propyl methacrylate, butyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate, stearyl methacrylate, 1,1,1,3,3,3-hexafluoroisopropyl acrylate, 1,1,1,3,3,3-hexafluoroisopropyl methacrylate, 2,2,2-trif-
luoroethyl acrylate, 2,2,2-trifluoroethyl methacrylate, 1H,1H,2H,2H-heptadecafluorodecyl acrylate, allyl acrylate, allyl methacrylate, cyclohexyl methacrylate, isononyl acrylate, glycidyl acrylate, glycidyl methacrylate, tetrahydrofururyl acrylate, benzyl acrylate, and β-phenylethyl methacrylate;

(1)-(ii) monoesters of dihydric alcohol whose one terminal is protected with an ether bond, and acrylic acid or methacrylic acid, for example, 2-methoxyethyl acrylate, 2-ethoxyethyl methacrylate, 2-phenoxyethyl acrylate, 2-dicyclopentenyl oxyethyl acrylate, 1-methoxy-2-propyl methacrylate, 3-methoxypropyl acrylate, 4-ethoxybutyl methacrylate, 6-methoxyhexyl acrylate, methoxydiethylene glycol acrylate, phenoxypiprylene glycol methacrylate, ethoxytripropylene glycol methacrylate, ethoxypolyethylene glycol acrylate, and methoxypropylene glycol methacrylate;

(1)-(iii) polyhydric esters wherein all hydroxyl groups of dihydric or polyhydric alcohols, and acrylic acid or methacrylic acid are esterified, for example, ethylene glycol diacylate, ethylene glycol dimethacrylate, propylene glycol diacylate, propylene glycol dimethacrylate, 1,3-propanediol dimethacrylate, 1,4-butanediol diacylate, 1,6-hexanediol dimethacrylate, neopentyl glycol diacylate, neopentyl glycol dimethacrylate, diethylene glycol diacylate, diethylene glycol dimethacrylate, triethylene glycol diacylate, triethylene glycol dimethacrylate, polyethylene glycol diacylate, polyethylene glycol diacylate, polyethylene glycol dimethacrylate, polyyolpropylene glycol diacylate, polyyolpropylene glycol dimethacrylate, and glycerin trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacylate, trimethylol propane triacylate, poly(ethylene oxide)triol triacylate, poly(propylene oxide)triol triacylate, and poly(propylene oxide)triol trimethacrylate;

(2) acrylonitrile or methacrylonitrile;

(3)-(ii) N,N-disubstituted acrylamides, for example, N,N-dimethylacrylamide, N-ethyl-N-methylacrylamide, N,N-diethylacrylamide, N,N-di-normal-propylacrylamide, N,N-dipropylacrylamide, N,N-diphenylacrylamide, N-ethyl-N-glycidylacrylamide, N,N-diglycidylacrylamide, N-methyl-N-(4-glycidyloxybutyl)acrylamide, N-methyl-N-(5-glycidyloxypentyl)acrylamide, N-methyl-N-(6-glycidyloxhexyl)acrylamide, N-acryloylpyrrolidone, N-acryloyl-L-prolinemethyl ester, N-acryloylpyrrolidinone, N-acryloylmorpholine, and 1-acryloylimidazolone;

(4) vinyl- or isopropenyl-substituted pyridines, such as 2-vinylpyridine, 2-isopropenylpyridine, and 4-vinylpyridine;

(5)-(ii) N-arylsulfonated aromatic-compounds, such as sulfuric acid, sodium bisulfite, sodium metabisulfite, and sodium thiosulfate;

(6) vinyl ketones, for example, vinyl ketone, isopropenyl methyl ketone, ethyl vinyl ketone, ethyl isopropenyl ketone, butyl vinyl ketone, and phenyl vinyl ketone.

[0018] (1)-(i) monoesters of monohydric alcohols and acrylic acid or methacrylic acid; (1)-(ii) monoesters of dihydric alcohols whose one terminal is protected with an ether bond, and acrylic acid or methacrylic acid; (1)-(iii) polyhydric esters wherein all hydroxyl groups of dihydric or polyhydric alcohols, and acrylic acid or methacrylic acid are esterified;

(2) acrylonitrile or methacrylonitrile; and (3)-(ii) N,N-disubstituted acrylamides are more preferred.

[0019] In the method of the present invention, these polar unsaturated compounds may be used alone or in combination, and may also be used in combination with alkylene oxides. In such way, a copolymer of plural monomers can be prepared.

[0020] The alkylene oxide compound used in combination includes, for example, epoxy compounds such as ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, styrene oxide, cyclohexene oxide, epichlorohydrin, epibromohydrin, methyl glycidyl ether, allyl glycidyl ether, and phenyl glycidyl ether. Among these compounds, ethylene oxide, propylene oxide, 1,2-butylene oxide and styrene oxide are preferred, and propylene oxide or ethylene oxide are more preferred. Propylene oxide is particularly preferred.

[0021] When using these compounds in combination, there can be employed a method of simultaneously using plural polar unsaturated compounds or using single or plural polar unsaturated compounds in combination with single or plural alkylene oxide compounds, a method of using them in turn, or a method of repeating the use in combination. When plural monomer are simultaneously used in combination and polymerized, a comparatively high random copolymer can be obtained, although it depends on a difference in reactivity of these compounds. When two or more monomers are polymerized in order, a block copolymer containing two or more kinds of blocks can be obtained. When such use in combination is repeated in order, a more complicated polymer can be obtained.

[0022] It is particularly preferred to prepare a block copolymer of plural monomers by using the polar unsaturated compound and alkylene oxide compound in order. In that case, the alkylene oxide is preferably propylene oxide or ethylene oxide, more preferably propylene oxide.

[0023] The polar unsaturated compound further includes, for example, compound having active hydrogen, such as acrylamide or compound that can be converted into an active hydrogen compound by further incorporating active hydrogen due to polymerization, such as acrylate. A complicated polymer or copolymer can be prepared by polymerizing such a polar unsaturated compound in the presence of a phosphaenium compound represented by the formula (I).

[0024] In the method of the present invention, at least a polar unsaturated compound is subjected to anionic polymerization in the presence of a phosphaenium compound represented by the formula (I), or in the presence of the phos-
A cation in the phosphazenium compound represented by the formula (1) in the method of the present invention is represented by a canonical structural formula wherein positive charge is localized on a phosphorous atom at the center. Numerous canonical structural formulas other than the above one are drawn and practically the charge is delocalized over the whole molecule.

R(s) in the phosphazenium compound represented by the formula (1) are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, and R(s) are selected from aliphatic or aromatic hydrocarbon groups, for example, methyl, ethyl, n-propyl, isopropyl, allyl, n-butyl, sec-butyl, tert-butyl, 2-butenyl, 1-penty1, 2-penty1, 3-penty1, 2-methyl-1-buty1, isopenty1, tert-penty1, 3-methyl-2-buty1, neopenty1, n-hexyl, 4-methyl-2-penty1, cyclopenty1, cyclohexyl, 1-hepty1, 3-hepty1, 1-octyl, 2-octyl, 2-ethyl-1-hexyl, 1,1-dimethyl-3,3-dimethylbutyl (popular name: tert-octyl), nonyl, decyl, phenyl, 4-toluy1, benzyl, 1-phenylethyl, and 2-phenylethyl. Among these hydrocarbon groups, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, tert-butyl, tert-pentyl and 1,1-dimethyl-3,3-dimethylbutyl is preferred and a methyl group are more preferred.

The cyclic amino group in case where two R(s) on the same nitrogen atom in the phosphazenium compound represented by the formula (1) are combined each other, with the nitrogen atom, to form a cyclic structure is a cyclic secondary amino group containing 4 to 6 carbon atoms on the ring, and -NR₂ is converted into a 5- to 7-membered cyclic secondary amino group containing a nitrogen atom. The cyclic secondary amino group includes, for example, pyrrolidin-1-yl group, piperidin-1-yl group, and morpholin-4-yl, and those substituted with an alkyl group such as methyl or ethyl. A non-substituted pyrrolidin-1-yl group, piperidin-1-yl group, and morpholin-4-yl group are preferred.

All nitrogen atoms in the phosphazenium compound represented by the chemical formula (1) may have such a cyclic structure, or may be part thereof.

a, b, c and d in the phosphazenium compound represented by the formula (1) are respectively 1 or 0, with a proviso that all of them are not simultaneously 0. Preferably, a, b, c and d represent a numeral in a combination of (1, 1, 1, 1) or (0, 1, 1, 1) regardless of the sequence. More preferably, a, b, c and d represent a numeral in a combination of (1, 1, 1, 1).

The active hydrogen compound that affords Z⁻ in the phosphazenium compound represented by the formula (1), or the active hydrogen compound that is contained in case where the anionic polymerization is conducted in the presence of the phosphazenium compound and active hydrogen compound includes, for example, hydrogen fluoride, active hydrogen compound having active hydrogen on a carbon atom, active hydrogen compound having active hydrogen on an oxygen atom, active hydrogen compound having active hydrogen on a nitrogen atom, or active hydrogen compound having active hydrogen on a sulfur atom. Any active hydrogen compound can be used as far as it does not inhibit the method of the present invention.

Typical examples of the active hydrogen compound having active hydrogen on the carbon atom include hydrogen cyanide; monohydric carboxylates, for example, ethyl acetate, cyclohexyl propionate, isopropyl butyrate, methyl isobutyrate, tertiary butyl isobutyrate, hexyl caproate, butyl laurate, methyl stearate, ethyl oleate, methyl phenylacetate, methyl cyclohexanecarboxylate, 1,2-bis(2-propylcarbonyloxy)ethane, and 1,2,3-tris(2-propylcarbonyloxy)propane; polyhydric carboxylates, for example, dimethyl malonate, dimethyl methymalonate, diethyl succinate, butyl 2,3-dimethylsuccinate, methyl adipate, ethyl suberate, methyl butanetetracarboxylate, 1,2-bis(2-methoxycarboxylato)ethylene, 1,2-bis(2-ethoxycarbonyloxy)ethane, 1,2-bis(2-ethoxycarbonyloxy)propyloxy)ethane, or N,N,N',N'-tetakis(2-butoxy carbonylpropyl)ethylenediamine; ketocarboxylates, for example, ethyl acetacetate, cyclopentyl acetacetate, methyl carbamoylacetate, ethyl 2-cyclohexylcarbonylacetate, and butyl benzoylacetate; nitriles, for example, acetonitrile, 2-cyanopropane, malononitrile, methylmalononitrile, 1,3-dicyanopropane, or adiponitrile; and ketones, for example, acetone, methyl ethyl ketone, diisopropyl ketone, dicyclohexyl ketone, acetonophenone, and isopropyl phenyl ketone.

Typical examples of the active hydrogen compound having active hydrogen on the oxygen atom include water, monohydric alcohols, for example, methanol, ethanol, normal-propanol, isopropanol, normal-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isopentyl alcohol, tert-pentyl alcohol, normal-octyl alcohol, lauryl alcohol, cetyl alcohol, cyclopentanol, cyclohexanol, allyl alcohol, crotyl alcohol, methylvinylcarbinol, benzyl alcohol, 1-phenylethyl alcohol, triphenylcarbinol, cinnamyl alcohol, perfluoro-tert-butyl alcohol, α-hydroxyisopropyl pheny ketone, α-hydroxyisobutyryl pheny ketone and methyl α-hydroxyisobutyrate; polyhydric alcohols, for example, ethylene glycol, propylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol, trimethylolpropane, glycerin, diglycerin, pentaerythritol, and dipentaerythritol; and aromatic hydroxy compounds, for example, phenol, cresol, xylenol, 2-naphthol, 2,6-dihydroxynaphthalene, and bisphenol A.

The typical examples of the active hydrogen compound having active hydrogen on the nitrogen atom include aliphatic or aromatic primary amines, for example, methyamine, ethylamine, normal-propylamine, isopropylamine, normal-butylamine, isobutylamine, sec-butylamine, tert-butylamine, cyclohexylamine, benzylamine, β-phenylethylamine, aniline, o-toluidine, m-toluidine, and p-toluidine; aliphatic or aromatic secondary amines, for example, dimethylamine, di-toluidines, di-normal-propylamine, ethyl-normal-butylamine, methyl-sec-butylamine,
dipentylamine, dicyclohexylamine, N-methylaniline, and diphenylamine; polyaniline having a primary or secondary amino group, for example, ethylenediamine, di(2-aminoethyl)amine, hexamethylenediamine, 4,4’-diaminodiphenylmethane, tri(2-aminoethyl)amine, N,N’-dimethylethylenediamine, N,N’-diethylethylenediamine, or di(2-methylaminoethyl)amine; saturated cyclic secondary amines, for example, pyrrolidine, piperidine, morpholine, and 1,2,3,4-tetrahydroquinoline; unsubstituted cyclic secondary amines, for example, 3-pyrrine, pyrrole, indole, carbazole, imidazole, pyrazole, and purine; cyclic polyaniline having a secondary amino group, for example, piperezine, pyrazine, and 1,4,7-triazacyclonane; non-substituted or N-monosubstituted acid amides, for example, acetamide, propionamide, N-methylpropionamide, amide N-methylbenzoate, and amide N-ethylsereate; cyclic amides, for example, β-propiolactam, 2-pyrrolidone, δ-valerolactan, or ε-caprolactan; or imides, for example, imide succinate, imide maleate, and phthalimide.

Among these active hydrogen compounds, preferable one include hydrogen cyanide; monohydric carboxylates, for example, ethyl acetate, cyclohexyl propionate, isopropyl butyrate, methyl isobutyrate, tertbutyl acetate, hexyl caproate, butyl lactate, methyl stearate, ethyl oleate, methyl phenylacetate, methyl cyclohexanecarboxylate, 1,2-bis(2-propylcarboxyloxy)ethane, and 1,2,3-tris(2-propylcarboxyloxy)propanol; polyhydric carboxylates, for example, dimethyl malonate, dimethyl methylmalonate, diethyl succinate, butyl 2,3-dimethylsuccinate, methyl adipate, ethyl suberate, methyl butanetetracarboxylate, 1,2-bis(2-methoxycarbonyloxy)ethane, 1,2-bis(2-ethoxycarbonylpropyloxyl)ethane, and N,N,N’,N’-tetraakis(2-butoxycarbonylpropyl)ethylenediamine; water monohydric carboxylates, for example, methanol, ethanol, normal-propanol, isopropanol, normal-butylic alcohol, sec-butyl alcohol, tert-butyl alcohol, isopentyl alcohol, tert-pentyl alcohol, normal-octyl alcohol, lauryl alcohol, cetyl alcohol, cyclopentanolate, cyclohexanol, alky alcohol, methylvinylcarbinol, benzyl alcohol, 1-phenylethyl alcohol, triphenylcarbinol, cinnamyl alcohol, perfluoro-tert-butyl alcohol, polyhydric alcohols, for example, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-hexanediol, 1,4-cyclohexanediol, trimethylolpropane, glycerin, diglycerin, pentaerythritol, or dipentaerythritol; monohydric thiols, for example, methanethiol, ethanethiol, normal-butanethiol, tertiary-butanethiol, hexanethiol, decanethiol, cyclopentylmercaptopan, and cyclohexylmercaptopan; and poly(alkylene oxides), poly(α-methylene)s, poly(alkylene amides), polyvinyl pyridines, poly(N-substituted maleimides), poly(vinyl ketones), poly(styrene derivatives), polyesters, polyamides, polylactides and polysiloxanes, and copolymers thereof.

The above active hydrogen compound includes compounds having plural active hydrogens. All active hydrogens are eliminated to derive an anion, which forms an ion pair with plural phosphazenium cations, sometimes. Alternatively, an anion is derived from only part of them and forms an ion pair, while active hydrogen is not eliminated at the other portion. However, since the equilibrium reaction between a new anion formed by addition of the anion to the polar unsaturated compound and the portion having active hydrogen occurs reversibly and very rapidly, a proton is also eliminated from the portion where active hydrogen is remained without deriving an anion and the portion having active hydrogen of the active hydrogen compound in case of the coexistence of them, thus these portions is derived an anion. As a result, the polymerization is also initiated at these portions. It depends on the dissociation degree of active hydrogen, the reactivity of the resulting anion, kind of the polar unsaturated compound, or the kind of the solvent to be used whether the polymerization is initiated or not at all or part of the portion having active hydrogen.

The form of the polymerization reaction in the method of the present invention is not specifically limited. Any method capable of effectively bringing the phosphazenium compound represented by the formula (1) into contact with the polar unsaturated compound can be used. If necessary, a batch-wise method of charging them in one portion or a method of supplying the polar unsaturated compound intermittently or continuously can be carried out. When a copolymer is prepared, there can be employed a method of simultaneously supplying plural polar unsaturated comp-
pounds in one portion, a method of supplying them intermittently or continuously, or a method of using plural polar unsaturated compounds in order can be employed depending on the copolymer in the desired form. The amount of phosphazenium compound is usually within a range from 1×10^{-6} to 1×10^{-1} moles, and preferably from 1×10^{-4} to 3×10^{-1} moles, per mole of the polar unsaturated compound. The temperature of the polymerization reaction varies depending on the kind or amount of the phosphazenium compound and polar unsaturated compound to be used, but is usually from -50 to 250°C, and preferably from -20 to 150°C. The pressure of the polymerization reaction varies depending on the kind or amount of the polar unsaturated compound and the reaction temperature, but is usually 3.0 MPa or less (absolute pressure represented by mega-pascal, the same rule applied correspondingly to the following), preferably from 0.01 to 1.5 MPa, and more preferably from 0.1 to 1.0 MPa.

The reaction time of the polymerization reaction varies depending on the kind or amount of the phosphazenium compound and polar unsaturated compound to be used and the reaction temperature, but is usually 50 hours or less, and preferably within a range from 0.1 to 24 hours.

To improve the storage stability, a trace amount of a polymerization inhibitor is added to the polar unsaturated compound. The polymerization reaction in the method of the present invention can also be carried out in the presence of the inhibitor sometimes.

A growth terminal of the polymer thus obtained has a carbon anion with high reactivity. Therefore, the terminal can also be modified chemically by reacting the anion with various organic compounds. In case where the polar unsaturated compound is subsequently reacted after subjecting to the anionic polymerization, the organic compound is not specifically limited, but aldehydes are preferably used. A polymer having a hydroxyl group at least one terminal can be prepared by reacting with the alkyne oxide and/or aldehydes.

The aldehydes used in the reaction include, for example, acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, capronaldehyde, heptaldehyde, caprylaldehyde, cylohexanecarboxaldehyde, benzaldehyde, and 4-chlorobenzaldehyde. Among these aldehydes, aliphatic aldehydes such as acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, capronaldehyde, heptaldehyde, or caprylaldehyde are preferred. For example, aliphatic aldehydes having 2 to 6 carbon atoms, such as acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, and capronaldehyde are more preferred.

The polymerization reaction in the method of the present invention can be carried out in the molten state of the polar unsaturated compound, and a proper solvent can also be used, if necessary. The solution may be uniform or suspended. The solvent includes, for example, aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; aromatic halides such as chlorobenzene and dichlorobenzene; ethers such as diethyl ether, diphenyl ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, ethylene glycol dimethyl ether, and diethylene glycol diether ether; and aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, sulfolane, and N,N'-dimethylimidazolidinone. Any solvent can be used as far as it does not inhibit the method of the present invention.

After the completion of the polymerization, a phosphazenium cation is remained as a pair ion at the terminal of the resulting polymer. To take out the polymer in a stable manner, the reaction can also be terminated by adding an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid, or an organic acid such as acetic acid, propionic acid, benzenesulfonic acid and p-toluenesulfonic acid to form a salt of the inorganic or organic acid.

The resulting polymer may be used as it is, or may be used after being used in the desired form. The polymer can be taken out by dissolving the dried solid into a proper solvent by pouring into a poor solvent as a precipitate. It is also possible to purify by repeating the precipitation process.

Examples

The following Examples further illustrate the present invention in more detail.

Example 1

Synthesis of polymerization initiator (phosphazenium compound) and preparation of its solution

After a 200 ml flask was sufficiently dried, 2.00 g (11.5 mmol) of methyltrimethyldimethyletene acetal (manufactured by Aldrich Co.) purified by distillation: $\text{Me}_2\text{C}=\text{C}(\text{OMe})\text{OSiMe}_3$ [also referred to as [(1-methoxy-2-methyl-1-propenyl)oxy]trimethylsilane] and 40 ml of dried tetrahydrofuran (hereinafter abbreviated to THF) were charged in the flask under a nitrogen atmosphere, followed by stirring to obtain a uniform solution. The uniform solution was ice-cooled and 10.9 ml (11.0 mmol) of a benzene solution of 1.01 M (M represents a molar concentration, the same rule applies correspondingly to the following) tetraakis[tris(dimethylamino)phosphoranimide] phosphonium fluoride: $[(\text{Me}_2\text{N})_3\text{P}=\text{N}]_4\text{P}^+\text{F}^-$. (Me represents a methyl group, the same rule applies correspondingly to the following), which is
commercially available from Fluka Co., was added dropwise over ten minutes. After the completion of the dropwise addition, an ice bath was removed and the internal temperature was returned to room temperature over about 20 minutes, followed by stirring at room temperature for one hour. To remove trimethylsilyl fluoride (having a boiling point of 16°C under normal pressure) prepared during the reaction and methyltrimethysilyldimethylethylketene acetal (having a boiling point of 35°C under 15 mmHg) remained as a result of excess addition from the reaction mixture, the reaction mixture was distilled under reduced pressure of 500 to 5 mmHg, together with THF and benzene, to obtain 9.07 g of tetrakis[tris(dimethylamino)phosphoralindeneamino] phosphonium(1-methoxy-2-methyl-1-propenyl)oxide:
\[
([\text{Me}_2\text{N})_3\text{P}=\text{N})_4\text{P}^+\text{Me}_2\text{C}=\text{C}(\text{OMe})\text{O}^-\text{ wherein } R \text{ in the phosphazenium compound represented by the formula (1) is a methyl group, } a, b, c \text{ and } d \text{ each represents 1, and } Z^- \text{ is an anion derived by elimination of a proton from methyl isobutyrate. The yield was 98%].}
\]

Then, dried THF was added to 8.41 g (10.0 mmol) of tetrakis[tris(dimethylamino)phosphoralindeneamino] phosphonium(1-methoxy-2-methyl-1-propenyl)oxide thus obtained so that the volume becomes 20.0 ml accurately to prepare a THF solution of the 0.50 M phosphazenium compound.

Storage stability test of phosphazenium compound

2 ml of the THF solution of the 0.50 M phosphazenium compound was stored at room temperature under a nitrogen atmosphere. After one month, three months and six months, 0.1 ml of each sample was collected from the stored solution and dissolved in deuterated toluene, and then the measurement of $^{31}\text{P-NMR}$ was conducted. As a result, any new spectrum was not observed in any case, except for a quintet corresponding to a phosphorous atom at the center of a phosphazenium cation constituting the phosphazenium compound and a doublet corresponding to four phosphorous atoms around it. The results show that the phosphazenium is hardly decomposed even after storage at room temperature for six months and is stable.

Preparation Example of poly(methyl methacrylate)

After a 200 ml flask was sufficiently dried, 1.00 ml (0.50 mmol) of a THF solution of the 0.50 M phosphazenium compound and 25 ml of dried THF were charged in the flask, followed by stirring to obtain a uniform solution. The uniform solution was cooled to 0°C and 25 ml (5.01 g: containing 50.0 mmol of MMA) of a THF solution of 2.00 M methyl methacrylate (hereinafter abbreviated to MMA) was added dropwise at a rate at which the reaction temperature does not exceed 25°C. About 15 minutes was required for the dropwise addition. After the completion of the dropwise addition, the mixture was further stirred at 25°C for one hour to obtain a polymerization reaction solution. Immediately, 1.00 ml (1.00 mmol) of a THF solution of 1.0 M acetic acid was added to terminate the reaction. A trace amount of the reaction mixture was collected and subjected to quantitative analysis according to gas chromatography using 1,3,5-trichlorobenzenes as an internal standard. As a result, methyl methacrylate was completely consumed. The reaction mixture was concentrated to dryness under reduced pressure to obtain 5.43 g of a white solid. A solution prepared by dissolving the white solid in 10 ml of THF was poured into 300 ml of methanol. The deposited solid was collected by filtration and the solid was washed twice with 10 ml of methanol. The resulting solid was dried at room temperature under 10 mmHg for six hours to obtain 4.68 g of an odorless solid. $^{1}\text{H-NMR}$ and $^{13}\text{C-NMR}$ spectra were almost the same as those of poly(methyl methacrylate) manufactured by Aldrich Co.

A THF solution of 0.5% by weight of the resulting poly(methyl methacrylate) was prepared and subjected to GPC analysis wherein poly(methyl methacrylate) is used as a standard polymer, using a GPC column (two columns, shodex-KF-803L and shodex-KF-804L are connected each other, manufactured by Showa Electrical Industries Co., Ltd.) wherein THF is used as an eluent. As a result, the number-average molecular weight of the resulting poly(methyl methacrylate) was 10,300 and showed close agreement with the theoretical number-average molecular weight of 10,100 obtained by calculation from the phosphazenium compound and consumed MMA (calculation equation: Number-average molecular weight = Molecular weight of methyl isobutyrate + (Number of moles of consumed MMA/ Number of moles of phosphazenium compound) x Molecular weight of MMA, that is, 102 + (50 mmol/0.5 mmol) x 100, the same rule applies correspondingly to the following). Furthermore, the molecular weight distribution is very narrow such as 1.06, thus resulting in finding that this polymer is a monodispersed polymer.

Living polymerization of methyl methacrylate

To confirm the living polymerizability of MMA due to the phosphazenium compound, MMA was polymerized in five stages, including Preparation Example of poly(methyl methacrylate) described above.

<First stage> is Preparation Example of poly(methyl methacrylate) described above.
<Second to fifth stage> In the very same manner as in Preparation Example of poly(methyl methacrylate) described
above, except that the amount of the THF solution of 2.00 M methyl methacrylate in Preparation Example of poly(methyl methacrylate) described above was changed to a two-fold amount in the second stage, a three-fold amount in the third stage, a four-fold amount in the fourth stage and a five-fold amount in the fifth stage, respectively, and that the time required to add dropwise the solution in the respective stages was changed to about 25, 40, 50 and 60 minutes, respectively, MMA was polymerized. In any system, MMA was completely consumed.

[0054] The number-average molecular weight and molecular weight distribution of poly(methyl methacrylate) obtained in the respective stages were 20,900 (theoretical number-average molecular weight: 20,100) and 1.14 in the second stage, 28,600 (theoretical number-average molecular weight: 30,100) and 1.25 in the third stage, 41,500 (theoretical number-average molecular weight: 40,100) and 1.21 in the fourth stage and 48,100 (theoretical number-average molecular weight: 50,100) and 1.17 in the fifth stage, respectively.

[0055] As shown in Fig. 1, the number-average molecular weight of the polymer obtained in the respective stages showed considerably close agreement with the theoretical number-average molecular weight. A difference from the theoretical number-average molecular weight was 5% or less based on the theoretical number-average molecular weight. The molecular weight distribution of the resulting polymer was within a range from 1.06 to 1.25, thus resulting in finding that the polymer is a monodispersed polymer.

[0056] These results show that the polymerization of MMA due to the phosphazenium compound is proceeding by living polymerization.

Comparative Example 1

[0057] The polymerization was conducted as follows with reference to Table 1 and experimental section in page 717 of the document of T. Pietzonka and D. Seeback.

[0058] After a 200 ml flask was sufficiently dried, methyl isobutyrate (0.55 mmol) and 24 ml of dried THF were charged in the flask, followed by stirring to obtain a uniform solution. Then, 1.00 ml (0.50 mmol) of a solution of the 0.50 M phosphazene compound, prepared by concentrating a hexane solution of the 1.02 M phosphazene compound: [(Me₂N)₃P=N]₃P=NH-t-Bu used in the document to dryness and adding dried THF, was added to prepare a solution of tertiary-butyltris[tris(dimethylamino)phosphoralideneamino] phosphonium(1-methoxy-2-methyl-1-propenyl)oxide: [(Me₂N)₃P=N]₃P+NH-t-Bu,Me₂C=C(OMe)O-. The solution was cooled to 0°C and 25 ml of a THF solution of 2.00 M MMA (5.01 g: containing 50.0 mmol of MMA) was added dropwise at a rate at which the reaction temperature does not exceed 25°C. About 10 minutes was required for the dropwise addition. After the completion of the dropwise addition, the mixture was further stirred at 25°C for one hour and 1.00 ml (1.00 mmol) of a THF solution of 1.0 M acetic acid was added to terminate the reaction. A trace amount of the reaction mixture was collected and subjected to quantitative analysis according to gas chromatography. As a result, methyl methacrylate was completely consumed. The reaction mixture was concentrated to dryness under reduced pressure to obtain 5.31 g of a white solid. A solution prepared by dissolving the white solid in 10 ml of THF was poured into 300 ml of methanol. The deposited solid was collected by filtration and the solid was washed twice with 10 ml of methanol. The resulting solid was dried at room temperature under 10 mmHg for six hours to obtain 4.34 g of odorless poly(methyl methacrylate).

[0059] The poly(methyl methacrylate) was subjected to GPC analysis. As a result, the resulting poly(methyl methacrylate) was a mixture of two kinds of polymers whose number-average molecular weight are 64,400 and 8,800, whereas, the theoretical number-average molecular weight was 10,100. Furthermore, the molecular weight distribution was wide such as 2.21. These results show that the polymerization reaction of MMA using the phosphazene compound as a catalyst is not accurately controlled.

Example 2

[0060] In the very same manner as in Preparation Example of poly(methyl methacrylate) in Example 1, except that methacrylonitrile (hereinafter abbreviated to MAN) was used in place of MMA used in Preparation Example of poly(methyl polymethacrylate) in Example 1 and N,N-dimethylformamide (hereinafter abbreviated as DMF) and DMF and a DMF solution were used in place of THF and a THF solution, the reaction was conducted. MAN was completely consumed. The number-average molecular weight of the resulting polymer was 8,160, whereas, the theoretical number-average molecular weight was 7,730, and the molecular weight distribution was narrow such as 1.32. It has been found that the polymerization reaction of MAN was accurately controlled by using the phosphazene compound as the catalyst.

Comparative Example 2

[0061] In the very same manner as in Comparative Example 1, except that MAN was used in place of MMA and...
DMF and a DMF solution were used in place of THF and a THF solution, the reaction was conducted. MAN was completely consumed. The number-average molecular weight of the resulting poly(methacrylonitrile) was 450,000 and 11,200, whereas, the theoretical number-average molecular weight was 7,730, and the molecular weight distribution was 3.9.

Example 3

[0062] In the very same manner as in Preparation Example of poly(methyl methacrylate) in Example 1, except that 510 mg (5.00 mmol) of methyl isobutyrate as an active hydrogen compound was further contained in the uniform solution obtained in the same manner as in Preparation Example of poly(methyl methacrylate) in Example 1, the polymerization and termination reaction were conducted. In the same manner as in Preparation Example, quantitative analysis due to gas chromatography was conducted. As a result, MMA and methyl isobutyrate were completely consumed. The reaction mixture was concentrate to dryness under reduced pressure to obtain 5.93 g of a colorless solid. Part of this solid was collected and subjected to FD-mass spectrometry. As a result, all plural spectra observed at equal distances and the distance each spectra is a value of 100 corresponding to the molecular weight of MMA, and also formed normal distribution including a spectrum having a value of 1,102 as a vertex.

These results show that the resulting solid is poly(methyl methacrylate) and has a number-average molecular weight of 1,102. This value shows that the polymerization initiates from an anion derived by elimination of a proton from 0.5 mmol of methyl isobutyrate (molecular weight is 102 in the used phosphazenium compound) and an anion derived by elimination of a proton from 5.0 mmol of methyl isobutyrate contained additionally in the polymerization reaction process and that the number-average molecular weight shows close agreement with the theoretical number-average molecular weight of 1,010 obtained by calculation from the phosphazenium compound and consumed MMA (calculation equation: Number-average molecular weight = Molecular weight of methyl isobutyrate + (Number of moles of consumed MMA/Number of moles of phosphazenium compound) x Molecular weight of MMA, that is, 102 + (50 mmol/(0.50 mmol + 5.00 mmol)) x 100). In the same manner as in Preparation Example 1, GPC analysis was conducted. As a result, the molecular weight distribution was very narrow such as 1.08. It is possible to prepare polymer molecules whose number is equivalent to sum of the number of molecules of the phosphazenium compound and the number of molecules of additionally contained active hydrogen compound by polymerization in the presence of the phosphazenium compound and active hydrogen compound. As described above, the number larger by far than that of the catalyst of polymer molecules can be prepared while controlling the average molecular weight, and its industrial value is significantly great.

Example 4

[0063] After a 200 ml flask was sufficiently dried, 10.0 g (100 mmol) of MMA purified by distillation and 40 ml of dried tetrahydrofuran were charged in the flask under a nitrogen atmosphere, followed by stirring to obtain a uniform solution. While maintaining the temperature of the uniform solution at 30°C, 10 ml of a THF solution containing 0.771 g (1.00 mmol) of tetrakis[(tris(dimethylamino)phosphoraliminidene)phosphonium methoxide: [(Me2N)3P=N]4P+·-OMe wherein R in the phosphazenium compound represented by the formula (1) is a methyl group, a, b, c and d each represents 1, and Z is an anion derived by elimination of a proton from methanol was added dropwise. After stirring the same temperature for three hours, 2.50 ml (2.50 mmol) of a diethyl ether solution of 1.0 M hydrogen chloride was added to terminate the reaction. As a result, MMA was completely consumed. The reaction mixture was poured into 500 ml of hexane. The deposited solid was collected by filtration and the solid was washed twice with 20 ml of hexane. The resulting solid was dried at room temperature under 10 mmHg for six hours to obtain 9.51 g of poly(methyl methacrylate) as a colorless solid. The number-average molecular weight of the solid was 9,900 and the molecular weight distribution was 1.45.

Examples 5 to 11

[0064] In the very same manner as in Example 4, except that an equimolar amount (100 mmol) of various polar unsaturated compounds shown in Table 1 was used in place of MMA and an equimolar amount (1.00 mmol) of various phosphazenium compounds shown in Table 1 was used in place of tetrakis[(tris(dimethylamino)phosphoranilidene)phosphonium methoxide, and that same amount of solvents shown in Table 1 was used in place of THF and the reaction temperature and reaction time were changed as shown in Table 1, the reaction was conducted to obtain polymers corresponding to various polar unsaturated compounds. All these results were shown in Table 1.

Example 12

[0065] In the very same manner as in Example 4, except that N,N-dimethylacrylamide was used in place of MMA
and the reaction temperature and reaction time were changed to 0°C and six hours, and that diethyl ether was used in place of hexane, the reaction was conducted. The consumption percentage of N,N-dimethylacrylamide was 99% and 9.56 g of poly(N,N-dimethylacrylamide) was obtained as an odorless solid. The number-average molecular weight of resulting solid was 8,700 and the molecular weight distribution was 1.38.

Example 13

[0066] In the very same manner as in Example 4, except that the same amount (100 mmol) of N-acryloylmorpholine was used in place of MMA and the reaction temperature and reaction time were changed to 0°C and six hours, and that the same amount of diethyl ether was used in place of hexane, the reaction was conducted. The consumption percentage of N-acryloylmorpholine was 96% and 12.7 g of poly(N-acryloylmorpholine) was obtained as an odorless solid. The number-average molecular weight of resulting solid was 12,600 and the molecular weight distribution was 1.67.

Example 14

[0067] In the very same manner as in Example 4, except that the same amount (100 mmol) of 2-vinylpyridine was used in place of MMA and the reaction temperature and reaction time were changed to 50°C and six hours, the reaction was conducted to obtain a reaction mixture. The consumption percentage of 2-vinylpyridine was 94%. The reaction mixture was poured into 500 ml of hexane. An insoluble oily substance was collected by partitioning and 20 ml of hexane was further added, followed by vigorous stirring for 10 minutes. The stirring was terminated and, after the mixture was allowed to stand, the insoluble oily substance was collected again by partitioning. The insoluble oily substance was allowed to stand at room temperature under 10 mmHg for six hours to obtain 9.35 g of poly(2-vinylpyridine) as an odorless oily substance. The number-average molecular weight of the resulting oily substance was 1,400 and the molecular weight distribution was 1.45.

Example 15

[0068] In the very same manner as in Example 4, except that the same amount (100 mmol) of N-phenylmaleimide was used in place of MMA and the reaction time were changed to six hours, the reaction was conducted to obtain a reaction mixture. The consumption percentage of N-phenylmaleimide was 92%. The reaction mixture was cooled to 0°C and then allowed to stand at the same temperature for 15 hours. The deposited solid was collected by filtration and the solid was washed twice with 20 ml of THF. The resulting solid was allowed to stand at room temperature under 10 mmHg for six hours to obtain 15.1 g of poly(N-phenylmaleimide) as an odorless solid. The number-average molecular weight of resulting solid was 6,200, and the molecular weight distribution was 1.32.

Example 16

[0069] After a 200 ml flask was sufficiently dried, 9.90 g (50.0 mmol) of 1,4-butanediol diacrylate purified by distillation and 40 ml of dried tetrahydrofuran were charged in the flask, followed by stirring to obtain a uniform solution. While maintaining the temperature of the uniform solution at 30°C, 10 ml of a THF solution containing 0.771 g (1.00 mmol) of tetrakis[tris(dimethylamino)phosphoralinideneamino] phosphonium methoxide was added. After two hours, the whole reaction solution was solidified in the form of jelly. The solidified matter was concentrated to dryness at 50°C under 5 mmHg to obtain 9.75 g of an odorless solid. The solid is insoluble in a solvent used conventionally and the average molecular weight of the solid could not be measured.

Example 17

[0070] After a 200 ml flask was sufficiently dried, 5.00 g (50.0 mmol) of MMA as a primary polar unsaturated compound purified by distillation, 4.96 g (50.0 mmol) of N,N-dimethylacrylamide as a secondary polar unsaturated compound purified by distillation and 40 ml of dried THF were charged in the flask, followed by stirring to obtain a uniform solution. While maintaining the temperature of the uniform solution at 30°C, 10 ml of a THF solution containing 1.07 g (1.00 mmol) of tris(n-octylmethylamino)phosphoranilideneaminotris [tris(dimethylamino)phosphoralinideneamine] phosphonium methoxide: [(Me2 N)3 P=N]3 [(n-Oct(Me)N)3 P=N]P + , -OMe wherein R in the phosphazenium compound represented by the formula (1) is a methyl group and an octyl group, a, b, c and d each represents 1, and Z - is an anion derived by elimination of a proton from methanol was added. After stirring the same temperature for three hours, 2.50 ml (2.50 mmol) of a diethyl ether solution of 1.0 M hydrogen chloride was added to terminate the reaction. As a result, the consumption percentage of MMA and that of N,N-dimethylacrylamide were 98% and 95%, respectively. The reaction
mixture was then poured into 500 ml of hexane. The deposited solid was collected by filtration and the solid was washed twice with 20 ml of hexane. The resulting solid was dried at room temperature under 10 mmHg for six hours to obtain 9.08 g of an odorless solid. The solid was a random copolymer wherein MMA and N,N-dimethylacrylamide are polymerized at random in a molar ratio of about 1:1. The number-average molecular weight of the solid was 10,500.

Example 18

After a 200 ml flask was sufficiently dried, 5.00 g (50.0 mmol) of MMA as a primary polar unsaturated compound purified by distillation and 40 ml of dried THF were charged in the flask, followed by stirring to obtain a uniform solution. While maintaining the temperature of the uniform solution at 30°C, 10 ml of a THF solution containing 0.771 g (1.00 mmol) of tetrakis[tris(dimethylamino)-phosphoramideneamino] phosphonium methoxide was added. After stirring the same temperature for one hour, 10 ml of a THF solution containing 4.96 g (50.0 mmol) of N,N-dimethylacrylamide as a secondary polar unsaturated compound was added at 30°C. After stirring for additional three hours, 2.50 ml (2.50 mmol) of a diethyl ether solution of 1.0 M hydrogen chloride was added to terminate the reaction. As a result, the consumption percentage of MMA and that of N,N-dimethylacrylamide were 99% and 98%, respectively. The reaction mixture was then poured into 500 ml of hexane. The deposited solid was collected by filtration and the solid was washed twice with 20 ml of hexane. The resulting solid was dried at room temperature under 10 mmHg for six hours to obtain 9.33 g of an odorless solid. The solid was a block copolymer having a block of poly(methyl methacrylate)-poly(N,N-dimethylacrylamide), which contains a block of poly(methyl methacrylate) and a block of poly(N,N-dimethylacrylamide) in a ratio (molar ratio) of about 1:1. The number-average molecular weight of the solid was 11,200 and the molecular weight distribution was 1.43.

Example 19

In the very same manner as in Example 18, except that an equimolar amount of N,N-dimethylacrylamide was used in place of MMA as the primary polar unsaturated compound in Example 18 and propylene oxide was used in place of N,N-dimethylacrylamide used in Example 18 as the secondary polar unsaturated compound, the reaction was conducted to obtain 7.56 g of poly(N,N-dimethylacrylamide)-poly(propylene oxide) onool having a block of poly(N,N-dimethylacrylamide) and a block of poly(propylene oxide). The number-average molecular weight of the resulting polymer was 8,930 and the molecular weight distribution was 1.63.

Example 20

In the very same manner as in Example 4, except that 5.00 mg (corresponding to 500 ppm based on the weight of MMA) of hydroquinone as a radical polymerization inhibitor was further added to the resulting uniform solution obtained in the same manner as in Example 4, the reaction was conducted. The consumption percentage of MMA was 99% and 9.56 g of poly(methyl methacrylate) was obtained as an odorless solid. The number-average molecular weight of the resulting solid was 9,780 and the molecular weight distribution was 1.57.

Example 21

In the very same manner as in Example 3, except that an equimolar amount of tetrakis[tris(dimethylamino) phosphoramideneneamino] phosphonium methoxide was used in place of the phosphazenium compound used in Example 3, the operation up to concentration to dryness was conducted to obtain 5.78 g of a colorless solid. MMA and methyl isobutyrate were completely consumed. The number-average molecular weight of the resulting poly(methyl methacrylate) was 1,150, while the theoretical number-average molecular weight was 1,010, and the molecular weight distribution was 1.35.

Example 22

In the very same manner as in Example 3, except that 1.50 mmol of dimethyl methylmalonate was used in place of methyl isobutyrate contained further in Example 3, the operation up to concentration to dryness was conducted to obtain 5.05 g of a colorless solid. The consumption percentage of MMA and that of dimethyl methylmalonate were 91% and 100%, respectively. The number-average molecular weight of the resulting poly(methyl methacrylate) was 2,470 and the molecular weight distribution was 1.21.
Example 23

[0076] In the very same manner as in Example 3, except that an equimolar of 1,2-bis(isopropylcarbonyloxy)ethane was used in place of methyl isobutyrate contained further in Example 3, the operation up to concentration to dryness was conducted to obtain 4.87 g of a colorless solid. MMA and 1,2-bis(isopropylcarbonyloxy)ethane were completely consumed. The number-average molecular weight of the resulting poly(methyl methacrylate) was 1,250 and the molecular weight distribution was 1.36.

Example 24

[0077] In the very same manner as in Example 3, except that an equimolar of 1,3-propanediol was used in place of methyl isobutyrate contained further in Example 3, the operation up to concentration to dryness was conducted to obtain 5.05 g of a colorless solid. The consumption percentage of MMA and that of 1,3-propanediol were 100% and 87%, respectively. The number-average molecular weight of the resulting poly(methyl methacrylate) was 1,310 and the molecular weight distribution was 1.63.

Example 25

[0078] In the very same manner as in Example 3, except that 1.50 mmol of poly(propylene oxide) having hydroxyl groups at both terminals (average molecular weight: 1,030) was used in place of methyl isobutyrate contained further in Example 3, the operation up to concentration to dryness was conducted to obtain 6.94 g of a colorless oily substance. MMA was completely consumed. The resulting polymer had a block of poly(propylene oxide) and that of poly(methyl methacrylate). The number-average molecular weight of the resulting polymer was 3,290 and the molecular weight distribution was 1.55.

Example 26

[0079] In the very same manner as in Example 3, except that an equimolar amount of N,N-dimethylacrylamide was used in place of tertiary-butyl methacrylate used in Preparation Example of poly(methyl methacrylate) of Example 1, the reaction was conducted to obtain a polymerization reaction solution. Subsequently, 0.040 g (0.55 mmol) of butyl aldehyde was added at the same temperature, followed by stirring for additional one hour. Then, 1.00 ml (1.00 mmol) of a THF solution of 1.0 M acetic acid was added to terminate the reaction. The consumption percentage of tertiary-butyl methacrylate and that of butyl aldehyde were 100% and 92%, respectively. The reaction mixture was concentrated to dryness under reduced pressure to obtain 5.50 g of a white solid. A solution prepared by dissolving the white solid in 10 ml of THF was poured into 300 ml of methanol. The deposited solid was collected by filtration and the solid was washed twice with 10 ml of methanol. The resulting solid was dried at room temperature under 10 mmHg for six hours to obtain 4.55 g of an odorless poly(methyl methacrylate) monool having a hydroxyl group at one terminal of poly(methyl methacrylate). The number-average molecular weight and the molecular weight distribution of the poly(methyl methacrylate) monool were 11,100 and 1.26, respectively.

Example 27

[0080] In the very same manner as in Example 3, except that an equimolar amount of N,N-dimethylacrylamide was used in place of MMA used in Example 3 and 1.50 mmol of poly(propylene oxide) having hydroxyl groups at both terminals (average molecular weight: 1,030) was used in place of methyl isobutyrate contained further, the operation up to concentration to dryness was conducted to obtain 6.79 g of a colorless solid. N,N-dimethylacrylamide was completely consumed. The resulting polymer had a block of poly(propylene oxide) and that of poly(N,N-dimethylacrylamide). The number-average molecular weight of the resulting polymer was 3,630 and the molecular weight distribution was 1.75.

Example 28

[0081] In the very same manner as in Example 27, except that N,N-dimethylacrylamide was used in place of tertiary-butyl methacrylate in Example 27, the reaction was conducted to obtain 4.21 g of an odorless poly(N,N-dimethylacrylamide) monool having a hydroxyl group at one terminal of poly(N,N-dimethylacrylamide). The number-average molecular weight and the molecular weight distribution of the poly(N,N-dimethylacrylamide) monool were 12,000 and 1.66, respectively.
Example 29

[0082] In the very same manner as in Example 3, except that a 5.00 mmol of 1,3-propanediol and 0.500 mmol of α-hydroxyisopropyl pheny ketone was used in place of methyl isobutyrate contained further in Example 3, the operation up to concentration to dryness was conducted to obtain 5.17 g of a colorless solid. The consumption percentage of MMA and that of 1,3-propanediol were 100% and 100% respectively. The number average molecular weight of the resulting poly(methyl methacrylate) was 1,060 and the molecular weight distribution was 1.07. By addition of small amount of α-hydroxyisopropyl pheny ketone, the consumption percentage of 1,3-propanediol was changed from 87% (this value was one of 1,3-propanediol in Example 24) to 100%, and further the polymer with more narrow molecular weight distribution was obtained.
|------------|----------------------------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|

Note: In Table 1, [(Me₂N₃)₃P=N⁺] denotes tetraakis(tris(dimethylamino)phosphoranilidene)phosphonium, [(Me₂N₃)₃P=N⁺] denotes tris(tris(dimethylamino)phosphoranilidene)dimethylaminophosphonium cation, O-t-Bu denotes t-butoxy anion, OH denotes hydroxy anion, and Mn denotes number-average molecular weight, and Mw/Mn denotes molecular weight distribution, respectively.
<table>
<thead>
<tr>
<th>Examples</th>
<th>Reaction conditions</th>
<th>Temperature (°C)</th>
<th>Time (hours)</th>
<th>Yield (g)</th>
<th>Polymer's M_w/M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td></td>
<td>0</td>
<td>3</td>
<td>100</td>
<td>8.01</td>
</tr>
<tr>
<td>Example 2</td>
<td></td>
<td>30</td>
<td>3</td>
<td>95</td>
<td>14.4</td>
</tr>
<tr>
<td>Example 3</td>
<td></td>
<td>40</td>
<td>5</td>
<td>99</td>
<td>14.2</td>
</tr>
<tr>
<td>Example 4</td>
<td></td>
<td>60</td>
<td>8</td>
<td>97</td>
<td>4.99</td>
</tr>
<tr>
<td>Example 5</td>
<td></td>
<td>80</td>
<td>10</td>
<td>98</td>
<td>6.17</td>
</tr>
<tr>
<td>Example 6</td>
<td></td>
<td>100</td>
<td>10</td>
<td>99</td>
<td>3.450</td>
</tr>
<tr>
<td>Example 7</td>
<td></td>
<td>120</td>
<td>5</td>
<td>100</td>
<td>7.93</td>
</tr>
<tr>
<td>Example 8</td>
<td></td>
<td>140</td>
<td>6</td>
<td>100</td>
<td>9.750</td>
</tr>
<tr>
<td>Example 9</td>
<td></td>
<td>160</td>
<td>5</td>
<td>100</td>
<td>19.300</td>
</tr>
</tbody>
</table>
Claims

1. A method for preparing a polymer, which comprises subjecting a monomer containing at least a polar unsaturated compound to anionic polymerization in the presence of a phosphazenium compound represented by the formula (1):

 (wherein Z^- is an anion of an active hydrogen compound that is derived by elimination of a proton from the active hydrogen compound; a, b, c and d each represents 1 or 0, but all of them are not simultaneously 0; and R may the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms, and two $R(s)$ on the same nitrogen atom are optionally combined each other to form a cyclic structure), or in the presence of the phosphazenium compound and the active hydrogen compound.

2. The method according to claim 1, wherein the polar unsaturated compound is a compound having a polar functional group selected from the group consisting of carbonyl group, cyano group and pyridyl group, and an unsaturated group in the same molecule, and the both form a conjugated system directly or indirectly.

3. The method according to claim 1, wherein the polar unsaturated compounds are (meth)acrylates, (meth)acrylonitriles, acrylamides, vinyl pyridines, N-substituted maleimides, vinyl ketones, or styrene derivatives.

4. The method according to claim 1, wherein the polar unsaturated compounds are monoesters of monohydric alcohols and acrylic acid or methacrylic acid, monoesters of dihydric alcohols whose one terminal is protected with an ether bond and acrylic acid or methacrylic acid, polyhydric esters wherein all hydroxyl groups of dihydric or polyhydric alcohols and acrylic acid or methacrylic acid are esterified, acrylonitrile or methacrylonitrile, N,N-di-substituted monoacrylamides, vinyl or isopropenyl-substituted pyridines, N-aromatic-substituted maleimides, and vinyl ketones.

5. The method according to any one of claims 1 to 4, wherein R in the phosphazenium compound represented by the formula (1) may be the same or different and each represents an aliphatic hydrocarbon groups having 1 to 8 carbon atoms.

6. The method according to any one of claims 1 to 4, wherein R in the phosphazenium compound represented by the formula (1) is a methyl group.

7. The method according to any one of claims 1 to 4, wherein the cyclic amino group in case where two $R(s)$ on the same nitrogen atom in the phosphazenium compound represented by the formula (1) are combined each other, together with the nitrogen atom, to form a cyclic structure is a cyclic secondary amino group containing 4 to 6 carbon atoms on the ring.

8. The method according to any one of claims 1 to 7, wherein a, b, c and d in the phosphazenium compound represented by the formula (1) is a numeral in a combination of (1, 1, 1, 1) or (0, 1, 1, 1) regardless of the sequence.
9. The method according to any one of claims 1 to 8, wherein the active hydrogen compound that affords Z⁻ in the phosphazenium compound represented by the formula (1), or the active hydrogen compound that is contained in case where the anionic polymerization is conducted in the presence of the phosphazenium compound and the active hydrogen compound includes hydrogen cyanide, monohydric carboxylates, polyhydric carboxylates, water, monohydric alcohols, polyhydric alcohols, monohydric thiol and polymers or copolymers of poly(alkylene oxides), poly[(meth)acrylates], poly[(meth)acrylonitriles], poly(acrylamides), poly(vinylpyridines), poly(N-substituted maleimides), poly(vinyl ketones) and poly(styrene derivatives), each having active hydrogen at a terminal and/or in a principal chain.

10. The method according to any one of claims 1 to 9, wherein the polymer is a copolymer prepared by using at least two polar unsaturated compounds in combination.

11. The method according to any one of claims 1 to 10, wherein the polymer is a copolymer prepared by using the polar unsaturated compound in combination with the alkylene oxide compound.

12. The method according to any one of claims 1 to 10, wherein the polymer is a copolymer prepared by using the polar unsaturated compound in combination with the propylene oxide and/or ethylene oxide.

13. The method according to any one of claims 1 to 10, wherein the polymer is a copolymer prepared by using the polar unsaturated compound in combination with the alkylene oxide compound in sequence.

14. The method according to any one of claims 1 to 10, wherein the polymer having a hydroxyl group at at least one terminal is prepared by subjecting the polar unsaturated compound to the anionic polymerization, followed by the reaction with the alkylene oxide and/or aldehydes.

Patentansprüche

1. Verfahren zur Herstellung eines Polymers, bei dem man ein Monomer, das zumindest eine polare, ungesättigte Gruppe enthält, in Gegenwart einer Phosphazeniumverbindung, dargestellt durch die allgemeine Formel (1):

 \[
 \begin{align*}
 &\text{(in der } Z^- \text{ ein Anion einer Verbindung mit aktivem Wasserstoff ist, das durch Eliminierung eines Protons aus der Verbindung mit aktivem Wasserstoff erhalten wurde; } a, b, c \text{ und } d \text{ jeweils für } 1 \text{ oder } 0 \text{ stehen, aber nicht alle zugleich } 0 \text{ sind und } R \text{ gleich oder unterschiedlich sein kann und jeweils für eine Kohlenwasserstoffgruppe mit } 1 \text{ bis } 10 \text{ Kohlenstoffatomen steht und zwei } R(s) \text{ am gleichen Stickstoffatom gegebenenfalls jeweils miteinander verbunden sind, um eine zyklische Struktur zu bilden) oder in Gegenwart der Phosphazeniumverbindung und der Verbindung mit aktivem Wasserstoff anionisch polymerisiert.)}
 \end{align*}
 \]

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die polare, ungesättigte Verbindung eine Verbindung ist, die eine polare, funktionelle Gruppe, ausgewählt aus der Gruppe, bestehend aus Carbonylgruppe, Cyanogruppe und Pyridinylgruppe, und eine ungesättigte Gruppe im selben Molekül, wobei beide direkt oder indirekt ein konjugiertes System bilden, aufweist.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die polaren, ungesättigten Verbindungen (Meth)acrylat, (Meth)acrylnitril, Acrylamide, Vinylpyridine, N- substituierte Maleimide, Vinylketone oder Styrolderivate sind.

5. Verfahren nach einem der Ansprüche 1 bis 4, **durchgegeltene Kennzeichnung, dass** R in der Phosphazeniumverbindung, dargestellt durch die Verbindung (1), gleich oder verschieden sein kann und jeweils für eine aliphatische Kohlenwasserstoffgruppe mit 1 bis 8 Kohlenstoffatomen steht.

6. Verfahren nach einem der Ansprüche 1 bis 4, **durchgegeltene Kennzeichnung, dass** R in der Phosphazeniumverbindung, dargestellt durch die Verbindung (1), eine Methylgruppe ist.

7. Verfahren nach einem der Ansprüche 1 bis 4, **durchgegeltene Kennzeichnung, dass** die zyklische Aminogruppe für den Fall, dass zwei R(s) am gleichen Stickstoffatom der Phosphazeniumverbindung, dargestellt durch die Formel (1), miteinander, zusammen mit dem Stickstoffatom, verbunden sind, um eine zyklische Struktur zu bilden, eine zyklische sekundäre Aminogruppe ist, die im Ring 4 bis 6 Kohlenstoffatome enthält.

8. Verfahren nach einem der Ansprüche 1 bis 7, **durchgegeltene Kennzeichnung, dass** a, b, c und d in der Phosphazeniumverbindung, dargestellt durch die Formel (1), eine Ziffer in der Kombination von (1, 1, 1, 1) oder (0, 1, 1, 1), unabhängig von der Abfolge, ist.

9. Verfahren nach einem der Ansprüche 1 bis 8, **durchgegeltene Kennzeichnung, dass** die Verbindung mit aktivem Wasserstoff, die Z- in der Phosphazeniumverbindung, dargestellt durch die Formel (1), schafft, oder die Verbindung mit aktivem Wasserstoff, die für den Fall, dass die anionische Polymerisation in Gegenwart von der Phosphazeniumverbindung und der Verbindung aktivem Wasserstoff durchgeführt wird, enthalten ist, Cyansäure, einwertige Carbonsäuren, mehrwertige Carbonsäuren, Wasser, einwertige Alkohole, mehrwertige Alkohole, einwertige Thiole und Polymere oder Copolymere von Polyalkylenoxiden, Polymethacrylaten, Poly(meth)acrylnitrilen, Poly(meth)acrylamiden, Polyvinylpyrroldininen, Poly(N-substituierten Maleimiden), Polyvinylketonen und Poly(styrolderivaten), wobei jedes einen aktiven Wasserstoff am Ende und oder in der Hauptkette aufweist, einschließt.

10. Verfahren nach einem der Ansprüche 1 bis 9, **durchgegeltene Kennzeichnung, dass** das Polymer ein Copolymer ist, das unter Verwendung von zumindest zwei polaren, ungesättigten Verbindungen zusammen hergestellt wird.

11. Verfahren nach einem der Ansprüche 1 bis 10, **durchgegeltene Kennzeichnung, dass** das Polymer ein Copolymer ist, das unter Verwendung von der polaren, ungesättigten Verbindungen zusammen mit einer Alkylenoxidverbindung hergestellt wird.

12. Verfahren nach einem der Ansprüche 1 bis 10, **durchgegeltene Kennzeichnung, dass** das Polymer ein Copolymer ist, das unter Verwendung von der polaren, ungesättigten Verbindungen zusammen Propylenoxid und oder Ethylenoxid hergestellt wird.

13. Verfahren nach einem der Ansprüche 1 bis 10, **durchgegeltene Kennzeichnung, dass** das Polymer ein Blockcopolymer ist, das unter Verwendung von der polaren, ungesättigten Verbindungen zusammen mit einer Alkylenoxidverbindung in Folge hergestellt wird.

14. Verfahren nach einem der Ansprüche 1 bis 10, **durchgegeltene Kennzeichnung, dass** das Polymer, das eine Hydroxylgruppe an zumindest einem Ende aufweist, hergestellt wird, indem die polare, ungesättigte Verbindung anionischer Polymerisation unterworfen wird, gefolgt von der Reaktion mit Alkylenoxid und oder Aldehyden.

Revendications

1. Procédé de préparation d’un polymère, qui comprend la soumission d’un monomère contenant au moins un composé insaturé polaire, à une polymérisation anionique, en présence d’un composé de phosphazénium représenté par la formule (1) :
(dans laquelle Z^- est un anion d’un composé hydrogène actif, obtenu par élimination d’un proton à partir du composé hydrogène actif ; a, b, c et d représentent chacun 1 ou 0, mais tous ne sont pas simultanément égaux à 0 ; et R peut être identique ou différent et chacun représente un groupe hydrocarbure ayant 1 à 10 atomes de carbone, et deux R sur le même atome d’azote sont éventuellement combinés l’un à l’autre pour former une structure cyclique), ou en présence du composé de phosphazénium et du composé hydrogène actif.

2. Procédé selon la revendication 1, dans lequel le composé insaturé polaire est un composé ayant un groupe fonctionnel polaire choisi dans le groupe consistant en un groupe carboxyle, un groupe cyano et un groupe pyridyle, et un groupe insaturé dans la même molécule, et tous deux forment un système conjugué directement ou indirectement.

3. Procédé selon la revendication 1, dans lequel les composés insaturés polaires sont les (méth)acrylates, les (méth)acrylonitriles, les acrylamides, les vinylpyridines, les maléimides N-substitués, les vinylcétones, ou les dérivés de styrène.

4. Procédé selon la revendication 1, dans lequel les composés insaturés polaires sont des monoesters d’alcools monohydriques et de l’acide acrylique ou de l’acide méthacrylique, les monoesters d’alcools dihydriques dont une terminaison est protégée par une liaison éther et de l’acide acrylique ou de l’acide méthacrylique, des esters polhydriques dans lesquels tous les groupes hydroxyle d’alcools dihydriques ou polhydriques et l’acide acrylique ou l’acide méthacrylique sont estérifiés ; l’acrylonitrile ou le méthacrylonitrile, les monoacrylamides N,N-di-substitués, les pyridines substituées en vinyne ou isopropényle, les maléimides N-aromatiques substitués, et les vinylcétones.

5. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel R dans le composé phosphazénium représenté par la formule (1) peut être identique ou différent et chacun représente un groupe hydrocarbure aliphatique ayant 1 à 8 atomes de carbone.

6. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel R dans le composé phosphazénium représenté par la formule (1) est un groupe méthyle.

7. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel le groupe amino cyclique, dans le cas où deux R sur le même atome d’azote dans le composé phosphazénium représenté par la formule (1) sont combinés l’un avec l’autre, ainsi qu’avec l’atome d’azote, pour former une structure cyclique, est un groupe amino secondaire cyclique contenant 4 à 6 atomes de carbone sur l’anneau.

8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel a, b, c et d dans le composé phosphazénium représenté par la formule (1) est un nombre dans une combinaison de (1,1,1,1) ou (0,1,1,1), indépendamment de la séquence.

9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel le composé hydrogène actif qui donne Z^- dans le composé phosphazénium représenté par la formule (1), ou le composé hydrogène actif qui est contenu lorsque la polymérisation anionique est réalisée en présence du composé phosphazénium et du composé hydrogène actif, comprend le cyanure d’hydrogène, les carboxylates monohydriques, les carboxylates polyhydri-
ques, l'eau, les alcools monohydriques, les alcools polyhydriques, le thiol monohydrique et les polymères ou copolymères d'oxydes de poly(alkylène), les poly((méth)acrylates), les poly((méth)acrylonitriles), les poly(acrylamides), les poly(vinylpyridines), les poly(maléimides N-substitués), les poly(vinylcétones) et les dérivés de poly(styrène), chacun ayant un hydrogène actif à une terminaison et/ou dans une chaîne principale.

10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le polymère est un copolymère préparé en utilisant au moins deux composés insaturés polaires en combinaison.

11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le polymère est un copolymère préparé en utilisant le composé insaturé polaire en combinaison avec le composé d'oxyde d'alkylène.

12. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le polymère est un copolymère préparé en utilisant le composé insaturé polaire en combinaison avec l'oxyde de propylène et/ou l'oxyde d'éthylène.

13. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le polymère est un copolymère bloc préparé en utilisant le composé insaturé polaire, en combinaison avec le composé d'oxyde d'alkylène en séquence.

14. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le polymère ayant un groupe hydroxyle à au moins une terminaison est préparé en soumettant le composé insaturé polaire à la polymérisation anionique, suivie par la réaction avec l'oxyde d'alkylène et/ou les aldéhydes.