EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
07.03.2007 Bulletin 2007/10

Application number: 00302630.9

Date of filing: 29.03.2000

Strapping tool and method

Werkzeug und Verfahren zum Umreifen

Outil et procédé de cerclage

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE LI LU MC NL PT SE

Priority: 06.04.1999 US 286913

Date of publication of application: 11.10.2000 Bulletin 2000/41

Proprietor: ILLINOIS TOOL WORKS INC.
Glenview, Illinois 60025-5811 (US)

Inventors:
- Drabarek, Peter
 Chicago, Illinois 60630 (US)
- Figiel, Janusz
 Mount Prospect, Illinois 60056 (US)

Representative: Finnie, Peter John et al
Gill Jennings & Every LLP
Broadgate House
7 Eldon Street
London EC2M 7LH (GB)

References cited:
GB-A-573 064

Int Cl.:

| B65B 13/02 (2006.01) | B65B 13/18 (2006.01) |

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
It is known generally to apply tensioned steel or plastic strap about a load with a power or manually operated hand held strap tensioning tool. Some tools also include means for fastening overlapping strap portions after tensioning, while other tools require a separatefastening tool for this purpose. In plastic strap tensioning tools, for example, it is known to include a vibrating jaw that frictionally fuses, or welds, overlapping strap portions. And in steel strap tensioning tools it is known to include a die assembly for sealless joining of overlapping strap portions. Other steel strap tensioning tools merely tension strap while a separate sealing member is cramped about overlapping strap portions by a seal crimping tool.

Strap tensioning tools operate generally by gripping a strap end portion while an overlapping strap portion disposed about the load is tensioned with a feed wheel. During tensioning, the overlapping strap portions and particularly the tensioned strap portion must be maintained in alignment with the feed wheel. It is known generally to provide a strap guide, usually upstream of the feed wheel, to maintain the strap in alignment therewith during tensioning.

Some known strap guides have an actuator mechanism to release strap engaged thereby after tensioning and sealing, for example by moving a lever connected thereto, so that the tool, usually a foot portion thereof, may be separated from the tensioned strap. Tool operators, however, are not receptive to tools having actuable strap guides since additional labor is required to disengage the strap from the guide. The actuator mechanism also complicates the tool and increases the cost thereof.

Other known strap guides are relatively simple and do not include an actuator mechanism to release tensioned strap from the strap guide. In prior art FIG. 5 of the present application, for example, an end view of a known tensioning tool strap guide 11 is defined generally by downwardly extending side wall portions 12 and 14 between which overlapping strap portions are disposed during tensioning. As the strap is tensioned, however, it is ultimately pulled downwardly from between the strap guiding wall portions 12 and 14, toward the base plate 16 of the tool, as illustrated in prior art FIG. 6 of the present application. This prior art strap guide has the disadvantage that the strap is withdrawn from between the strap guide before tensioning is complete, whereupon it may become misaligned with the feed wheel during tensioning.

A relevant disclosure in this regard is the GB-A-573 064.

An object of the invention is to provide novel strap tensioning tools having strap guides and methods therefor that do not require user operated release mechanisms to release strap from the strap guide to withdrawal of the tool from between a load and strap tensioned thereabout after tensioning.

A further object of the invention is to provide novel strap tensioning tools having strap guides with a strap guiding member that is pivotal to release strap upon withdrawal of the tool from between a load and strap tensioned thereabout.

A more particular object of the invention is to provide a novel strap guide in a tensioning tool and methods therefor comprising generally a base plate, a wall portion disposed at least partially along and extending above a strap support surface of the base plate, a strap guiding member having a pivot end portion pivotally coupled to the tool along the strap support surface generally opposite the wall portion, a biasing member coupled to the strap guiding member to pivotally bias a guide end portion of the strap guiding member above at least a portion of the strap support surface, whereby strap disposed on the strap support surface of the base plate is guided between the wall portion and the strap guiding member during tensioning and is removable therefrom upon withdrawal of the base plate from between the load and tensioned strap.

A particular embodiment in accordance with this invention will now be described with reference to the accompanying drawings; in which:

FIG. 1 is a partial side view of a strap tensioning tool;

FIG. 2 is a partial end view of overlapping strap portions retained by an exemplary strap guide;

FIG. 3a is a partial detailed view of a strap guiding member in a first strap guiding position;

FIG. 3b is a partial detailed view of a strap guiding member in a second position to permit release of the strap;

FIG. 4a is a partial top view of strap retained by a strap guide;

FIG. 4b is a partial top view of strap being released from a strap guide;

FIG. 5 is a partial end view of a prior art strap guide; and,

FIG. 6 is a partial side view of a prior art strap guide.

FIG. 1 is a strap tensioning tool 10 comprising an improved strap guide according to an exemplary embodiment of the invention. The strap tensioning tool 10 comprises generally a foot or base plate 20 and feed wheel 30 frictionally engageable with a strap portion 2 disposed over the base plate for tensioning strap about a load.

The tool 10 in the exemplary embodiment of FIG. 1 is a plastic strap tensioning tool that further comprises, in addition to the base plate 20 and feed wheel...
30, strap sealing means for frictionally welding or other-
wise sealing overlapping strap portions after tensioning,
as is known generally. The strap guide of the present inven-
tion, however, also may be used on steel strap ten-
sioning tools, and tensioning tools without strap sealing
means.

[0012] FIG. 1 illustrates the base plate 20 having a
strap support surface 22 over which the strap 2 is drawn
by the feed wheel 30 during tensioning. In the exemplary
embodiment, the strap 2 is drawn over an underlying strap portion 3, wherein both strap portions 2 and 3 are
supported by the strap support surface 22 of the base
plate.

[0013] FIG. 1 illustrates the strap support surface 22
of the base plate 20 having generally an intermediate portion 24, and leading and trailing end portions 25 and 26 on opposing ends of the intermediate portion 24. FIG. 2 illustrates the strap support surface 22 having inner and outer portions 27 and 28 extending therealong from the leading end portion 25 to the trailing end portion 26. In the exemplary embodiment, the leading and trailing end portions 25 and 26 preferably slope generally downwardly away from the intermediate portion 24, as illustrated in FIG. 1, to reduce slack formed in strap tensioned thereupon. The strap support surface 22 is retained and guided between the base plate 20 and the strap guide, as discussed more fully below.

[0014] In the exemplary embodiment, the feed wheel
30 is aligned generally with the strap support surface 22
and is located adjacent the trailing end portion 26 of the strap support surface 22 opposite the leading end portion 25 thereof, whereby strap tensioned by the feed wheel 30 is drawn over the strap support surface 22 and is main-
tained in alignment therewith by the strap guide, as dis-
cussed more fully below.

[0015] In FIGS. 1, 2, 4a and 4b, the strap guide includes
a wall portion 40 disposed at least partially along the inner
portion 27 of the strap support surface 22 and extending thereabove to guide strap supported on the strap support surface 22 during tensioning. The wall portion 40 may be part of the tool housing as in the exemplary embodiment, or alternatively may be a guide rail or some other structure disposed at least partially along the inner portion 27 of the strap support surface 22 and extending above a portion thereof to guide strap along the inner portion 27 of the strap support surface 22.

[0016] In FIGS. 1 and 2, the strap guide also includes
a strap guiding member 50 pivotally coupled to the tool
tool 10 and disposed at least partially along the outer portion 28 of the strap support surface 22, generally opposite the wall portion 40, although not necessarily directly the-
reachcross. The strap guiding member 50 includes a pivot end portion 52 pivotally coupled to the base plate 20, for example by a pivot member 51. The strap guiding member 50 also includes a guide end portion 54 extending above the strap support surface 22. The pivot end portion 52 of the strap guiding member 50 is preferably pivotally coupled to the base plate 20 toward the leading end por-
tion 25 of the strap support surface 22, as illustrated in
FIG. 1. The strap guiding member 50 is coupled to the base plate 20 so that the guide end portion 54 extends upwardly therefrom, alongside and above at least a portion of the strap support surface 22 to ensure that the overlapping strap portions 2 and 3 remain confined or retained and guided by the strap guide until tensioning is complete.

[0017] According to the invention generally, strap sup-
ported on and drawn over the strap support surface 22
by the feed wheel is guided by the wall portion 40 on one side of the strap and by a wall portion 57 of the guide end portion 54 on the another opposing side of the strap, whereby strap supported on the strap support surface 22 is retained and guided between the wall portion 40 and the guide end portion 54 of the strap guiding member 50 until tensioning is complete.

[0018] A biasing member is generally coupled to the
strap guiding member 50 to pivotally bias the guide end
portion 54 thereof above at least a portion of the strap support surface 22 and along the outer portion 28 thereof, as illustrated best in FIGS. 1 and 2. In FIG. 3a, the strap guiding member 50 includes a flattened abut-
ment portion 55 engageable with a portion of the base
plate 20 or some other structure to limit the upward travel
of the strap guiding member 50 caused by the biasing
member.

[0019] In FIG. 2, the overlapping strap portions 2 and 3 disposed on the strap support surface 22 are confined and guided between the wall portion 40 and the wall portion 57 of the upwardly biased guide end portion 54 of the strap guiding member 50 during strap tensioning. In the present invention, as strap tension increases, the overlapping strap portions 2 and 3 remain confined by the wall portion 40 and the upwardly biased strap guiding member 50. Thus the strap portions 2 and 3 in the present invention are not withdrawn from the strap guide during tensioning as in prior strap guides that extend downwardly from above the support surface as discussed above and illustrated in prior art FIGS. 5 and 6.

[0020] In FIG. 3a, the biasing member is preferably a compression spring 60 disposed between the base plate 20 and the strap guiding member 50. A first end portion 62 of the compression spring 60 acts against the base
plate, and a second end portion 64 of the compression
spring 60 acts against the strap guiding member 50. Gen-
erally at least one, and possibly both of the end portions of the compression spring 60 are disposed in correspond-
ing recesses on either or both the base plate 20 or the strap guiding member 50 to retain the spring 60. In FIG.
3b, the base plate 20 has a recess 23 and the strap guid-
ing member 50 has a recess 53 for accommodating cor-
responding end portions of the compression spring 60.

[0021] In other alternative embodiments, a torsional
spring, not shown, may be employed to bias the guide end portion 54 of the strap guiding member 50 above the strap support surface 22 along side the outer portion thereof, The torsional spring, for example, may be dis-
posed about the pivot shaft 51 so that a first arm portion of the torsional spring engages the base plate and a second arm portion thereof engages the strap guiding member 50 to bias the guide end portion 54 thereof upwardly.

[0022] In FIGS. 2, 3a and 3b, the biasing member pivotally biases the strap guiding member so that the guide end portion 54 thereof extends above the intermediate portion 24 of the strap support surface 22. The pivotal movement of the strap guiding member 50 is limited by the abutment portion 55 thereof engaging the base plate 20, as discussed above. In FIG. 3b, the strap guiding member 50 is pivotally downwardly against the bias of the biasing member so that an upper portion thereof does not extend above the intermediate portion 24 of the strap support surface 22, thereby permitting removal or withdrawal of the base plate 20 from between the load and strap tensioned thereabout without interference by the strap guiding member 50, as discussed more fully below.

[0023] In FIGS. 2, 3a and 3b, the strap guiding member 50 includes preferably a beveled portion 70 on the upper and outer portions thereof. The beveled portion 70 is engageable by a strap portion to downwardly pivot the strap supporting member 50 and more particularly the guide end portion 54 thereof against the bias of the biasing member to facilitate insertion of the strap into the strap guide and onto the strap support surface 22 of the base plate 20. The strap guiding member 50 however is pivotally downwardly in the absence of the beveled portion 70, and in some embodiments the bevelled portion 70 is not included.

[0024] In FIGS. 1 and 3a, the strap guiding member 50 is pivotally coupled to the base plate 20 so that the guide end portion 54 of the strap guiding member extends away from the feed wheel 30. The upper portion 56 of the strap guiding member 50 is disposed at an angle relative to the strap support surface 22 of the base plate 20 when the strap engagement portion is biased to extend above the strap support surface. In the exemplary embodiment, the upper portion 56 of the strap guiding member 50 is at an angle relative to the intermediate portion 24 of the support surface 22. The upper portion 56 of the strap guiding member 50 is engageable by the overlapping tensioned strap portions to downwardly pivot the strap guiding member 50 as the tool and more particularly the foot 20 is removed from between the load and strap tensioned thereabout, as discussed more fully below.

[0025] In FIG. 4a, the strap 2 is disposed between and guided by the wall portion 40 and the guide end portion 54 of the strap guiding member 50 during tensioning. Upon completion of tensioning, the base plate 20 of the tool is withdrawn from between the tensioned strap and the load by a pivoting action of the tool, as is common practice for separating tensioning tools from tensioned strap.

[0026] In FIG. 4b, the trailing end portion 28 of the base plate 20 is first withdrawn from between the tensioned overlapping strap and the load upon pivoting the tool in the direction of arrow P. As the tool and base plate 20 are pivoted relative to the tensioned strap, the strap engages the upper portion 56 of the strap guiding member 50, which is oriented at an angle relative to the strap support surface 22 and directed generally away from the feed wheel, as discussed above. The tensioned strap thus pivots the strap guiding member 50 downwardly against the bias of the biasing member, as illustrated in FIG. 3b, whereupon the base plate 20 and more particularly leading end portion 27 of the strap support surface 22 thereof may be withdrawn completely from between the load and the tensioned strap.

Claims

1. A strap tensioning tool (10) comprising:
 a base plate (20) having a strap support surface (22), the strap support surface (22) having an inner portion (27), an outer portion (28) and a leading end (25) portion;
 a wall portion (40) extending above the strap support surface (22) and disposed at least partially along the inner portion (28) thereof;
 a strap guiding member (50) having a pivot end portion (52) and a guide end portion (54), the pivot end portion pivotally coupled to the tool (10) along the outer portion (28) of the strap support surface (22) generally opposite the wall portion (40); characterised by
 a biasing member (60) coupled to the strap guiding member (50) to pivotally bias the guide end portion (54) of the strap guiding member (50) above at least a portion of the strap support surface (22); and in that the strap (2, 3) disposed on the strap support surface (22) of the base plate is guided between the wall portion (40) and the strap guiding member (50) during tensioning;

2. A tool according to Claim 1, wherein the strap support surface (22) of the base plate has an intermediate portion, the biasing member (60) pivotally biases the strap guiding member (50) so that the guide end portion thereof extends above the intermediate portion of the strap support surface (22).

3. A tool according to Claim 2, wherein the leading end portion (25) of the strap support surface (22) slopes downwardly away from the intermediate portion thereof.

4. A tool according to Claim 3, wherein the pivot end portion of the strap guiding member (50) is pivotally coupled to the base plate (20) toward the leading end portion (25) of the strap support surface (22).
5. A tool according to any one of the preceding claims, wherein the strap guiding member has an upper portion, the strap guiding member (50) is pivotable downwardly against the bias of the biasing member (60) so that the upper portion of the strap guiding member (50) does not extend above the intermediate portion of the strap support surface (22).

6. A tool according to any one of the preceding claims, further comprising a feed wheel (30) aligned with the strap support surface (22) of the base plate (20), the strap guiding member (50) is pivotally coupled to the base plate so that the guide end portion of the strap guiding member (50) extends away from the feed wheel (30).

7. A tool according to Claim 6, wherein the strap guiding member (50) has a bevelled portion (51) on upper and outer portions thereof.

8. A tool according to any one of the preceding claims, wherein an upper portion of the strap guiding member (50) is at an angle relative to the strap support surface (22) of the base plate (20) when the guide end portion of the strap guiding member (50) is biased to extend above at least a portion of the strap support surface (22).

9. A tool according to any one of the preceding claims, wherein the biasing member (60) is a compression spring disposed between the base plate (20) and the strap guiding member (50).

10. A method for guiding strap in a tensioning tool, comprising:

drawing tensioned strap with a feed wheel (30) over a strap support surface (22) of a base plate (20);
guiding strap drawn over the strap support surface (22) on one side of the strap with a wall portion (40) extending above the strap support surface (22) and disposed at least partially along an inner portion (27) of the strap support surface (22);
biased a strap guiding member (50) pivotally coupled to the base plate (20) so that a guide end portion (54) of the strap guiding member extends above at least a portion of the strap support surface (22) along an outer portion (28) of the strap support surface generally opposite the wall portion (40), guiding strap drawn over the strap support surface (22) on another side of the strap with the guide end portion (54) of the strap guiding member when the guide end portion is biased to extend above at least a portion of the strap support surface (22), whereby strap is retained between the wall portion (40) and the strap guiding member (50) until tensioning is complete.

Patentansprüche

1. Reifenspannwerkzeug (10), das folgendes umfaßt:

eine Grundplatte (20) mit einer Reifenstützoberfläche (22), wobei die Reifenstützoberfläche (22) einen inneren Abschnitt (27), einen äußeren Abschnitt (28) und einen Vorderendeabschnitt (25) hat;
en einen sich über der Reifenstützoberfläche (22) erstreckenden Wandabschnitt (40), der mindestens teilweise entlang dem inneren Abschnitt (28) davon vorgesehen ist;
ein Reifenführungselement (50) mit einem Schwenkendeabschnitt (52) und einem Führungsendeabschnitt (54), wobei der Schwenkendeabschnitt mit dem Werkzeug (10) entlang dem äußeren Abschnitt (28) der Reifenstützoberfläche (22) allgemein gegenüber dem Wandabschnitt (40) schwenkbar gekoppelt ist;
gekennzeichnet durch:
ein mit dem Reifenführungselement (50) gekoppeltes Vorspannelement (60), um den Führungsendeabschnitt (54) des Reifenführungselements (50) über mindestens einem Abschnitt der Reifenstützoberfläche (22) schwenkbar vorspannen;
und dadurch gekennzeichnet, daß der an der Reifenstützoberfläche (22) der Grundplatte befindliche Reifen (2, 3) zwischen dem Wandabschnitt (40) und dem Reifenführungselement (50) während des Spannens geführt wird.

2. Werkzeug nach Anspruch 1, bei dem die Reifenstützoberfläche (22) der Grundplatte einen Zwischenabschnitt hat, und dadurch gekennzeichnet, daß der Vorspannelement (60) das Reifenführungselement (50) schwenkbar vorspannt, so daß sich der Führungsendeabschnitt davon über dem Zwischenabschnitt der Reifenstützoberfläche (22) erstreckt.

3. Werkzeug nach Anspruch 2, bei dem der Vorderendeabschnitt (25) der Reifenstützoberfläche (22) weg vom Zwischenabschnitt davon nach unten geneigt vorgesehen ist.

4. Werkzeug nach Anspruch 3, bei dem der Schwenkendeabschnitt des Reifenführungselements (50) hin zum Vorderendeabschnitt (25) der Reifenstützoberfläche (22) schwenkbar mit der Grundplatte (20) gekoppelt ist.
5. Werkzeug nach einem der vorstehend aufgeführten Ansprüche, bei dem das Reifenführungselement einen oberen Abschnitt hat, wobei das Reifenführungselement (50) gegen die Vorspannung des Vorspannelements (60) nach unten schwenkbar ist, so daß sich der obere Abschnitt des Reifenführungselements (50) nicht über dem Zwischenabschnitt der Reifenstützoberfläche (22) erstreckt.

6. Werkzeug nach einem der vorstehend aufgeführten Ansprüche, das weiterhin ein zur Reifenstützoberfläche (22) der Grundplatte (20) ausgerichtetes Zuführungsrad (30) umfaßt, wobei das Reifenführungselement (50) mit der Grundplatte schwenkbar gekoppelt ist, so daß sich der Führungszeitpunktselement des Reifenführungselement (50) weg vom Zuführungsrad (30) erstreckt.

7. Werkzeug nach Anspruch 6, bei dem das Reifenführungselement (50) einen abgeschrägten Abschnitt (51) an oberen und an äußeren Abschnitten davon hat.

8. Werkzeug nach einem der vorstehend aufgeführten Ansprüche, bei dem ein oberer Abschnitt des Reifenführungselement (50) im Verhältnis zur Reifenstützoberfläche (22) der Grundplatte (20), wenn der Führungszeitpunktselement (50) vorgespannt ist, um sich über mindestens einem Abschnitt der Reifenstützoberfläche (22) zu erstrecken, einen Winkel aufweist.

9. Werkzeug nach einem der vorstehend aufgeführten Ansprüche, bei dem das Vorspannelement (60) eine zwischen der Grundplatte (20) und dem Reifenführungselement (50) befindliche Druckfeder ist.

10. Verfahren zum Führen eines Reifens in einem Spannwerkzeug, wobei das Verfahren folgendes umfaßt:

Ziehen eines gespannten Reifens mit einem Zuführungsrad (30) über eine Reifenstützoberfläche (22) einer Grundplatte (20);
Führen des über die Reifenstützoberfläche (22) gezogenen Reifens auf einer Seite des Reifens, wobei sich ein Wandabschnitt (40) über der Reifenstützoberfläche (22) erstreckt und sich mindestens teilweise entlang einer inneren Abschnitt (27) der Reifenstützoberfläche (22) befindet;
Vorspannen eines mit der Grundplatte (20) schwenkbar gekoppelten Reifenführungselement (50), so daß sich der Führungszeitpunktselement (50) des Reifenführungselements über mindestens einem Abschnitt der Reifenstützoberfläche (22) entlang einem äußeren Abschnitt (28) der Reifenstützoberfläche allgemein gegenüber dem Wandabschnitt (40) erstreckt, und Führen des über die Reifenstützoberfläche (22) gezogenen Reifens auf einer anderen Seite des Reifens, wobei sich der Führungszeitpunktselement (50) des Reifenführungselement (22) vorgespannt ist, über mindestens einem Abschnitt der Reifenstützoberfläche (22) erstreckt, wobei der Reifen zwischen dem Wandabschnitt (40) und dem Reifenführungselement (50) zurückgehalten wird, bis das Spannen beendet ist.

Revendications
1. Outil de mise en tension de bandes de cerclage (10) comportant :

une plaque de base (20) dotée d’une surface de support de bande de cerclage (22), la surface de support de bande de cerclage (22) présentant une portion intérieure (27), une portion extérieure (28) et une portion d’extrémité avancée (25) ;

une portion de paroi (40) s’étendant au-dessus de la surface de support de bande de cerclage (22) et disposée au moins en partie le long de la portion intérieure (27) de celle-ci ;

un organe de guidage de bande de cerclage (50) doté d’une portion d’extrémité pivotante (52) et d’une portion d’extrémité de guidage (54), la portion d’extrémité pivotante étant en liaison pivot avec l’outil (10) le long de la portion extérieure (28) de la surface de support de bande de cerclage (22), généralement en face de la portion de paroi (40) ;

2. Outil selon la revendication 1, la surface de support de bande de cerclage (22) de la plaque de base étant dotée d’une portion intermédiaire, l’organe de sollicitation (60) sollicitant de façon pivotante l’organe de guidage de bande de cerclage (50) au-dessus d’une portion au moins de la surface de support de bande de cerclage (22) ; et en ce que une bande de cerclage (2, 3) disposée sur la surface de support de bande de cerclage (22) de la plaque de base est guidée entre la portion de paroi (40) et l’organe de guidage de bande de cerclage (50) pendant la mise en tension.
3. Outil selon la revendication 2, la portion d’extrémité avancée (25) de la surface de support de bande de cerclage (22) présentant une pente descendante qui l’éloigne de la portion intermédiaire de celle-ci.

4. Outil selon la revendication 3, la portion d’extrémité pivotante de l’organe de guidage de bande de cerclage (50) étant en liaison pivot avec la plaque de base (20) vers la portion d’extrémité avancée (25) de la surface de support de bande de cerclage (22).

5. Outil selon l’une quelconque des revendications précédentes, l’organe de guidage de bande de cerclage étant doté d’une portion supérieure, l’organe de guidage de bande de cerclage (50) pouvant pivoter vers le bas contre la sollicitation de l’organe de sollicitation (60) de telle sorte que la portion supérieure de l’organe de guidage de bande de cerclage (50) ne s’étende pas au-dessus de la portion intermédiaire de la surface de support de bande de cerclage (22).

6. Outil selon l’une quelconque des revendications précédentes, comportant en outre une roue d’avance (30) alignée avec la surface de support de bande de cerclage (22) de la plaque de base (20), l’organe de guidage de bande de cerclage (50) étant en liaison pivot avec la plaque de base de telle sorte que la portion d’extrémité de guidage de l’organe de guidage de bande de cerclage (50) s’étende à l’écart de la roue d’avance (30).

7. Outil selon la revendication 6, l’organe de guidage de bande de cerclage (50) présentant une portion biseautée (51) sur des portions supérieure et extérieure de celui-ci.

8. Outil selon l’une quelconque des revendications précédentes, une portion supérieure de l’organe de guidage de bande de cerclage (50) formant un angle avec la surface de support de bande de cerclage (22) de la plaque de base (20) lorsque la portion d’extrémité de guidage de l’organe de guidage de bande de cerclage (50) est sollicitée pour s’étendre au-dessus d’une portion au moins de la surface de support de bande de cerclage (22), en conséquence de quoi la bande de cerclage est retenue entre la portion de paroi (40) et l’organe de guidage de bande de cerclage (50) jusqu’à ce que la mise en tension soit achevée.

9. Outil selon la revendication 6, l’organe de guidage de bande de cerclage (50) étant en liaison pivot avec la plaque de base (20) et l’organe de guidage de bande de cerclage (50).

10. Procédé de guidage d’une bande de cerclage dans un outil de mise en tension, comportant :

 la traction d’une bande de cerclage en tension à l’aide d’une roue d’avance (30) par-dessus une surface de support de bande de cerclage (22) d’une plaque de base (20) ;
 le guidage de la bande de cerclage tirée par-dessus la surface de support de bande de cerclage (22) sur un côté de la bande de cerclage à l’aide d’une portion de paroi (40) s’étendant au-dessus de la surface de support de bande de cerclage (22) et disposée au moins en partie le long d’une portion intermédiaire (27) de la surface de support de bande de cerclage (22) ;
 la sollicitation d’un organe de guidage de bande de cerclage (50) en liaison pivot avec la plaque de base (20) de telle sorte qu’une portion d’extrémité de guidage (54) de l’organe de guidage de bande de cerclage s’étende au-dessus d’une portion au moins de la surface de support de bande de cerclage (22) le long d’une portion externe (28) de la surface de support de bande de cerclage généralement en face de la portion de paroi (40), le guidage de la bande de cerclage tirée par-dessus la surface de support de bande de cerclage (22) sur un autre côté de la bande de cerclage à l’aide de la portion d’extrémité de guidage (54) de l’organe de guidage de bande de cerclage lorsque la portion d’extrémité de guidage est sollicitée pour s’étendre au-dessus d’une portion au moins de la surface de support de bande de cerclage (22), en conséquence de quoi la bande de cerclage est retenue entre la portion de paroi (40) et l’organe de guidage de bande de cerclage (50) jusqu’à ce que la mise en tension soit achevée.
FIG. 3a

FIG. 3b

FIG. 4a