EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 04.08.2004 Bulletin 2004/32
(51) Int Cl.7: G06K 7/10, G11B 7/00, G11B 7/135, G02B 26/10
(21) Application number: 97910832.1
(22) Date of filing: 06.10.1997
(86) International application number: PCT/US1997/018126

(54) COUNTER-ROTATING SCANNER
GEGENLÄUFIG ROTIERENDES ABTASTGERÄT
LECTEUR OPTIQUE A Rotation INVERSE

(43) Date of publication of application: 16.08.2000 Bulletin 2000/33
(73) Proprietor: DYNETICS, INC.
Huntsville, AL 35814-5050 (US)
(74) Representative: Grünecker, Kinkeldey,
Stockmair & Schwanhäusser Anwaltssozietät
Maximilianstrasse 58
80538 München (DE)
(56) References cited:
US-A- 4 079 230
US-A- 5 559 320

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States:
LT

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States:
LT

(72) Inventors:
• FIKES, Joseph, W.
Huntsville, AL 35802 (US)
• FOSTER, Larry, M.
Huntsville, AL 35803 (US)
• PERKINS, Franklin, H.
Somerville, AL 35670 (US)
• STANFIELD, James, M.
Brownsboro, AL 35741 (US)
• BERINATO, Robert, J.
Huntsville, AL 35803 (US)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to devices for scanning and, more specifically, to devices for optical scanning along a substantially linear path.

2. Description of the Prior Art

[0002] Devices for scanning beams of light have long been known to the art. Optical scanning is used in a variety of applications, including writing and reading data to and from such storage media as compact discs and optical data cards. Optical data cards, and other types of linear-track optical data storage media, store data along linear tracks. Scanning such tracks requires linear translation of either the data card or the device used to scan the data card. Current devices include mechanical systems, electronic systems, acousto-optical systems, electro-optical systems, and other systems for moving an optical beam along a path. Most mechanical devices employ rotating polygon mirrors or prisms, galvanometer actuators carrying mirrors, and similar devices.

[0003] US-A-4 079 230 describes a laser scanning apparatus using a pair of prisms which are rotated about the optical axis of the laser light at the same speed but in opposite directions. The laser light passes through the prisms to be then converged into a beam spot so that a work piece is clearly scanned for laser-working.

[0004] In the case of linear-track optical data storage media, current scanning devices incorporate Optical Pickup Units (OPU) which reciprocate relative to a data storage medium from the beginning to the end of the data track. The OPUs are typically mounted on a carriage assembly which is constrained to move in a straight line parallel to a data track. A linear actuator imparts a force on the carriage assembly to effect the linear motion and a linear position transducer determines instantaneous OPU location and provides feedback for the velocity control function of the actuator. During a typical data scan, the OPU translates down the track, illuminating the data spots on the track with an optical beam and receives reflected signals by means of electro-optical components. Current devices require acceleration of the OPU to its operating speed at the beginning of each data track scan and deceleration of the OPU to a stop at the end of each data track. This motion is then repeated in each direction.

[0005] Such back and forth motion of the OPU and carriage assembly results in undesirable acceleration and deceleration of the OPU and vibration and ultimately limits the operating speed of the device. Scan speed may be increased by decreasing the mass and friction associated with the OPU and carriage assembly or by increasing the force provided by the actuator.

[0006] In addition to translating back and forth down the data tracks to read and write optical data, the OPU must provide small amplitude, high speed focus and cross-track motions. This is because the data spot size is on the order of a single micrometer diameter and the track-to-track spacing is typically on the order of micrometers. As the OPU scans along the data track, small imperfections in any realizable mechanical mechanism result in tiny motions perpendicular to the data track, and therefore failure to maintain the required alignment between the optical data and the OPU. To compensate for misalignment caused by these undesirable motion, current design practices incorporate high speed actuators as part of the objective lens mounting assembly to deflect the beam in the cross track direction (perpendicular to the data track in the plane of the optical medium) and also in the "focus" direction (perpendicular to the data track, normal to the optical medium). Since the actuators only move the objective lens (whose mass can be made relatively small), high speed compensation of small tracking and focus errors may be realized. Tracking and focus error signals which drive the compensator actuators are usually developed by auxiliary optical and electronic components within the OPU.

[0007] Other mechanical means for optical scanning, such as spinning polygon mirrors or galvanometer driven mirrors, are common in other applications, but are not used in scanning optical storage media for two reasons. First, they scan a focused beam onto a curved (cylindrical) surface. If the curvature is compensated by optical elements, neither the data track illumination nor subsequent reflection is normal to the planar surface of the storage medium. Optical data storage media ordinarily require the illuminating beam to be focused to a small spot and require it to strike the surface of the medium at substantially perpendicular incidence. The resulting reflection also propagates perpendicularly back from the surface through the same optical train as the illuminating beam. One method attempts to circumvent this problem by deforming the card to conform to a cylindrical surface. The focused illumination spot follows a circle which is supposed to be coincident with a data track on the surface of the deformed card. However, the card must be bent in such a way that its surface is accurately coincident with the required cylindrical surface to within a few micrometers (otherwise the fast focus compensation mechanism will be unable to maintain acceptable focus as the spot moves along the data track). Such an approach has two disadvantages. First, considering the relatively simple and inexpensive procedures and materials used in manufacturing optical memory cards (OMCs), it is hard to achieve necessary accuracy when the card is bent. Second, deforming the card may result in excessive wear on the card and may also introduce birefringence in the transparent protective covering of the data card with undesirable effects on the polarization state of the illumination and reflected beams.
SUMMARY OF THE INVENTION

[0008] It was the object of the present invention to provide a scanning device which overcomes the limitation of the prior art devices described above and which does not require reciprocating components, while at the same time the scan beam direction is maintained perpendicular to the surface of the object being scanned and allows reduced vibrations.

[0009] The present invention achieves its object by providing an apparatus for scanning a beam comprising the features set out in claim 1. The present invention also provides a method of scanning an optical beam comprising the steps set out in claim 20.

[0010] The disadvantages of the prior art are overcome by the present invention which employs counter-rotating optical periscopes to achieve linear scanning using only fixed and constantly rotating components, thereby eliminating the requirement to accelerate and decelerate a mass.

[0011] An advantage of the present invention is that it does not require reciprocating components. Thus, it reduces drive power, reduces vibration and it offers the potential for increased speed.

[0012] A further advantage of the invention is that it maintains the scan beam direction perpendicular to the surface of the object being scanned.

[0013] A further advantage of the invention is that the OPU remains essentially stationary, thereby reducing vibration, drive power and design complexity.

[0014] Optical periscopes ordinarily incorporate a pair of reflective surfaces which are parallel to one another, each of which deviates an incident beam by an angle of 90 degrees from its propagation direction. Other deviation angles may also be used if they impart a perpendicular component to the beam's propagation direction and if the combined effect of the reflective surfaces results in a beam parallel to the incoming beam. If a periscope is caused to rotate in such a way that the input beam is coincident with the axis of rotation, then the output axis will always remain parallel to the input axis, but its displacement will fall upon a circle centered on the axis of rotation.

[0015] If a second periscope is joined with the first so that the output of the first periscope serves as the input to the second, the displacement of the output of the second periscope from the input to the first periscope can be represented mathematically as the vector sum of the displacement due to the first periscope and the displacement due to the second. The resultant displacement is a function of the displacements of each periscope and their orientation angles. In the special case where the periscopes are of equal length, and the angular measures of their orientations are constrained to be opposite one another, and the input to the second periscope is constrained to be aligned with the output of the first periscope, then as the two periscopes rotate synchronously (with angle of the same absolute magnitude, but opposite sense), the resultant displacement traces out a perfectly straight line. Two continuously rotating periscopes thus achieve the same effect as a start/stop linear scanner, and if they are implemented with proper consideration to static and dynamic balance, they can operate with little vibration and no requirement for acceleration or deceleration along data tracks.

[0016] To scan a set of parallel data tracks, a separate mechanism must provide relative motion between the linear scanner and the collection of data tracks. The track-to-track motion, however, occurs much more slowly than the scan along the data track, and can easily be implemented via any of a number of well known translation devices, such as stepping devices and constant velocity phased devices with the along-track scanning.

[0017] The present invention provides an apparatus for scanning a beam along a path on an object. The apparatus employs a first channel and a second channel. The first optical channel has a first proximal end and an opposite first distal end. The first proximal end is in optical communication with the optical beam and the first proximal end is pivotally rotatable about a first axis adjacent the fixed point. The second channel has a second proximal end and an opposite second distal end with the second proximal end in communication with the first distal end of the first channel. The second proximal end is pivotally rotatable about a second axis adjacent the first distal end of the first channel. A drive causes the first channel to rotate about the first axis in a first direction, which causes the second channel to rotate about the second axis in a second direction opposite the first direction. Optical or other focusing devices couple the beam through the first channel and the second channel out of the second distal end of the second channel toward the object. As the first channel rotates in the first direction and the second channel rotates in the second direction, the second distal end of the second channel reciprocates, thereby causing the beam to scan along the linear path on the object.

[0018] According to one embodiment, the invention is an optical image scanner for scanning an optical beam along a linear path on an object. The scanner employs a housing having a top and an opposite bottom. The housing defines a first cylindrical cavity between the top and the bottom with a ring gear disposed within the cylindrical cavity and affixed to the housing. A light source generates an optical beam from a fixed point relative to the housing. A drive disk, having a peripheral edge, is disposed within the first cylindrical cavity and defining a second cylindrical cavity. The drive disk has a first axis of rotation and defines a first optical channel having a first length, a first proximal end and a first distal end. The drive disk also defines a second optical channel having a second length, a second proximal end and a second distal end. The drive disk employs a first channel and a second channel. The first optical channel has a first proximal end and an opposite first distal end. The first proximal end is in optical communication with the optical beam and the first proximal end is pivotally rotatable about a first axis adjacent the fixed point. The second channel has a second proximal end and an opposite second distal end with the second proximal end in communication with the first distal end of the first channel. The second proximal end is pivotally rotatable about a second axis adjacent the first distal end of the first channel. A drive causes the first channel to rotate about the first axis in a first direction, which causes the second channel to rotate about the second axis in a second direction opposite the first direction. Optical or other focusing devices couple the beam through the first channel and the second channel out of the second distal end of the second channel toward the object. As the first channel rotates in the first direction and the second channel rotates in the second direction, the second distal end of the second channel reciprocates, thereby causing the beam to scan along the linear path on the object.
The first proximal end of the first optical channel is pivotally rotatable about a first axis adjacent the fixed point.

A scan disk, disposed within the second cylindrical cavity and having a second axis of rotation offset from the first axis of rotation, defines a second optical channel having a second length substantially equal to the first length, a second proximal end and a second distal end. The scan disk also defines a second proximal opening adjacent the second proximal end of the second optical channel, through which the second optical channel is in optical communication with the first distal opening, and a second distal opening, adjacent the second distal end of the second optical channel and in optical communication with the second optical channel. The second proximal end of the second optical channel is pivotally rotatable about a second axis adjacent the first distal end of the first optical channel.

A ring motor is coupled to the peripheral edge and causes the drive disk to rotate about the first axis of rotation in a first direction at a first rotational speed. A spur gear is circumferentially affixed to the scan disk and engaged with the ring gear so that as the ring motor causes the drive disk to rotate in the first direction, the spur gear is displaced along the ring gear thus causing the scan disk to rotate about the second axis in a second direction opposite the first direction at a second rotational speed substantially equal to the first rotational speed. Optical devices optically couple the beam from the generating means through the first optical channel and the second optical channel and out of the second distal opening toward the linear path. Thus, as the first optical channel rotates in the first direction and the second optical channel rotates in the second direction, the second distal end of the second optical channel linearly reciprocates, thereby causing the beam to scan along the linear path on the object.
associated herein, unless the context clearly dictates otherwise: "a," "an," and "the" includes plural reference, "in" includes "in" and "on;" "optical" is not limited by wave lengths in the visible spectrum; "channel" includes any predetermined path that allows propagation of a beam along at least a portion of its length. "communication" means a relationship between at least two objects that allows propagation of a beam from a first object to at least a second object.

As shown in FIGS. 1A-1F, the present invention is an apparatus 10 for scanning an optical beam 12 along a substantially linear path 16. The apparatus 10 comprises a first optical channel 26, which may be defined by a first periscope 20 or other elongated member, and a second optical channel 46 which may be enclosed in a second periscope 40 or other elongated member.

The first optical channel 26 has a first proximal end 22 and an opposite first distal end 24, the first proximal end being in optical communication with the optical beam, the first proximal end being pivotally rotatable about a first axis 14 intersecting a fixed point 15. The second optical channel 46 has a second proximal end 42 and an opposite second distal end 44. The second proximal end 42 is in optical communication with the first distal end 24 of the first optical channel 26 and the second proximal end 42 is pivotally rotatable about a second axis adjacent the first distal end 24 of the first optical channel 26. The first optical channel 26 rotates about the first axis in a first direction, the direction of arrow A and the second optical channel 46 rotates about the second axis in a second direction opposite the first direction, the direction of arrow B. The beam 12 is optically coupled through the first optical channel 26 and the second optical channel 46 out of the second distal end 44 toward the linear path 16. If the lengths of the optical channels 26, 46 are substantially the same and if the magnitudes of angular velocity in directions A and B are substantially the same, then as the first optical channel 26 rotates in the first direction A and the second optical channel 46 rotates in the second direction B, the second distal end 44 of the second optical channel 26 linearly reciprocates, thereby causing the beam to scan along a linear path 16 on the object.

FIGS. 1A-1F show the apparatus 10a-f at various stages of a scan. FIG. 1A shows the apparatus 10a fully extended to the left. FIG. 1B shows the apparatus 1b as the second distal end 44 tends inward. FIG. 1C shows the second distal end 44 substantially aligned with the first proximal end 22. FIG. 1D shows the second distal end 44 to the right of the first proximal end 22. FIG. 1E shows the second distal end 44 fully extended to the right of the first proximal end 22 and FIG. 1F shows the second distal end 44 tending back toward the first proximal end 22.

This embodiment may employ optical periscopes comprising rhomboidal prisms. An important property of optical periscopes implemented by means of rhomboidal prisms is the relative insensitivity of the amount of beam displacement and final beam direction to angular misalignment of the periscopes. The 45 degree faces of rhomboidal prisms are routinely fabricated to an accuracy of about one minute of arc, and with greater care may be fabricated to an accuracy approaching one arc second. In the beam scanning application it is also important that the length of the two rhomboidal prisms (i.e., the spacing between the two 45 degree faces) be precisely equal as well, and that is a difficult parameter to control in an absolute sense. Such prisms may be fabricated by making a single prism whose width is somewhat greater than twice that required for the individual periscope prisms. Upon completing fabrication of the over-wide prism, it is simply sectioned into two prisms, which because of their common origin, are of precisely equal lengths.

One disadvantage of this approach regarding the transfer of images through the scanner is a relatively poor trade-off between F-number of imaging optics (the ratio of focal length to entrance aperture diameter), periscope cross-sectional size, and periscope length. Electromagnetic wave theory requires that the minimum achievable spot resolution be approximately the wavelength multiplied by the F-number. Resolution of the small spots used in optical data storage therefore requires both a relatively short wavelength (typically less than one micrometer) as well as a low F-number (on the order of 1.0). For this direct approach, F-numbers smaller than about 8.0 would require an inordinately large periscope cross section for a given periscope length. Packaging problems and other mechanical difficulties become manifest at smaller F-numbers for this approach for certain applications.

Including one or more relaying lenses allows the ratio of optical channel cross section to length to be greatly reduced for a given system F-number, or conversely, the F-number can be reduced (for finer resolution) while maintaining a practical optical channel cross section to length ratio. The effect of image relaying is to transfer an optical image between the linear path and the OPU so that it appears to the OPU that the linear path is in its conventional read/write position. That is, the image relaying optical system transforms a complex irradiance distribution from one plane at a particular location (the data irradiance distribution on the linear path) to another similar distribution in another plane at a different location (the image of the data irradiance distribution as seen from the OPU). From its stationary location, it appears to the OPU that data on the surface of the card is moving by just as though the OPU itself were translating along a stationary linear path, albeit at a non-linear (sinusoidal) rate. In addition to the obvious benefit of eliminating reciprocating components, the approach encourages the use of existing OPUs which are well developed, and which incorporate fine focus and track capability. Since the image seen by the OPU is in every way a faithful replica of what would be seen by an OPU translating along a linear path, existing methods of fine
focus and track designed into the OPU can be used with little or no modification.

[0031] FIG. 2 shows an embodiment 110 of the invention in which an image 112 may be relayed through the scanner by a single relay lens 160 disposed between the first distal end 124 of the first optical channel 120 and the second proximal end 142 of the second optical channel 140. The focal length of the lens 160 is chosen to be one fourth of the optical path length between the foci 113, 114 of the beam 112. This meets a standard 1:1 imaging requirement wherein both the object and the image are located on opposite sides of a converging lens at twice the lens focal length. In this embodiment, light is uncollimated throughout the entire scanner system.

[0032] FIG. 3 shows an embodiment 210 employing a first lens 262 disposed adjacent the first proximal end 222 of the first optical channel 220 for collimating the beam 212 into the first optical channel 220 and a second lens 266 disposed adjacent the second distal end 244 of the second optical channel 240 for focusing the beam 212. This embodiment 210 offers the advantage of decreased optical beam diameter within the scanner. By choosing different focal lengths for the lenses 262, 266, the image may be magnified or reduced.

[0033] This embodiment provides at least two advantages: first, it promotes the use of low F-number systems (thereby enhancing optical resolution) without requiring the large diameter optical channels; and second, it provides an opportunity to match the F-number of an existing OPU to an optical storage medium for which it was not designed. The latter may be an important consideration where it is desirable to use an OPU designed for a spot size which is different from that of the particular medium being used.

[0034] The beam 212 emerges from an optical pick-up objective as a converging cone of light and comes to a focus at the point where an object would ordinarily be located. In this embodiment, the illumination continues beyond that point as a diverging cone of light to where it meets the input lens 262 to the scanner. The input lens is located one focal length away from the focal plane of the OPU, and it therefore collimates the illumination from the OPU before passing it to the rotating channels 220, 240. At the output of the scanner the illumination passes through another lens 266 which refocuses the collimated illumination onto the object. The reflection from the object is an image of the illuminated data which then propagates backward through the lenses and prisms in exactly the same way as the forward beam.

[0035] FIGS. 4 and 5 show an optical image scanner 310 embodiment of the invention for scanning an optical beam along a linear path 316 on an object 318. The scanner 310 has a housing 320 with a top 326 and an opposite bottom 328. The housing 320 defines a first cylindrical cavity 322 between the top 326 and the bottom 328. A ring gear 330 is disposed within the cylindrical cavity 322 and is affixed to the housing 320. A device 336 for generating an optical beam 312 along an axis 315 is fixed to the housing 320. Such a device 336 could comprise an OPU (which can both generate a beam and sense a beam reflected back from an object), of the type commonly known to the art of CD ROM design.

[0036] A drive disk 340 is disposed within the first cylindrical cavity 322 and defines a second cylindrical cavity 348. The drive disk 340 defines a first optical channel 346, that is rotatable about axis 315, in communication with a first proximal opening 352 and a first distal opening 354. The drive disk 340 also has a peripheral edge 356. A scan disk 360 is disposed within the second cylindrical cavity 348 and defines a second optical channel 366 in communication with a second proximal opening 372 in alignment with the first distal opening 354. The scan disk 340 also defines a second distal opening 374 in communication with the second optical channel 366. The drive disk 340 and the scan disk 360 are joined by relatively large diameter bearings 382. The drive disk 340 is joined to the housing 320 by a bearing 381.

[0037] As shown in FIG. 5, a ring motor 380 (such as a direct drive DC ring motor) is coupled to the peripheral edge 356 so as to cause the drive disk 340 to rotate. As would be known to one skilled in the art, other means may be used to rotate the drive disk 340, such as pulleys, drive belts, or gears connected to an external motor (not shown). As shown in FIGS. 4 and 5, a spur gear 332 is circumferentially affixed to the scan disk 360 and is engaged with the ring gear 330 so that as the ring motor 380 causes the drive disk 340 to rotate, the spur gear 332 is displaced along the ring gear 330, thus causing the scan disk 360 to rotate in a direction opposite the direction that the drive disk 340 is rotating. Thus, as the first optical channel 346 rotates in one direction and the second optical channel 366 rotates in an opposite direction, the second distal opening 374 to the second optical channel 366 linearly reciprocates, thereby causing the beam 312 to scan along the linear path 316 on the object 318.

[0038] The beam-generating device 336 causes the beam 312 to propagate along a first direction into the first proximal opening 352. A first mirror 344, or other beam-diverting device, as is known to the art, directs the beam 312 along a second direction, on a primary plane substantially perpendicular to the first direction, from the first proximal opening 352 into the first optical channel 346. A second mirror 342 (or other device) directs the beam 312 along a third direction, substantially parallel to the first direction, from the first optical channel 346 out of the first distal opening 354 and into the second proximal opening 372. A third mirror 364 (or other device) directs the beam 312 along a fourth direction, on a secondary plane substantially parallel to the primary plane, from the second proximal opening 372 into the second optical channel 366 and a fourth mirror 362 (or other device) directs the beam 312 along a fifth direction, substantially parallel to the first direction, from the second optical channel 366 out of the second distal...
This embodiment minimizes undesirable micrometer-scale motion. The second optical channel must be positioned in such a way that the third mirror is aligned with the second mirror of the first optical channel and it must rotate in a plane substantially parallel to the plane of rotation of the first optical channel. The drive disk and the scan disk must be carefully balanced to avoid undesirable vibration while rotating.

Another approach to causing counter-rotation of the optical channels includes mechanically constraining the output from the joined channels to follow a straight line. This may be accomplished by attaching the end of the second optical channel to a sliding mechanism (not shown) which is constrained to move within a straight slot, along a rail, or a similar device. The first optical channel is rotated uniformly as described above, and as a result of the mechanical constraint, the second optical channel is forced to move in a way which exactly replicates the rotation previously discussed. In this way the desired linear motion is strictly enforced within the limits imposed by the elasticity, fit, and precision of the components. The rotational forces existing in the system are such that at the center of scan (rotational angle of 90 degrees), no force exists at the output of the second optical channel, and the system relies solely on the inertia of the second optical channel (developed during the earlier portion of the scan) to carry it through this singular point. As would be obvious, other means may be employed to carry through the singular point.

It is possible under certain conditions for this embodiment to lock up, or fail to follow a straight line. This may occur if the mechanism attempts to start with the two optical channels aligned exactly anti-parallel (with the output of the second periscope at the center of scan). In this case the output of the second optical channel simply rotates about the input axis to the first optical channel, and the scan degenerates from a straight line to a single point at the center of the data track. This condition may be prevented by controlling the optical channels so that they always stop with the optical channels in an orientation other than anti-parallel, or by providing a bias force by some other means such as a spring, or other element, one end of which is attached to the end of the second optical channel and the other end attached to the end of the slider tracks.

It will be readily appreciated that the invention could also be applied to many applications, such as image scanning where an image (e.g., photograph, painting, photographic negative or transparency, radiograph, written document, etc.) is scanned in raster fashion for the purpose of converting a two-dimensional representation of an object to a one-dimensional representation as occurs with electronic information transmission (e.g., television, facsimile). The invention may also be used when a serial data stream representing an object is transformed into a two-dimensional representation of the object by raster scanning (e.g., for use in a laser printer). Although the embodiments described herein employ an optical beam, the invention contemplates and anticipates embodiments wherein the beam comprises other beam-like phenomena, including beams or streams of photons, particles, fluid or non-optical electromagnetic radiation.

Claims

1. An apparatus (10,110,210,310) for scanning a beam (12,112,212,312) generated from a fixed location, said apparatus comprising:

 a. a first channel (26,120,220,346) having a first proximal end (22) and an opposite first distal end (24), the first proximal end being in communication with the beam (12,112,212,312), the first proximal end being pivotally rotatable about a first axis of rotation adjacent the fixed location;

 b. a second channel (46,140,240,366) having a second proximal end (42) and an opposite second distal end (44), the second proximal end being in communication with the beam (12,112,212,312), the second proximal end being pivotally rotatable about a second axis of rotation offset from the first axis, said second axis of rotation being adjacent the first distal end of the first channel;

 c. means (380,340) for causing the first channel (26,120,220,346) to rotate about the first axis in a direction (A),
d. means (380,332,330) for causing the second channel (46) to rotate about the second axis in a second direction (B) opposite the first direction; and

e. means (342,344,362,364) for coupling the beam into the first channel, through the second channel and out of the second distal end of the second channel toward an object,

whereby as the first channel rotates in the first direction (A) and the second channel rotates in the second direction (B), the second distal end of the second channel reciprocates, thereby causing the beam (12) to scan along a path on the object.

2. The apparatus of claim 1, further comprising means (336) for generating the beam.

3. The apparatus of claim 2, wherein the beam generating means (336) comprises an optical pick-up unit.

4. The apparatus of claim 1, wherein the beam (12) is an optical beam.

5. The apparatus of claim 1, wherein the second distal end (44) of the second channel (46) reciprocates linearly.

6. The apparatus of claim 1, further comprising means (336) for sensing a portion of the beam reflected from the object.

7. The apparatus of claim 1, wherein the first channel (26) has a first length and the second channel (46) has a second length, and wherein the first length is substantially equal to the second length.

8. The apparatus of claim 1, wherein the first channel (26) rotates at a first rotational speed and the second channel (46) rotates at a second rotational speed, and wherein the magnitude of the first rotational speed is substantially equal to the magnitude of the second rotational speed.

9. The apparatus of claim 1, further comprising:

a. a housing (320) having a top and an opposite bottom, the housing defining a first cylindrical cavity (322) between the top and the bottom;

b. a ring gear (330) disposed within the cylindrical cavity and affixed to the housing;

c. a drive disk (340), in which the first channel (346) is embedded, disposed within the first cylindrical cavity (322) and defining a second cylindrical cavity (348), the drive disk being rotatable about the first axis of rotation;

d. a scan disk (360), in which the second channel (366) is embedded, disposed within the second cylindrical cavity (348), the scan disk being rotatable about the second axis of rotation; and

e. a spur gear (332) affixed to the scan disk (360) and engaged with the ring gear (330) wherein the first channel rotating means causes the drive disk (340) to rotate in the first direction, so as to cause the spur gear (332) to be displaced along the ring gear (330) thereby causing the scan disk to rotate in the second direction.

10. The apparatus of claim 9, wherein the drive disk (340) has a peripheral edge (356) and the first rotating means comprises a ring motor (380) coupled to the peripheral edge.

11. The apparatus of claim 10, further comprising means (336) for generating an optical beam; and wherein the second distal end of the second channel (366) reciprocates linearly, thereby causing the beam to scan along a linear path on the object; said first channel (346) has a first length and said second channel (366) has a second length, and wherein the first length is substantially equal to the second length; and said first channel (346) rotates at a first rotational speed and said second channel (366) rotates at a second rotational speed substantially equal to the first rotational speed.

12. The apparatus of claim 11, further comprising means (336) for sensing a portion of the beam reflected from the linear path.

13. The apparatus of claim 11, wherein the optical beam generating means comprises an optical pick-up unit.

14. The apparatus of claims 10 or 11, wherein the ring motor (380) is a direct drive DC ring motor.

15. The apparatus of claim 1 or 11, wherein the beam (312) propagates along a first direction from the fixed location toward the first proximal end of the first channel, and wherein the coupling means comprises:

a. means (344) for directing the beam along a second direction on a primary plane substantially perpendicular to the first direction, into the first channel (346) via the first proximal end of the first channel;
b. means (342) for directing the beam along a third direction, substantially parallel to the first direction, out of the first distal end of the first channel (346) toward the second proximal end of the second channel (366),

c. means (364) for directing the beam along a fourth direction on a secondary plane substantially parallel to the primary plane, into the second channel (366) via the second proximal end of the second channel; and

d. means (362) for directing the beam along a fifth direction, substantially parallel to the first direction, out of the second distal end of the second channel (366) toward the object.

16. The apparatus of claim 15, wherein each of the directing means (342, 344, 362, 364) comprises a mirror.

17. The apparatus of claim 16, wherein each mirror (342, 344, 362, 364) is disposed adjacent each end of the first channel (346) and each end of the second channel (366) at an angle from the first direction so as to cause the beam to change direction by 90 degrees.

18. The apparatus of claim 15, further comprising:

a. a first lens (262) disposed adjacent the first proximal end (222) of the first channel (220) for collimating the beam into the first channel; and

b. a second lens (266) disposed adjacent the second distal end (244) of the second channel (240) for focusing the beam on the object.

19. The apparatus of claim 15, further comprising at least one relay lens (160) disposed between the first distal end (124) of the first channel (120) and the second proximal end (142) of the second channel (140).

20. A method of scanning an optical beam (12) along a linear path, comprising the steps of:

a. continuously generating the optical beam from a fixed location and directing the beam toward a first proximal end (22) of a first optical channel (26);

b. re-directing the beam through the first optical channel, also having an opposite first distal end (24) so that the beam propagates from the first proximal end of the first optical channel toward the first distal end of the first optical channel;

c. re-directing the beam from the first distal end of the first optical channel toward a second optical channel (46) having a second proximal end (42) adjacent the first distal end of the first optical channel and an opposite second distal end (44) so that the beam propagates from the second proximal end of the second optical channel toward the second distal end of the second optical channel;

d. causing the first optical channel (26) to rotate about the first proximal end of the first optical channel in a first direction on a primary plane;

e. causing the second optical channel (46) to rotate about the second proximal end of the second optical channel in a second direction opposite the first direction on a secondary plane parallel to the primary plane; and

f. re-directing the beam from the second distal end of the second optical channel toward the linear path;

so that as the first optical channel rotates in the first direction (A) and the second optical channel rotates in the second direction (B), the beam linearly reciprocates, thereby causing the beam to scan along the linear path on an object.

Patentansprüche

1. Gerät (10, 110, 210, 310) zum Abtasten eines Strahls (12, 112, 212, 312), erzeugt von einer fixierten Stelle, wobei das Gerät aufweist:

a) einen ersten Kanal (26, 120, 220, 346), der ein erstes, proximales Ende (22) und ein gegenübergelagertes, erstes, distales Ende (24) besitzt, wobei das erste, proximale Ende in Verbindung mit dem Strahl (12, 112, 212, 312) steht, wobei das erste, proximale Ende schwenkbar um eine erste Drehachse, angrenzend an die fixierte Stelle, drehbar ist;

b) einen zweiten Kanal (46, 140, 240, 366), der ein zweites, proximales Ende (42) und ein gegenübergelagertes, zweites, distales Ende (44) besitzt, wobei das zweite, proximale Ende (42) in Verbindung mit dem ersten, distalen Ende des ersten Kanals (26, 120, 220, 346) steht, wobei das zweite, proximale Ende schwenkbar um eine zweite Drehachse, versetzt zu der ersten Achse, drehbar ist, wobei die zweite Drehachse angrenzend an das erste, distale Ende des ersten Kanals liegt;

c) Mittel (380, 340), um zu bewirken, dass sich der erste Kanal (26, 120, 220, 346) um die erste Achse in einer ersten Richtung (A) dreht,
d) Mittel (380, 332, 330), um zu bewirken, dass sich der zweite Kanal (46) um die zweite Achse in einer zweiten Richtung (B), entgegengesetzt zu der ersten Richtung, dreht; und
e) Mittel (342, 344, 362, 364), um den Strahl in den ersten Kanal hinein, durch den zweiten Kanal und aus dem zweiten, distalen Ende des zweiten Kanals heraus zu einem Objekt hin zu koppeln,

wobei dann, wenn sich der erste Kanal in der ersten Richtung (A) dreht und sich der zweite Kanal in der zweiten Richtung (B) dreht, das zweite, distale Ende des zweiten Kanals hin- und herbewegt, um dadurch zu bewirken, dass der Strahl (12) entlang eines Pfads auf dem Objekt abtastet.

2. Gerät nach Anspruch 1, das weiterhin Mittel (336) aufweist, um den Strahl zu erzeugen.

3. Gerät nach Anspruch 2, wobei die Strahlerzeugungsmittel (336) eine optische Aufnahmereinheit aufweisen.

4. Gerät nach Anspruch 1, wobei der Strahl (12) ein optischer Strahl ist.

5. Gerät nach Anspruch 1, wobei sich das zweite, distale Ende (44) des zweiten Kanals (46) linear hin- und herbewegt.

6. Gerät nach Anspruch 1, das weiterhin Mittel (336) aufweist, um einen Bereich des Strahls, reflektiert von dem Objekt, zu erfassen.

7. Gerät nach Anspruch 1, wobei der erste Kanal (26) eine erste Länge besitzt und der zweite Kanal (46) eine zweite Länge besitzt, und wobei die erste Länge im Wesentlichen gleich zu der zweiten Länge ist.

9. Gerät nach Anspruch 1, das weiterhin aufweist:
a) ein Gehäuse (320), das eine Oberseite und einen gegenüberliegenden Boden besitzt, wobei das Gehäuse einen ersten, zylindrischen Hohlraum (322) zwischen der Oberseite und dem Boden definiert;
b) einen Zahnkranz (330), angeordnet innerhalb des zylindrischen Hohlraums und an dem Gehäuse befestigt;
c) eine Antriebsplatte (340), in der der erste Kanal (346) eingebetet ist, angeordnet innerhalb des ersten, zylindrischen Hohlraums (322) und einen zweiten, zylindrischen Hohlraum (348) definierend, wobei die Antriebscheibe um die erste Drehachse herum drehbar ist:
d) eine Abtastscheibe (360), in der der zweite Kanal (366) eingebetet ist, angeordnet innerhalb des zweiten, zylindrischen Hohlraums (348), wobei die Abtastscheibe um die zweite Drehachse herum drehbar ist; und
e) ein Stirnrad (332), das an der Abtastscheibe (360) befestigt ist und mit dem Zahnkranz (330) in Eingriff steht, wobei die den ersten Kanal drehende Einrichtung bewirkt, dass sich die Antriebscheibe (340) in der ersten Richtung dreht, um so zu bewirken, dass das Stirnrad (332) entlang des Zahnkranges (330) verschoben wird, um dadurch zu bewirken, dass sich die Abtastscheibe in der zweiten Richtung dreht.

10. Gerät nach Anspruch 9, wobei die Antriebscheibe (340) eine Umfangskante (356) besitzt und die erste Dreheinrichtung einen Ringmotor (380), gekoppelt mit der Umfangskante, aufweist.

11. Gerät nach Anspruch 10, das weiterhin eine Einrichtung (336) aufweist, um einen optischen Strahl zu erzeugen; und wobei sich das zweite, distale Ende des zweiten Kanals (366) linear hin- und herbewegt, um dadurch zu bewirken, dass der Strahl entlang eines linearen Pfads auf dem Objekt abtastet; wobei der erste Kanal (346) eine erste Länge besitzt und der zweite Kanal (366) eine zweite Länge besitzt, und wobei die erste Länge im Wesentlichen gleich zu der zweiten Länge ist; und wobei sich der erste Kanal (346) unter einer ersten Drehgeschwindigkeit dreht und wobei sich der zweite Kanal (366) unter einer zweiten Drehgeschwindigkeit, im Wesentlichen gleich zu der ersten Drehgeschwindigkeit, dreht.

12. Gerät nach Anspruch 11, das weiterhin Mittel (336) aufweist, um einen Bereich des Strahls, reflektiert von dem linearen Pfad, zu erfassen.

13. Gerät nach Anspruch 11, wobei die den optischen Strahl erzeugenden Mittel eine optische Aufnahmereinheit aufweisen.

15. Gerät nach Anspruch 1 oder 11, wobei der Strahl...
(312) entlang einer ersten Richtung von der fixierten Stelle zu dem ersten, proximalen Ende des ersten Kanals hin propagiert, und wobei die Kopplungseinrichtung aufweist:

a) Mittel (344), um den Strahl entlang einer zweiten Richtung, auf einer primären Ebene im Wesentlichen senkrecht zu der ersten Richtung, in den ersten Kanal (346) über das erste, proximale Ende des ersten Kanals hinein zu richten;
b) Mittel (342), um den Strahl entlang einer dritten Richtung, im Wesentlichen parallel zu der ersten Richtung, aus dem ersten, distalen Ende des ersten Kanals (346) heraus zu dem zweiten, proximalen Ende des zweiten Kanals (366) zu richten;
c) Mittel (364), um den Strahl entlang einer vierten Richtung auf einer sekundären Ebene im Wesentlichen parallel zu der primären Ebene, in den zweiten Kanal (366) über das zweite, proximale Ende des zweiten Kanals hinein, zu richten; und
d) Mittel (362), um den Strahl entlang einer fünften Richtung, im Wesentlichen parallel zu der ersten Richtung, aus dem zweiten, distalen Ende des zweiten Kanals (366) heraus zu dem Objekt hin zu richten.

18. Gerät nach Anspruch 15, das weiterhin aufweist:

a) eine erste Linse (262), angeordnet angrenzend an das erste, proximale Ende (222) des ersten Kanals (220), um den Strahl in den ersten Kanal hinein zu kollimieren; und
b) eine zweite Linse (266), angeordnet angrenzend an das zweite, distale Ende (244) des zweiten Kanals (240), um den Strahl auf das Objekt zu fokussieren.

19. Gerät nach Anspruch 15, das weiterhin mindestens eine Relais-Linse (160), angeordnet zwischen dem ersten, distalen Ende (124) des ersten Kanals (120) und dem zweiten, proximalen Ende (142) des zweiten Kanals (140) aufweist.

20. Verfahren zum Abtasten eines optischen Strahls entlang eines linearen Pfads, das die Schritte aufweist:

a) kontinuierliches Erzeugen des optischen Strahls von einer fixierten Stelle aus und Richtung des Strahls zu einem ersten, proximalen Ende (22) eines ersten, optischen Kanals (26) hin;
b) Zurückführen des Strahls durch den ersten, optischen Kanal, der auch ein gegenüberliegendes, erstes, distales Ende (24) besitzt, so, dass der Strahl von dem ersten, proximalen Ende des ersten, optischen Kanals zu dem ersten, distalen Ende des ersten, optischen Kanals hin propagiert;
c) Zurückführen des Strahls von dem ersten, distalen Ende des ersten, optischen Kanals zu einem zweiten, optischen Kanal (46) hin, der ein zweites, proximales Ende (42) angrenzend an das erste, distale Ende des ersten, optischen Kanals und ein gegenüberliegendes, zweites, distales Ende (44) besitzt, so, dass der Strahl von dem zweiten, proximalen Ende des zweiten, optischen Kanals zu dem zweiten, distalen Ende des zweiten, optischen Kanals hin propagiert;
d) Bewirken, dass sich der erste, optische Kanal (26) um das erste, proximale Ende des ersten, optischen Kanals in einer ersten Richtung auf einer primären Ebene dreht;
e) Bewirken, dass sich der zweite, optische Kanal (46) um das zweite, proximale Ende des zweiten, optischen Kanals in einer zweiten Richtung entgegengesetzt zu der ersten Richtung auf einer sekundären Ebene parallel zu der primären Ebene dreht; und
f) Zurückführen des Strahls von dem zweiten, distalen Ende des zweiten, optischen Kanals zu dem linearen Pfad hin;

so dass sich dann, wenn sich der erste, optische Kanal in der ersten Richtung (A) dreht und sich der zweite, optische Kanal in der zweiten Richtung (B) dreht, der Strahl linear hin- und herbewegt, um dadurch zu bewirken, dass der Strahl entlang des linearen Pfads auf einem Objekt abtastet.

Revendications

1. Appareil (10, 110, 210, 310) pour balayer un faisceau (12, 112, 212, 312) émis à partir d’un emplacement fixe, ledit appareil comprenant :

a. un premier canal (26, 120, 220, 346) ayant une première extrémité proximale (22) et du côté opposé une première extrémité distale (24), la première extrémité proximale étant en com-
munication avec le faisceau (12, 112, 212, 312), la première extrémité proximale pouvant
tourner par pivotement autour d'un premier axe
de rotation contigu à l'emplacement fixe ;
b. un second canal (46, 140, 240, 366) ayant
une seconde extrémité proximale (42) et du cô-
té opposé une seconde extrémité distale (44),
la seconde extrémité proximale (42) étant en
communication avec la première extrémité dis-
tale du premier canal (26, 120, 220, 346), la se-
conde extrémité proximale pouvant tourner par
pivotement autour d'un second axe de rotation
décalé par rapport au premier axe, ledit second
axe de rotation étant contigu à la première ex-
trémité distale du premier canal ;
c. des moyens (380, 340) pour faire tourner le
premier canal (26, 120, 220, 346) autour du
premier axe dans une première direction (A) ;
d. des moyens (380, 332, 330) pour faire tour-
nier le second canal (46, 140, 240, 366) autour
du second axe dans une deuxième direction (B)
opposée à la première direction ; et
e. des moyens (342, 344, 362, 364) pour faire
entrer le faisceau dans le premier canal, lui fai-
re traverser le second canal et le faire sortir de
la seconde extrémité distale du second canal
pour le diriger vers un objet

moyennant quoi, lorsque le premier canal
tourne dans la direction (A) et le second canal tour-
ne dans la direction (B), la seconde extrémité dis-
tale du second canal a un mouvement de va-et-
vient, amenant ainsi le faisceau (12, 112, 212, 312)
al balayer l'objet le long d'une trajectoire.

2. Appareil selon la revendication 1, comprenant en
outre des moyens (336) pour produire le faisceau.

3. Appareil selon la revendication 2, dans lequel les
moys (336) de production du faisceau compren-
nent une unité de captage optique.

4. Appareil selon la revendication 1, dans lequel le
faisceau (12, 112, 212, 312) est un faisceau opti-
que.

5. Appareil selon la revendication 1, dans lequel la se-
conde extrémité distale (44) du second canal (46)
a un mouvement de va-et-vient linéaire.

6. Appareil selon la revendication 1, comprenant en
outre des moyens (336) pour déteindre une partie du
faisceau réfléchie par l'objet.

7. Appareil selon la revendication 1, dans lequel le
premier canal (26) a une première longueur et le
second canal (46) a une seconde longueur et dans
lequel la première longueur est sensiblement égale
à la seconde longueur.

8. Appareil selon la revendication 1, dans lequel le
premier canal (26) a une première vitesse de rota-
tion et le second canal (46) a une seconde vitesse
de rotation et dans lequel l'ordre de grandeur de la
première vitesse de rotation est sensiblement égal
à l'ordre de grandeur de la seconde vitesse de ro-
tation.

9. Appareil selon la revendication 1, comprenant en
outre :

a. un boîtier (320) ayant un dessus et à l'opposé
un fond, le boîtier délimitant une première ca-
vité cylindrique (322) entre le dessus et le fond ;
b. un engrenage annulaire (330) disposé à l'in-
térieur de la cavité cylindrique et fixé au boîtier ;
c. un disque d'entraînement (340) disposé dans lequel
est encastré le premier canal (346), disposé à l'in-
térieur de la première cavité cylindrique (322)
délimitant une seconde cavité cylindri-
que (348), le disque d'entraînement pouvant
tourner autour du premier axe de rotation ;
d. un disque de balayage (360), dans lequel est
encastré le second canal (366), disposé à l'in-
térieur de la seconde cavité cylindrique (348),
le disque de balayage pouvant tourner autour du
deuxième axe de rotation ; et
e. un pignon droit (332) fixé au disque de ba-
yage (360) et en prise avec le disque d'entraînement (340) dans la deuxième direc-
tion, de manière à faire que le pignon droit (332)
demeure le long de l'objet le long d'une trajectoire.

10. Appareil selon la revendication 9, dans lequel le di-
sque d'entraînement (340) a un bord périphérique
(356) et les premiers moyens de rotation compren-
nent un moteur annulaire (380) accouplé au bord
périphérique.

11. Appareil selon la revendication 10, comprenant en
outre des moyens (336) de production d'un faisceau
oplique ; et
la seconde extrémité distale du second canal
al faisceau de rotation et le second canal (366)
hayant un mouvement de va-et-vient linéaire,
amenant ainsi le faisceau à balayer l'objet le long
de la trajectoire linéaire ;
ledit premier canal (346) de rotation et de la
au second canal (366) ayant une se-
corde longueur et dans lequel la première longueur
est sensiblement égale à la seconde longueur ; et
ledit premier canal (346) de rotation et de la
au second canal (366)
tournant à une seconde vitesse de rotation sensiblement égale à la première vitesse de rotation.

12. Appareil selon la revendication 11, comprenant en outre des moyens (336) de détection d’une partie du faisceau réfléchie par la trajectoire linéaire.

13. Appareil selon la revendication 11, dans lequel les moyens de production du faisceau optique comprennent une unité de captage optique.

14. Appareil selon la revendication 10 ou 11, dans lequel le moteur annulaire (380) est un moteur annulaire à courant continu en prise directe.

15. Appareil selon la revendication 1 ou 11, dans lequel le faisceau (312) se propage dans une première direction à partir de l'emplacement fixe vers la première extrémité proximale du premier canal et dans lequel les moyens de couplage comprennent :

a. des moyens (344) pour diriger le faisceau dans une deuxième direction dans un plan primaire sensiblement perpendiculaire à la première direction et le faire entrer dans le premier canal (346) par la première extrémité proximale du premier canal ;

b. des moyens (342) pour diriger le faisceau dans une troisième direction, sensiblement parallèle à la première direction, hors de la première extrémité distale du premier canal (346) vers la seconde extrémité proximale du second canal (366) ;

c. des moyens (364) pour diriger le faisceau dans une quatrième direction dans un plan secondaire sensiblement parallèle au plan primaire et le faire entrer dans le second canal (366) par la seconde extrémité proximale du second canal ; et

d. des moyens (362) pour diriger le faisceau dans une cinquième direction, sensiblement parallèle à la première direction, hors de la seconde extrémité distale du second canal (366) vers l'objet.

16. Appareil selon la revendication 15, dans lequel chacun des moyens de direction (342, 344, 362, 364) comprend un miroir.

17. Appareil selon la revendication 16, dans lequel on dispose chaque miroir (342, 344, 362, 364) pour qu'il soit attenant à chaque extrémité du premier canal (346) et à chaque extrémité du second canal (366) et fasse avec la première direction un angle tel qu'il amène le faisceau à changer de direction à 90 degrés.

18. Appareil selon la revendication 15, comprenant en outre :

a. une première lentille (262) disposée contiguë à la première extrémité proximale (222) du premier canal (220) pour collimater le faisceau dans le premier canal ; et

b. une seconde lentille (266) disposée contiguë à la seconde extrémité distale (244) du second canal (240) pour concentrer le faisceau sur l'objet.

19. Appareil selon la revendication 15, comprenant en outre au moins une lentille relais (160) disposée entre la première extrémité distale (124) du premier canal (120) et la seconde extrémité proximale (142) du second canal (140).

20. Procédé de balayage d'un faisceau optique (12) le long d'une trajectoire linéaire, comprenant les étapes suivantes :

a. produire en continu le faisceau optique à partir d'un emplacement fixe et diriger le faisceau vers une première extrémité proximale (22) du premier canal optique (26) ;

b. rediriger le faisceau à travers le premier canal optique, qui a aussi du côté opposé une première extrémité distale (24), afin que le faisceau se propage de la première extrémité proximale du premier canal optique vers la première extrémité distale du premier canal optique ;

c. rediriger le faisceau de la première extrémité distale du premier canal optique vers un second canal optique (46), qui a une seconde extrémité proximale (42) attenante à la première extrémité distale du premier canal optique et du côté opposé une seconde extrémité distale (44), afin que le faisceau se propage de la seconde extrémité proximale du second canal optique vers la seconde extrémité distale du second canal ;

d. faire tourner le premier canal optique (26) autour de la première extrémité proximale du premier canal optique dans une première direction dans un plan primaire ;

e. faire tourner le second canal optique (46) autour de la seconde extrémité proximale du second canal optique dans une deuxième direction opposée à ma première direction dans un plan secondaire parallèle au plan primaire ; et

f. rediriger le faisceau de la seconde extrémité distale du second canal optique vers la trajectoire linéaire ;

afin que, lorsque le premier canal optique tourne dans la direction (A) et le second canal optique tourne dans la direction (B), le faisceau a un
mouvement de va-et-vient linéaire, amenant ainsi le faisceau à balayer un objet le long de la trajectoire linéaire.