EUROPEAN PATENT SPECIFICATION

- **Date of publication and mention of the grant of the patent:**

 10.03.2004 Bulletin 2004/11

- **Application number:** 98947407.7

- **Date of filing:** 08.10.1998

- **Designated Contracting States:**

 AT BE CH CY DE ES FI FR GB GR IE IT LI LU MC NL PT SE

- **Designated Extension States:**

 LT LV

- **Priority:** 16.10.1997 DK 118797

- **Date of publication of application:**

 02.08.2000 Bulletin 2000/31

- **Proprietor:** Lindberg A/S

 8230 Abyhoj (DK)

- **Inventors:**

 - **KROMAN, Flemming**

 DK-8220 Brabrand (DK)

 - **JENSEN, Lars, Bjørn**

 DK-8270 Hjørborg (DK)

- **Representative:** Nielsen, Leif

 Patrade A/S

 Fredens Torv 3A

 8000 Aarhus C (DK)

- **References cited:**

 - WO-A1-88/02870

 - DE-A-3 404 511

 - US-A-4 084 889

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention relates to an eyeglass frame, an eyeglass, and a method of manufacturing an eyeglass frame. More specifically the invention relates to an eyeglass frame comprising a pair of temple bars pivotally connected with a frame front of the eyeglass frame. In particular the invention relates to eyeglass frames comprising hinge means fitted with friction members. As used herein the term eyeglass relates to the well known accessory which substantially comprises two lenses of glass or of other refractive or tinted, transparent material intended to be worn in front of the eyes of the user enabling him to obtain a corrected or a darkened view through the glasses, and a form of spectacle frame arranged to keep the lenses or glasses expeditiously fixed in the preferred position of use, where the user can look straight forward with both eyes and with parallel lines of sight through the respective lenses.

It is well known to provide such eyeglass frames with a frame front for holding the glasses and with a pair of temple bars for supporting the frame, which temple bars are connected to the frame front by means of hinges so as to allow the eyeglass to be folded up when not in use. Even though a variety of eyeglasses are available, development is still taking place in order to find new solutions which might gain market share, e.g. by offering particular features or cost benefits or through offering new aesthetic features.

US patent No. 5 325 132 describes an eyeglass frame comprising a hinge with an eyelet on the temple bar for insertion between a pair of eyelets on the frame front and for fixation with a hinge pivot. The pivot teaches a solution comprising a coil spring for axial biasing of the hinge in connection with the hinge pivot in order to ensure a firm hold of the temple bar. The hinge part is relatively bulky and implies a relatively delicate shaping and assembly of several different components. US patent No. 4 084 889 shows an eyeglass frame wherein two coaxial hinge pivots of the temple bar engage in respective openings in eyelets on the frame front of the eyeglass frame, and wherein a blade spring imparts a transverse bias force to the hinge pivots on the temple bar. The purpose of this bias force is to counteract spurious movements of the temple bar when in other positions than fully opened. A solution of this kind is considered complicated to manufacture and to assemble. With this solution the hinge pivots are subjected to load and local wear in one side. The friction retention of the temple bar by means of the blade spring will hardly be able to completely avoid noticeable play. This play will likely vary dependent on the manufacturing tolerances and wear.

The invention, in a first aspect, provides an eyeglass frame as recited in claim 1.

This eyeglass frame offers a friction retention of the temple bars in all positions without localized wear of the hinge means by the biasing forces relied on for providing the friction. The friction members contribute to eliminate any sense of play in the hinge means proper.

In an expedient embodiment the hinge means comprises an axially slit barrel of a resilient material. The barrel provides a generally cylindrical component, suitable for cooperating with a mating hinge component, which may comprise a pivot received by the barrel (inwardly biased) or, in other embodiments, a sleeve in which the barrel (outwardly biased) provides the pivot. In either case, the slit barrel will adapt its effective diameter within a suitable range, as appropriate, while still providing a generally cylindrical component.

The barrel ensures that radially directed forces are distributed over a range of directions around the circumference in a way so as to ensure a completely balanced result of the forces, and to prevent play in the hinge means due to the ability of the resilient spring means to take up any mismatch as might in practice occur due to manufacturing tolerances and wear.

In an expedient embodiment the hinge means comprises a pivot member received in rotatable fashion by the slit barrel. This makes optimum use of the materials in terms of reducing the size of the hinge, as the resilient component, which typically will comprise a component of a small thickness, is located peripherally.

In expedient embodiments the pivot part comprises a pivot member received in rotatable fashion by the slit barrel. This makes optimum use of the materials in terms of reducing the size of the hinge, as the resilient component, which typically will comprise a component of a small thickness, is located peripherally.

In an expedient embodiment, the barrel comprises a strip extension, which extension has been wrapped to provide the barrel in the form of a sleeve with an axial slit. This provides a solution which offers an attractive appearance while permitting a simple method of manufacturing and assembly.

In an expedient embodiment, the barrel comprises a strip extension, which extension has been wrapped to provide the barrel in the form of a sleeve with an axial slit. This provides a solution which offers an attractive appearance while permitting a simple method of manufacturing and assembly.

In an expedient embodiment, the barrel comprises a strip extension, which extension has been wrapped to provide the barrel in the form of a sleeve with an axial slit. This provides a solution which offers an attractive appearance while permitting a simple method of manufacturing and assembly.
Brief Description of the Drawings

[0016] Further features and advantages of the invention will appear in further detail from the description of preferred embodiments given below with reference to the drawings in which:

Fig. 1 is a side view of an eyeglass according to the invention,

Fig. 2 illustrates a detail of the frame front of the eyeglass according to the invention, Fig. 2a showing a plan view and Fig. 2b showing a section along the line BB in Fig. 2a,

Fig. 3 shows a detail of the temple bar in the eyeglass according to the invention, Fig. 3a showing a plan view of the detail prior to wrapping, Fig. 3b showing a plan view of the same detail post wrapping, and Fig. 3c showing a section along the line CC in Fig. 3b,

Fig. 4 shows a pivot insert for the eyeglass according to the invention, Fig. 4a showing a front view, Fig. 4b showing a top plan view, and Fig. 4c showing a side view, and

Fig. 5 is an exploded view of a section of the eyeglass frame according to the invention around a hinge in an assembled state and showing also the constituent items in an exploded view.

Best Mode for Carrying out the Invention

[0017] All figures are schematic and not necessarily to scale and show only details that are essential for understanding the invention, while other details are omitted. In all figures the same references are used about identical or similar items.
In the preferred embodiment, the axis of the semi-cylindrical surface 15 is included in a plane through the top surfaces of the lands 17. The shape, the extension, and mutual spacing of the lands are adapted so that the pivot insert 14 can be registered with the end portion of the front end piece, as shown in Fig. 2a, for engagement of the lands in the open notch and the slot, respectively. The lands are symmetrical in order to register with the front end piece in either of two orientations, distinguished by a turn through 180°. This simplifies the assembly procedure.

The height of the lands compared to the base surface is preferably selected to be equivalent to half the thickness of the plate material of the front end piece. Thus, in case of a plate thickness of 0.7 mm, a height of the lands of 0.35 mm is preferred. This will permit the placement of two pivot inserts 14 in opposing relation and sandwiching the front end piece between them. The pivot insert is made of a plastic material with suitable frictional and sliding properties for cooperating with the barrel. Suitable materials comprise polymers, and in particular polyacetal.

Reference is now made to Fig. 5 showing a view of a hinge 5 according to the invention. This hinge mainly comprises the end of the front end piece 6, the end of a temple bar 10 and two pivot inserts 14. The two pivot inserts are placed on each side of the end of the front end piece with the lands serving as mating protrusions pegged into the notch and the slot, respectively. The two semi-cylindrical pivot inserts provide together a substantially cylindrical surface contacted by the barrel inner face.

The cylindrical surface and the barrel inner face thus serve as a cooperating pair of friction members. The parts are so adapted that the barrel inner face 13 urges the pivot inserts 14 together around the pintle core in the end of the front end piece by the resilient force of the barrel. The biasing forces are fully balanced in order that the hinge ensures the mutual fixation of the two hinge parts without creating any net forces to be taken up by other components. The biasing forces ensure that the friction is maintained and that any play in the hinge is eliminated in any orientation of the parts.

The wrapped tongue 11 is threaded through the slot 8 and ensures the axial restraint of the hinge. The breast 12 by the barrel inner face cooperates with the exterior side of the front end piece 6 to form a stop for the pivoting of the hinge in the position shown in Fig. 5.

The hinge is manufactured in such manner that initially the plate parts are cut and wrapped or formed into shape. Subsequently the tongue 11 is entered through the slot so as to loosely engage the hinge. A first pivot insert 14 is introduced between the tongue and a respective side of the front end piece, play in the hinge at this stage permitting lateral displacement of the temple bar relative to the front end piece to allow room for the insertion.

Then the temple bar is pivoted to the position shown in Fig. 5, and the barrel is resiliently deformed by forcing the temple bar backwards while its breast 12 bears on the exterior side of the front end piece. The barrel is expanded resiliently during this process to an extent which leaves room for the insertion of a second pivot insert 14 between the wide portion of the barrel inner face and the respective face of the front end piece opposite the first pivot insert. Once the second pivot insert is in position with the lands in the notches, the temple bar is relieved, and the barrel clasps about the pair of pivot inserts and the pintle core and keeps the pivot inserts in place.

Although specific embodiments have been explained above for the elucidation of the invention, these embodiments are in no way considered to limit the scope of the invention which may be varied in many ways by one skilled in the art within the scope of the appended claims.

Claims

1. An eyeglass frame comprising a frame front, a pair of temple bars and respective hinge means, adapted to provide a pivotal connection of each temple bar with the frame front, each hinge means comprising a barrel with an axial slit, adapted for frictional cooperation with a mating counterpart of the hinge means, the hinge means comprising resilient spring means adapted for urging parts of the hinge means into frictional interaction by applying radial biasing forces onto at least one part of the hinge means, characterized in that a plate extension (11) of a first part of the hinge means (5) is wrapped around an axis such as to provide a resilient barrel with an axial slit, a hinge pintle is provided in the opposite part of the hinge means and being surrounded by the barrel, a friction member (14,14) is introduced between the pintle core (9) of the hinge plate and the barrel such as to allow the barrel to clasp about the friction member and the pintle core wherein the friction member is provided in the form of a pivot part received in rotatable fashion by the barrel and by the pivot part comprising said pintle core (9), the friction member being split along at least one generally axial plane into at least two pivot inserts (14) which pivot inserts are adapted to be assembled into a service position in which they provide a consolidated pintle exterior surface (15) effectively providing a generally cylindrical outer surface.

2. The eyeglass frame according to claim 1, characterized by the spring means being adapted to hold
together the pivot inserts (14) in the service position.

3. The eyeglass frame according to claim 1, characterized by the pivot inserts (14) comprising mating protrusions (17) and recesses adapted for securing mutual registering of the pivot inserts (14) and adapted for securing registering with the pintle core.

4. The eyeglass frame according to claim 1, characterized by the barrel comprising a strip extension of the frame front (4), which extension has been wrapped to provide the barrel with the axial slit.

5. The eyeglass frame according to claim 1, characterized by at least one of the hinge parts comprising plastic members (14).

6. The eyeglass frame according to claim 1, characterized by the frame front (4) comprising a sheet of plate which has been stamped or cut.

7. A method of manufacturing an eyeglass frame comprising a frame front, a pair of temple bars and respective hinge means, adapted to provide a pivotal connection of each temple bar with the frame front, characterized by each hinge means being manufactured by

- providing a plate extension,
- wrapping the plate extension so as to provide a resilient barrel with an axial slit, which barrel provides a first part of the hinge means,
- providing a hinge pintle in an opposite part of the hinge means,
- placing the barrel in surrounding relation with the hinge pintle,
- resiliently expanding the barrel and introducing a friction member between the pintle core and the barrel, and
- relieving the barrel to allow it to clasp about the friction member and the core.

8. The method according to claim 7, characterized by the step of providing the plate extension comprising stamping or cutting a strip of metal plate.

9. The method according to claim 7, characterized by the step of providing the plate extension comprising the selection of a sheet such as titanium.

Patentansprüche

1. Brillengestell, das eine Gestellvorderseite, ein Paar Schläfenstangen und jeweilige Scharnierröhrchen, die dazu eingerichtet sind, jede Schläfenstange mit der Gestellvorderseite drehlich zu verbinden, umfaßt, wobei jedes Scharnierröhrchen ein Rohr mit einem Axialschlitz umfaßt, der dazu eingerichtet ist, durch Frikition mit einem überestimmenden Gegenstück von den Scharnierröhrchen zusammen zu wirken, wobei das Scharnierrohr elastische Federmittel umfaßt, die dazu eingerichtet sind, Teile des Scharnierröhrchens zur friktionsmäßigen Einwirkung zu zwingen, indem radiale Diagonalkräfte an mindestens einem Teil des Scharnierröhrchens angewendet werden, dadurch gekennzeichnet, daß die Plattenverlängerung (11) eines ersten Teils von dem Scharnierröhrchen (5) um eine Achse herumgewickelt ist, um ein elastisches Rohr mit einem Axialschlitz vorzusehen, wobei eine Scharnierangleiste im gegenüberliegenden Teil des Scharnierröhrchens vorgesehen ist und vom Rohr umgeben wird, wobei ein Friktonselement (14,14) zwischen dem Angelkern (9) der Scharnierangleiste und dem Rohr eingeführt wird, so daß es dem Rohr ermöglicht wird, rund um das Friktonselement und dem Angelkern zu greifen, wobei das Friktonselement in der Form eines Drehteils vorgesehen ist, der auf rotierbarer Weise von dem Rohr aufgenommen wird wobei der Drehteil die genannte Angelkern (9) umfaßt, wobei das Friktonselement entlang mindestens einer hauptsächlich axialen Ebene in mindestens zwei Dreheinsätze (14) geteilt ist, wobei die Dreheinsätze dazu eingerichtet sind, in einer Dienstposition gesammelt zu werden, in der sie eine vereinigte äußere Angeloberfläche (15) ausmachen, wobei praktisch eine hauptsächlich zylindrische äußeren Oberfläche vorgesehen wird.

2. Brillengestell gemäß Anspruch 1, dadurch gekennzeichnet, daß die Federmittel dazu eingerichtet sind, die Dreheinsätze (14) in der Dienstposition zusammenzuhalten.

3. Brillengestell gemäß Anspruch 1, dadurch gekennzeichnet, daß die Dreheinsätze (14) überestimmende Vorsprünge (17) und Aussparungen zur Sicherung von gegenseitiger Registrierung der Dreheinsätze (14) umfassen und dazu eingerichtet ist, Registrierung mit dem Angelkern zu sichern.

4. Brillengestell gemäß Anspruch 1, dadurch gekennzeichnet, daß das Rohr eine Streifenverlängerung der Gestellvorderseite (4) umfaßt, welche Verlängerung gewickelt worden ist, um das Rohr mit dem Axialschlitz zu versehen.

5. Brillengestell gemäß Anspruch 1, dadurch gekennzeichnet, daß mindestens einer der Scharnierteilen Plastikelemente (14) umfaßt.

6. Brillengestell gemäß Anspruch 1, dadurch gekennzeichnet, daß die Gestellvorderseite (4) ein Plattenblech umfaßt, das ausgestanzt oder ausge-
Monture de lunettes comprenant une monture frontale, une paire de branches et des organes de charnières respectives, destinés à prévoir une liaison pivotante de chaque branche avec la monture frontale, chaque organe de charnière comprenant un tube muni d’une fente axiale, adapté à la coopération frictionnelle avec une contrepartie correspondante des organes de charnières, les organes de charnières comprenant des organes de ressorts élastiques, adaptés pour activer des parties des organes de charnières dans une interaction de friction en appliquant des forces de polarisation radiales sur au moins une partie des organes de charnières; caractérisée en ce qu’une extension de plaque (11) de la première partie des organes de charnière (5) est enveloppée autour d’un axe pour prévoir un tube élastique muni d’une fente axiale, un tourillon de charnière étant prévu dans la partie opposée des organes de charnières et étant entouré du tube, un élément de frottement (14, 14) étant introduit entre le coeur du tourillon (9) du tourillon de charnière et le tube à manière de permettre au tube de s’accrocher autour de l’éléments de friction et le coeur du tourillon, où l’élément de friction est prévu sous forme d’une partie de pivot recue dans une manière rotative par le tube, et par la partie de pivot comprenant ledit coeur de tourillon (9), l’élément de friction étant divisé au long d’un plan au moins généralement axial dans au moins deux insertions de pivot (14), lesdites insertions de pivot sont adaptées à être reliées dans une position de service dans laquelle elles prévoient une surface extérieure de tourillon consolidée (15) prévoyant d’une manière efficace une surface extérieure généralement cylindrique.

1. Monture de lunettes comprenant une monture frontale, une paire de branches et des organes de charnières respectives, destinés à prévoir une liaison pivotante de chaque branche avec la monture frontale, chaque organe de charnière comprenant un tube muni d’une fente axiale, adapté à la coopération frictionnelle avec une contrepartie correspondante des organes de charnières, les organes de charnières comprenant des organes de ressorts élastiques, adaptés pour activer des parties des organes de charnières dans une interaction de friction en appliquant des forces de polarisation radiales sur au moins une partie des organes de charnières; caractérisée en ce qu’une extension de plaque (11) de la première partie des organes de charnière (5) est enveloppée autour d’un axe pour prévoir un tube élastique muni d’une fente axiale, un tourillon de charnière étant prévu dans la partie opposée des organes de charnières et étant entouré du tube, un élément de frottement (14, 14) étant introduit entre le coeur du tourillon (9) du tourillon de charnière et le tube à manière de permettre au tube de s’accrocher autour de l’éléments de friction et le coeur du tourillon, où l’élément de friction est prévu sous forme d’une partie de pivot recue dans une manière rotative par le tube, et par la partie de pivot comprenant ledit coeur de tourillon (9), l’élément de friction étant divisé au long d’un plan au moins généralement axial dans au moins deux insertions de pivot (14), lesdites insertions de pivot sont adaptées à être reliées dans une position de service dans laquelle elles prévoient une surface extérieure de tourillon consolidée (15) prévoyant d’une manière efficace une surface extérieure généralement cylindrique.
nant avec le tourillon de charnière,
- en expandant de manière élastique le tube et
 en introduisant un élément de friction entre le
 coeur de tourillon et le tube, et
- en relâchant le tube pour lui permettre de s’ac-
 crocher autour de l’élément de friction et le
 coeur.

8. Méthode selon la revendication 7, **caractérisée en ce que** la prévision de l’extension de plaque com-
 porte l’étampage ou le découpage d’une bande de
 tôle métallique.

9. Méthode selon la revendication 7, **caractérisée en ce que** la prévision de l’extension de plaque com-
 porte la sélection d’un tôle comme par exemple le
 titane.