Use of hydantoin derivatives for the preparation of a medicament for the treatment of intractable vasculitis.

Verwendung von Hydantoinderivaten zur Herstellung eines Medikaments zur Behandlung von refraktärer Vasculitis.

Utilisation de dérivés d’hydantoine pour la préparation d’un médicament pour le traitement des la vasculite réfractaire.

Designated Contracting States:
- AT
- BE
- CH
- CY
- DE
- DK
- ES
- FI
- FR
- GB
- GR
- IE
- IT
- LI
- LU
- MC
- NL
- PT
- SE

Description

[0001] The present invention relates to a novel therapeutic agent for intractable vasculitis containing a hydantoin derivative or a pharmaceutically acceptable salt thereof as an effective ingredient.

Prior Art

[0002] The term “intractable vasculitis” is a specific classification term in Japan and it stands for a group of vasculitis syndrome belonging to intractable diseases. According to the Gist of Measures for Intractable Diseases issued by the Government, the intractable disease is defined as 1) disease where the cause is ambiguous, the therapeutic method therefor has not been established and there is a big possibility of resulting in a sequel and 2) disease where the progress is rather chronic and, since it requires not only a economical problem but also significant labor for nursing etc., it makes too much burden at home and mentally as well. Specific examples of the intractable vasculitis which is one of syndromes of intractable diseases defined as such are periarteritis nodosa (PN), Wegener’s granulomatosis (WG), malignant rheumatoid arthritis (MRA), Kawasaki disease vasculitis, Takayasu’s arteritis, Buerger’s disease, blood vessel Behçet disease, vasculitis of collagen disease, allergic granulomatous vasculitis, nonspecific inflammatory abdominal aortic aneurysm (IAAA), vasculitis related to anti-neutrophil cell antibody (ACNA), anti-phospholipid antibody syndrome and hypersensitive vasculitis. Concept and classification of those intractable diseases are mentioned in detail in a review by Professor Nagasawa (Rinsho Kagaku, 33(11), 1383-1387), etc.

[0003] Malignant rheumatoid arthritis (MRA) which is one of the intractable vasculitis is defined as a disease accompanied by intractable or sever clinical symptoms showing extra-articular symptoms such as vasculitis in addition to the symptoms of chronic rheumatoid arthritis (RA). It had been known already that there is a case where RA is accompanied by vasculitis. And, in 1954, Bevans et al reported two RA cases complicated with nodular polyarteritis-like vasculitis resulting in quick death and they proposed to call such a case “MRA” in a sense of its bad prognosis. This is the reason for the naming of MRA. In RA, various immune abnormalities such as the presence of rheumatoid factors (RF) in blood while, in MRA, much more and significant abnormalities than common RA such as increase of immune complex in blood, lowering of serum complement and positive anti-nuclear antibody are noted. Unlike RA where no death occurs, MRA has a characteristic feature that there are many dead cases due to extra-articular symptoms such as infectious diseases, vasculitis, rheumatoid lung and amyloidosis.

[0004] Numbers of patients suffering from MRA in Japan is estimated to be from 2,000 to 3,000 (about 0.6% of the patients suffering from RA). The age of onset of MRA has a peak in fifties and that is a bit higher age than the case of RA. With regard to sexuality, the proportion of male patients is more than the case in RA and the ratio of patients in terms of male:female is about 1:2. Although MRA is one of the features of RA, it is characteristic that its extra-articular symptom is more significant than common RA, that the percentage of death thereby is high and that there is an immune abnormality in its base. Accordingly, in the therapy of MRA, it is necessary to take the therapy for extra-articular symptom into consideration in addition to the therapy for common RA and it is particularly necessary to pay more importance to the therapy for immune abnormality.

[0005] As an anti-inflammatory therapy, nonsteroidal anti-inflammatory drugs (NSAIDs) and steroid anti-inflammatory drugs are used for the therapy of RA. Although NSAIDs are the basic therapeutic agents for articular diseases, their efficacy to extra-articular diseases is not so clear and, in addition, MRA has a tendency that articular symptoms are ameliorated during the period where the extra-articular symptom is significant. Thus, it is difficult to evaluate the usefulness of the NSAIDs in the therapy of MRA and that has not been clarified yet. On the other hand, steroids are used as basic therapeutic agents for RA but, since onset of MRA often happens due to a sudden increase or decrease of steroids, it has been said their use must be careful. It has been reported that a steroid pulse therapy where intravenous drip infusion of 1,000 mg of methylpredonisolone is carried out for three days is useful for severe refractory RA and is useful not only for improvement in clinical symptoms but also for suppression of immune complex in blood and RF. However, when the pulse therapy is finished, there is a tendency that the state returns to the previous one within a relatively short period. Therefore, in order to maintain the effect, it is necessary to conduct immunotherapy together. Although it is likely that the pulse therapy is effective for MRA symptoms, the effect is not long-lasting and the said therapy is not able to be repeated frequently whereas that is considered to be an emergency therapy at present.

[0006] With regard to the drugs for immunotherapy, immunomodulators and immunosuppressants are used. Since slowly-acting anti-rheumatic agents such as gold sodium thiomolate (GST) and d-penicillamine (d-p) are classified into immunomodulators because of a sense that they improve the immune abnormality of RA but do not suppress the normal immune mechanism. It is believed that GST mainly functions the macrophage mechanism while d-p improves RA by means of suppression of T-helper cell function. However, immunomodulators are slow-acting and do not serve the purpose when used after MRA symptom occurs and, in addition, their efficacy to severe MRA symptoms has not been confirmed yet.

[0007] Although steroids and NSAIDs have an immunosuppressing action, the term immunosuppressants usually
mean cytotoxic drugs such as cyclophosphamide (CY), azathioprine (ZA), methotrexate (MTX), etc. and cyclosporin A (CsA). CY is an alkylating agent and damages DNA by inhibiting its synthesis whereby it achieves an immunosuppressing action. Although this agent has been proved to be effective to RA by a double blind test, its allowed use is limited to severe RA where common therapy is not effective due to its strong side effect. There is also a report that they are effective to vasculitis. AZ and MTX are antimetabolic immunosuppressants and it has been reported that, although they have weaker side effect than CY, their immunosuppressing action is weak as well. Effect of the MTX therapy to MRA is ambiguous and it is believed that its intermittent administration in low doses will probably have a therapeutic significance only as an immunomodulator. Action mechanism of CsA is believed to be mostly due to suppression against IL-2 production of the T-helper cell function and due to inhibition against IL-2 receptor expression of cytotoxic cells. With regard to the efficacy of CsA to RA, Dougados et al reported that, in a double blind test, it showed a significant improving effect compared to the control group but it resulted in nephropathy in about one half of the treated group.

As mentioned above, the drugs used for the therapy of intractable vasculitis such as malignant rheumatoid arthritis at present have their merits and demerits in view of expression of pharmaceutical effect and onset of side effect. Thus, no suitable therapeutic agent has not been found yet and there is a brisk demand in clinical field for therapeutic agents having high safety and effect.

The several compounds of the present invention were found as novel substances having growth suppressing action to plants and, as a result of investigations after that, those compounds including analogs thereof have been found to have pharmacological actions such as hypoglycemic action and hypolipemic action and exhibit low toxicity resulting in almost no side effect (cf. Japanese Laid-Open Patent Publications Sho-57/114578, Sho-60/188373, Sho-61/122275, Sho-62/45525, Sho-62/14, Hei-01/75473, Hei-01/299276, etc.). It has been also reported that the compounds of the present invention are useful as agents for lowering the uremic toxin (Japanese Laid-Open Patent Publication Hei-03/72463) and further that they are useful as eliminators of active oxygen and free radicals (Japanese Laid-Open Patent Publication Hei-09/227377). EP 780 125 discloses the use of hydantoines of formula (I) for the treatment of Behçet disease. This document however does not mention the use in relation to the treatment of Periarteritis Nadara, Wegener's granulomatosis, malignant rheumatoid arthritis, Burger's disease, antiphospholipid antibody syndrome. However, in any of the above-mentioned patent publications, there is no description on the therapeutic effect of the compounds of the present invention for intractable diseases such as malignant rheumatoid arthritis and, in addition, there has been no report suggesting that at all.

Summary of the Invention

The present invention is to solve the above-mentioned problems in the prior art and is to offer a highly safe therapeutic agent for intractable diseases such as malignant rheumatoid arthritis which has been briskly demanded by patients and clinical field.

The present inventors have carried out intensive investigations and have found that the compounds of the present invention have a therapeutic effect for malignant rheumatoid arthritis whereupon the present invention has been accomplished. Since the compounds of the present invention are less toxic and have almost no side effect, they are quite useful as the safe drugs for the therapy of intractable vasculitis such as malignant rheumatoid arthritis.

The effective ingredient of the therapeutic agent for intractable vasculitis according to the present invention is a hydantoin derivative represented by the following formula (I).

\[
\text{I}
\]

wherein each of R$_1$ and R$_2$, which may be the same or different, represents hydrogen, an alkyl group or a cycloalkyl group; and each of X and Y, which may be the same or different, represents hydrogen, hydroxyl group, an alkyl group or an alkoxy group, or X and Y together represent an oxo group.
Brief Explanation of the Drawings

[0013]

5 Figure 1 is an example showing the result of the effect of the compound of the present invention to the survival rate of MRL/lpr mice.

10 Figure 2 is an example showing the result of the effect of the compound of the present invention to arthritis of MRL/lpr mice.

15 Figure 3 is an example showing the effect of the compound of the present invention to arteritis (cutaneous ulcer or auricular infarcted necrosis) of MRL/lpr mice.

Figure 4 is an example showing the suppressive effect of the compound of the present invention against the increase of TM level in blood of MRL/lpr mice.

Detailed Description of the Invention

[0014] In the above mentioned formula (I), each of R₁ and R₂, which may be the same or different, represents hydrogen, an alkyl group, preferably a straight or branched alkyl group having 1 to 20 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, isopentyl, neopentyl, t-pentyl, hexyl, dimethylbutyl, heptyl, octyl, nonyl, decyl or stearyl; or a cycloalkyl group, preferably a cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.

[0015] Each of X and Y, which may be the same or different, represents hydrogen, hydroxyl group, an alkyl group, preferably a straight or branched alkyl group having 1 to 3 carbon atoms such as methyl, ethyl, propyl, isopropyl; or an alkoxy group, preferably a straight or branched alkoxy group having 1 to 5 carbon atoms such as methoxy, ethoxy, propoxy, isoproxy, butoxy, isobutoxy, sec-butoxy, t-butoxy, pentoxy, isopentoxy, neopentoxy; or X and Y together represent an oxo group.

[0016] Preferred compounds of the present invention are indicated as follows.

Compound 1	1-Methylhydantoin
Compound 2	3-Methylhydantoin
Compound 3	1-Ethylhydantoin
Compound 4	1-Propylhydantoin
Compound 5	1-Butylhydantoin
Compound 6	1-Bicyclohexylhydantoin
Compound 7	1-Hexylhydantoin
Compound 8	1-(1,3-Dimethylbutyl)hydantoin
Compound 9	1-Decylhydantoin
Compound 10	1-Stearylhydantoin
Compound 11	1,3-Dimethylhydantoin
Compound 12	3,5-Dimethylhydantoin
Compound 13	1-Cyclopentylhydantoin
Compound 14	1-Cyclohexylhydantoin
Compound 15	1-Cyclohexyl-3-methylhydantoin
Compound 16	1-Cyclohexyl-5-methylhydantoin
Compound 17	3-Cyclohexylhydantoin
Compound 18	1,3-Dicyclohexylhydantoin
Compound 19	5-Hydroxyhydantoin
Compound 20	5-Hydroxy-1-methylhydantoin
Compound 21	5-Hydroxy-3-methylhydantoin
Compound 22	5-Hydroxy-1-ethylhydantoin
Compound 23	5-Hydroxy-1-propylhydantoin
Compound 24	5-Hydroxy-1-butylhydantoin
Compound 25	5-Hydroxy-1-(1,3-dimethylbutyl)hydantoin
The hydantoin derivatives of the present invention include the pharmaceutically acceptable salts of the compounds represented by the above given formula (I) such as acid addition salts with hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, phosphoric acid, perchloric acid, thiocyanic acid, boric acid, formic acid, acetic acid, haloacetic acid, propionic acid, glycolic acid, citric acid, tartaric acid, succinic acid, gluconic acid, lactic acid, malonic acid, fumaric acid, anthranilic acid, benzoic acid, cinnamic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, sulfuric acid, or salts with alkali metal such as sodium and potassium, salts with alkaline-earth metal such as calcium, magnesium and barium, salts with other metals such as aluminum and zinc. Those salts may be manufactured by known methods from the hydantoin derivatives of the present invention in a free state or may be mutually converted.
When there are steric isomers such as cis-trans isomer, optical isomer, conformational isomer, hydrate and complex for the substances of the present invention, the present invention includes any and all of them. The compounds of the present invention and the methods for manufacturing them are disclosed, for example, in Japanese Laid Open (Kokai) Nos. 61/122275 and 62/14.

The substance of the present invention can be made into pharmaceutical preparations by a combination with a suitable pharmaceutical carriers or diluents. Any of the known methods for providing preparations, such as for oral administrations (e.g. tablets, capsules, powders, liquids, etc.) and for parenteral administrations (e.g. for subcutaneous, intravenous, intramuscular, intrarectal and intranasal administrations) may be used to produce the pharmaceutical compositions of the present invention. In preparing the preparations, the substance of the present invention may be used in the form of their pharmaceutically acceptable salts, and also can be used either solely or jointly together with other pharmaceutically active ingredients.

In the case of preparations for oral administration, the substance of the present invention as it is or together with commonly-used excipients such as a suitable additive (e.g. lactose, mannitol, corn starch, potato starch, potassium citrate, etc.) is mixed with binders such as cellulose derivatives (e.g. crystalline cellulose, hydroxypropylcellulose, etc.), gum arabicum, corn starch, gelatin, etc., disintegrating agents such as corn starch, potato starch, calcium carboxymethylcellulose, etc., lubricating agents such as talc, magnesium stearate, etc. and others including bulking agents, moisturizing agents, buffers, preservatives, perfumes and the like to give tablets, diluted powders, granules or capsules.

In the case of injections, it is possible to prepare the solutions or the suspensions in an aqueous and non-aqueous solvents such as distilled water for injection, physiological saline solution, Ringer’s solution, plant oil, synthetic fatty acid glycerides, higher fatty acid esters, propylene glycol, etc.

It is also possible, depending upon the type of the disease, to prepare the pharmaceutical preparations which are other than those which were mentioned already and are suitable for the therapy such as, for example, syrup, suppositories, inhalations, aerosol preparations, collyriums, medicines for external use (e.g. ointments, gels, poultices) etc.

The preferred dose of the substance of the present invention may vary depending upon the object to be administered the patient, form of the preparation, method for the administration, term for the administration, etc. and, in order to achieve a desired effect, 1-1,000 mg per day, preferably 5-600 mg per day may be usually given to common adults by oral route. In the case of a parenteral administration such as by injection, it is preferred that, due to the influence of the absorption, etc., a level of from 1/3 to 1/10 of the above given dose by oral route is administered.

The embodiments and preferred embodiments of the therapeutic agent for intractable vasculitis containing the compound of the present invention represented by the above given formula (I) are given as follows.

(1) A therapeutic agent for intractable vasculitis containing the compound represented by the formula (I) as an active ingredient.

(2) An agent according to (1) wherein at least one of X and Y represents hydrogen.

(3) An agent according to (2) wherein the other of X and Y represents a hydroxyl group.

(4) An agent according to (2) wherein the other of X and Y represents an alkoxy group.

(5) An agent according to (2) wherein the other of X and Y represents an alkyl group.

(6) An agent according to (2) wherein X and Y both represent hydrogen.

(7) An agent according to (1) wherein X and Y together represent an oxo group.

(8) An agent according to any of (1) to (7), wherein one of R₁ and R₂ represents an alkyl group and the other represents hydrogen.

(9) An agent according to (8) wherein R₂ represents hydrogen and R₁ represents an alkyl group, preferably a C₃₋₄-alkyl group, more preferably a methyl group.

(10) An agent according to any of (1) to (9) as a therapeutic agent for malignant rheumatoid arthritis.

Since it has been clinically confirmed that 5-hydroxy-1-methylhydantoin has low toxicity and less side effect, this compound can be employed as the most preferred compound of the present invention.
The following example, which are illustrative only and not intended to limit the scope of the invention, describes the present invention more concretely.

Examples

In the following Examples, pharmacological tests were carried out using MRL/lpr mice which are model animals for MRA. MRL/lpr mice have been also known as the model animals for systemic lupus erythematosus (SLE) which is a human autoimmune disease and the said mice have been known to develop arteritis such as lupus nephritis, arthritis, skin ulcer and auricular infarcted necrosis and lymph node enlargement upon growing older. In addition to onset of arthritis accompanied by deformation, existence of RF is noted in MRL/lpr mice and, therefore, they are utilized as models for human RA as well. However, since systemic arteritis (cutaneous ulcer and auricular infarcted necrosis) is generated together with chronic arthritis in them, MRL/lpr mice are used as more appropriate models for MRA.

Example 1

Experimental animals:

SPF female MRL/lpr mice of eight weeks old were purchased from Nippon Charles River Co., Ltd. and each 19 mice were placed in each cage in a breeding chamber where the room temperature was 22 ± 2°C, humidity was 55 ± 10% and a brightness/darkness cycle was 12 hours (8:00 ~ 20:00), then quarantined and acclimated for three weeks by giving feed and tap water freely, and subjected to the experiments. Method for administration of the test drugs: The compound of the present invention (100 and 200 mg/kg/day) and MTX as a positive control (2 mg/kg/day) were administered after dissolving in drinking water. The mice of an onset control group was let drink the tap water freely, the amount of the water taken was measured every day, and concentration of the solution of each drug was adjusted so as to make the dose constant. Amount of the water taken at the initiation of the administration was estimated as 5 ml/mouse based upon the literatures and such an amount was given.

Statistical analysis:

The analysis was carried out using Stat View (Long-rank test; Kruskal-Wallis test) and Fisher (direct probability method) which were statistical softwares.

1. Effect to survival rate of MRL/lpr mice

Most of the cause of death of MRL/lpr mice is believed to be renal insufficiency or vascular disturbance and the 50% survival rate was reported to be about 25 weeks old. Weeks of death of MRL/lpr mice in a group administered with the compound of the present invention (100 and 200 mg/kg/day), in a group administered with MTX (2 mg/kg every two days) as a positive control drug and in a control group were recorded and the survival rate in each of the groups was investigated. Graph of survival curves of the survival rates was prepared by Kaplan-Meier method while significant difference was statistically analyzed by Log-rank test.

An example of the result showing the effect of the compound of the present invention on the survival rate of MRL/lpr mice is shown in Figure 1. The survival rate (on the 23rd week) of the onset control group was 61% (11 mice/18 mice) while that of a group administered with the compound 21 of the present invention (100 mg/kg/day) was 78% (14 mice/18 mice). Further, in a high-dose group of the compound 21 of the present invention (200 mg/kg/day), the survival rate was 100% (19 mice/19 mice) where the dead case was none and elongation of the life period was noted significantly (p < 0.01). However, in the group administered with MTX, the survival rate was significantly (p < 0.05) lowered to 21% (4 mice/19 mice) showing the strong side effect of the immunosuppressant.

2. Effect to arthritis

Degree of onset of arthritis in MRL/lpr mice was investigated in the same group constitutions as above. Observations were conducted on the last day (23rd week) of the experiment and the degree of arthritis was evaluated in terms of the value of 0-3 per each leg for the degree of flare and edema and was expressed by the total score (0-12). With regard to the score for arthritis, "mean value" ("standard error" was calculated for each group, deviation was checked by a Kruskal-Wallis test and, after that, the significant difference to the control group to which no agent was administered was analyzed by means of a multiple comparison (Dunnet method).

An example of the result showing the effect of the compound of the present invention to arthritis of MRL/lpr mice is shown in Figure 2. The score for arthritis is 4.2 in average in an onset control group while, in the low-dose
group of the compound 21 of the present invention (100 mg/kg/day), a tendency of suppression was noted and, in the high-dose group of the compound 21 of the present invention (200 mg/kg/day), a significant (p < 0.05) suppression was noted. Incidentally, a significant (p < 0.01) suppression was noted in the MTX-administered group as well but that is a result in the only four cases which were still alive.

(3) Effect to arteritis

[0034] Arteritis (ulcerative dermatitis or auricular infarcted necrosis) was investigated in MRL/lpr mice in the same group constitution as above. Evaluation of arteritis was carried out by observing the ulcerative skin of the back and auricular infarcted necrosis on the last day of the experiment (at 23 weeks old) and expressed by its frequency. The judges were not informed of the content of the treatment (such as the fact whether the test drug was administered or not) but were asked to objectively conduct the judgement for the symptom scores (arthritis and arteritis). With regard to the frequency of onset of arteritis, Fischer's direct probability method was used for determining the significant difference to the onset control group.

[0035] An example of the result of the effect of the compound of the present invention to arteritis (cutaneous ulcer or auricular infarcted necrosis) of MRL/lpr mice is shown in Figure 3. Cutaneous ulcer or auricular infarcted necrosis was observed from about four to five months age. The onset frequency of the lesion was 54.5% (6 mice/11 mice) in an onset control group while, in the MRL/lpr mice administered with the compound 21 of the present invention, it was 0% (0 mouse/14 mice) and 5.3% (1 mouse/19 mice) in the low-dose group (100 mg/kg/day) and high-dose group (200 mg/kg/day), respectively whereupon remarkable and significant (p < 0.01) suppression was noted.

Example 2

[0036] The same MRL/lpr mice (5 weeks old) as Example 1 were purchased and the compound 21 of the present invention was orally administered in a same manner as Example 1 (10 mice/group, 100 and 200 mg/kg/day). Blood samples were collected at 2 week intervals and thrombomodulin (TM) level in plasma was determined by EIA. TM is a protein on vascular endothelial cells and its level in blood increases by the damage of vascular endothelium such as inflammation. Therefore, TM level in blood can be used as a marker for onset of vasculitis. C3H/He mice, in which vascular injury does not occurred, were used as a control.

[0037] An example of the results is shown in Figure 4. TM level in blood of MRL/lpr mice is significantly higher than that of C3H/He mice after 14 weeks old. On a group of MRL/lpr mice treated with the compound of the present invention, the increase of TM level in blood was prevented and the level was similar to a control level.

Effect of the Invention

[0038] It is apparent from the results of Figure 2 and Figure 3, the compounds of the present invention significantly suppressed the generation of arthritis and arteritis (cutaneous ulcer and auricular infarcted necrosis) which were naturally developed in MRL/lpr mice. With their growth to older, this model animal (MRL/lpr mouse) shows characteristic pathological symptoms such as generation of cutaneous ulcer and auricular infarcted necrosis which are able to be judged even from appearance. During the investigation using the said pathological model animals, the present inventors have unexpectedly found that, in the group administered with the compound of the present invention, such auricular necrosis and the like were rarely noted. So, after their intensive investigations, new pharmacological action of the compounds of the present invention was confirmed. Cutaneous ulcer and auricular infarcted necrosis are developed as a result of generation of arteritis and the MRL/lpr mice are recognized to be pathological model animals for intractable vasculitis. Accordingly, the compounds of the present invention are quite useful as therapeutic and preventive agents for intractable vasculitis such as malignant rheumatoid arthritis (MRA), periarthritis nodosa (PN), Wegener's granulomatosis (WG), Buerger disease, anti-phospholipid antibody syndrome. As shown in Figure 4, the compound of the present invention significantly prevents the increase of TM level in blood, a marker for onset of vasculitis. By the data, the inventors can also confirm that the compound of the present invention has an excellent effect on intractable vasculitis.

[0039] It is also apparent from Figure 1 that the compounds of the present invention significantly elongated the survival rate of MRL/lpr mice. Although an immunosuppressive methotrexate (MTX) used as a positive control agent also significantly suppressed the onset of arthritis and arteritis (cutaneous ulcer and auricular infarcted necrosis), it has a strong side effect and the survival rate thereby was lower than that in the group which was not administered with the test drug. On the contrary, the compound of the present invention not only suppressed the onset of arthritis and arteritis but also elongated the survival rate. Until now, it has been shown already by animal tests and clinical tests that the compounds of the present invention have almost no side effect and, therefore, the compounds of the present invention exhibit both high safety and therapeutic effect as compared with the conventional drugs. Consequently, they
are the drugs which are able to meet with the requirements of patients and clinical field as preferable drugs to intractable vasculitis such as malignant rheumatoid arthritis for which no suitable therapeutic agent is available at present whereby the present invention has a very high usefulness.

Claims

1. Use of a hydantoin derivative represented by the formula (I) or a pharmaceutically acceptable salt thereof

![Chemical Structure](image)

wherein each of R_1 and R_2, which may be the same or different, represents hydrogen, an alkyl group or a cycloalkyl group; and each of X and Y, which may be the same or different, represents hydrogen, hydroxyl group, an alkyl group or an alkoxy group, or X and Y together represent an oxo group; as an effective ingredient in the manufacture of a pharmaceutical composition effective in the therapy and prevention of periarteritis nodosa (PN), Wegener's granulomatosis (WG), malignant rheumatoid arthritis (MRA), Burger's disease and anti-phospholipid antibody syndrome.

2. Use according to claim 1, wherein at least one of X and Y represents hydrogen.

3. Use according to claim 2, wherein the other one of X and Y is selected from hydrogen, a hydroxyl group, an alkoxy group and an alkyl group.

4. Use according to claim 1, wherein X and Y together represent an oxo group.

5. Use according to any of the claims 1 to 4, wherein one of R_1 and R_2 represents an alkyl group and the other represents hydrogen.

6. Use according to claim 5, wherein R_2 represents hydrogen and R_1 represents an alkyl group, preferably a C_{1-4}-alkyl group, more preferably a methyl group.

7. Use according to any of claims 1 to 6, wherein the pharmaceutical composition is effective in the treatment of malignant rheumatoid arthritis.

Patentansprüche

1. Verwendung eines Hydantoinderivats der Formel (I) oder eines pharmazeutisch annehmbaren Salzes davon:

![Chemical Structure](image)

 worin R_1 und R_2, die identisch oder voneinander verschieden sein können, jeweils Wasserstoff, eine Alkylgruppe
oder eine Cycloalkylgruppe repräsentieren, und X und Y, die identisch oder voneinander verschieden sein können, repräsentieren jeweils Wasserstoff, eine Hydroxygruppe, eine Alkylgruppe oder eine Alkoxygruppe, oder X und Y bilden zusammen eine Oxogruppe; als wirksamem Bestandteil bei der Herstellung einer pharmazeutischen Zusammensetzung, die wirksam ist in der Therapie und Prävention von Periarteritis nodosa (PN), Wegener's Granulomatose (WG), maligner rheumatoïder Arthritis (MRA), der Burger'schen Krankheit und des Antiphospholipid-Antikörpersyndroms.

2. Verwendung gemäss Anspruch 1, worin mindestens eines von X und Y Wasserstoff ist.

4. Verwendung gemäss Anspruch 1, worin X und Y zusammen eine Oxogruppe bilden.

5. Verwendung gemäss mindestens einem der Ansprüche 1 bis 4, worin eines aus R₁ und R₂ eine Alkylgruppe repräsentiert, und das andere ist Wasserstoff.

7. Verwendung gemäss mindestens einem der Ansprüche 1 bis 6, worin die pharmazeutische Zusammensetzung wirksam ist zur Behandlung von maligner rheumatoïder Arthritis.

Revendications

1. Utilisation d'un dérivé d'hydantoïne représenté par la formule (I) ou d'un sel pharmaceutiquement acceptable de celui-ci

![Chemical Structure](image)

(I)

dans laquelle chaque R₁ et chaque R₂, qui peuvent être identiques ou différents, représentent l'atome d'hydrogène, un groupe alkyle ou un groupe cycloalkyle ; et chaque X et chaque Y, qui peuvent être identiques ou différents, représentent l'atome d'hydrogène, un groupe hydroxyde, un groupe alkyle ou un groupe alkoxy, ou X et Y ensemble représentent un groupe oxo ; comme ingrédient efficace dans la fabrication d'une composition pharmaceutique efficace dans le traitement et la prévention de la périartérite noueuse (PN), la granulomatose de Wegener (WG), la polyarthrite rhumatoïde maligne (MRA), la maladie de Burger et le syndrome des antiphospholipides.

2. Utilisation selon la revendication 1, dans laquelle au moins un des X et Y représente l'atome d'hydrogène.

3. Utilisation selon la revendication 2, dans laquelle l'autre X ou Y est choisi dans le groupe constitué de l'atome d'hydrogène, d'un groupe hydroxyde, d'un groupe alkoxy et d'un groupe alkyle.

4. Utilisation selon la revendication 1, dans laquelle X et Y ensemble représentent un groupe oxo.

5. Utilisation selon l'une quelconque des revendications 1 à 4, dans laquelle l'un des R₁ et R₂ représente un groupe alkyle et l'autre représente l'atome d'hydrogène.

6. Utilisation selon la revendication 5, dans laquelle R₂ représente l'atome d'hydrogène et R₁ représente un groupe alkyle, de préférence un groupe alkyle en C₁-₄, de manière encore préférée un groupe méthyle.
7. Utilisation selon l'une quelconque des revendications 1 à 6, dans laquelle la composition pharmaceutique est efficace dans le traitement de l'arthrite rhumatoïde maligne.
Figure 1

Graph 1:
- **Control**
- **Compound 21 (100mg/kg)**

Graph 2:
- **Control**
- **Compound 21 (200mg/kg)**

Graph 3:
- **Control**
- **MTX(2mg/kg)**

Analysis by Log-rank test
- **Graph 1:** $p = 0.0028$
- **Graph 3:** $p = 0.0206$
After deviation was checked by a Kruskal-Wallis test, the significant difference to the control group by means of a multiple comparison (Dunnet method).

*; p < 0.05, **; p < 0.01
Figure 3

Fisher's direct probability method
** ; p<0.01
Figure 4

18 weeks old

Plasma TM (ng/mL)

C3H/He Control 100 mg/kg 200 mg/kg

Compound 21

MRL/lpr

*; p<0.05, **; p<0.01