(19) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 08.01.2014 Bulletin 2014/02

(21) Application number: 99440319.4

(22) Date of filing: 16.11.1999

(54) Telecommunications network with a transport layer controlled by an internet protocol layer

Telekommunikationsnetzwerk mit einer durch eine internetprotokollschicht kontrollierte Transportschicht

Réseau de télécommunications avec une couche de transport contrôlée par une couche de protocole internet

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE LI LU MC NL PT SE

(30) Priority: 20.11.1998 IT MI982517

(43) Date of publication of application: 24.05.2000 Bulletin 2000/21

(73) Proprietor: Alcatel Lucent
75007 Paris (FR)

(72) Inventor: Coltro, Claudio
20060-Cassina de Pecchi (Milano) (IT)

(51) Int Cl.: H04Q 11/04 (2006.01)

(74) Representative: Mildner, Volker
Alcatel-Lucent Deutschland AG
Intellectual Property Business Group
Lorenzstrasse 10
70435 Stuttgart (DE)

(56) References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to the field of the telecommunications networks and more precisely to a telecommunications network having a data-centered structure.

[0002] The transmission network evolution leads to data-centered structures wherein services and related infrastructures will evolve and increase their potentialities towards the expectations and needs of the various service operators in a high competitiveness environment, wherein the data transmission and management portion will become more and more significant than the voice-related portion until the current conventional structures will be modified.

[0003] In the consolidated network structures the voice and data transport occurs by using synchronous hierarchy networks such as SDH and SONET, in which a series of important additional functionalities are also realized, like those known as OAM&P (Operation, Administration, Maintenance and Protection), as protection, supervision and re-configuration, so as to provide a complete network management. The transport network layer then interconnects with other layers, such as ATM (Asynchronous Transfer Mode) and IP (Internet Protocol) in a known manner.

[0004] This evolution of the networks towards data-centered structures recently has led to the creation of two known types of networks, a first one wherein the quality of service is ensured through the network congestion control, and a second one wherein the quality of service is provided by overprovisioning the network with respect to the whole traffic to be managed.

[0005] The first known type of network termed "IP-over-ATM short-cutting" operates in such a way that, once an IP traffic flow has been identified, this is passed from the IP network to the ATM layer, where a possible congestion is best controlled and quality is assured, and then it is transferred over the SDH or SONET layer. The network management function is performed in the ATM and/or SDH or SONET transport layer. A corresponding IP-ATM network is described in US 5,764,645.

[0006] The second known type of network, hereinafter termed network resource overprovisioning, uses high capacity connections forming part of an optical-level transmission layer, to interconnect the IP routers (known interconnection devices between the IP nodes) where all the OAM&P function resides. The transmission capacity is much greater than actually required: by ensuring that optical layer connections between the nodes are over-provisioned and capable of transporting sufficient band, one ensures that the IP network does not become congested.

[0007] Said two types of networks have a series of drawbacks which do not allow the problem of congestion to be solved in an effective manner without exceedingly increasing the cost of the network itself.

[0008] The first one has the drawback that the more the available bandwidth, the more the traffic increases, hence not allowing the congestion reduction; moreover, it is never easy to ensure that the connections between the routers are large enough to prevent the congestion, and therefore a continuous monitoring of the network congestion level is required to increase the capacity and reduce the queue times.

[0009] The second one requires some functionalities such as: traffic detailed management, parameter readjustment like bandwidth reservation, priority level determination, flow control and queue management in a very complicated and expensive manner. Moreover, this model is not applicable to Internet, since the latter is composed of a multiplicity of autonomously developing networks interconnected with each other.

[0010] Therefore, the object of the present invention is to overcome all the aforesaid drawbacks and to provide a new telecommunications network architecture, hereinafter referred to as "IP layer-controlled transmission network", based on an intelligent use of the transport transmission layer serving the IP layer.

[0011] In the following, a transmission layer with reference to the present invention is defined by any combination of PDH (Plesiochronous Digital Hierarchy), SDH (Synchronous Digital Hierarchy), SONET, WDM (Wavelength Division Multiplex) or optical network technologies which provides the necessary traffic relations and traffic transport capacities at the lowest cost.

[0012] Through the management interface, in case of congestion at some paths, the IP layer requests the transport layer more traffic connections in a manner corresponding to the service request by a customer in a public network or in a virtual private network (VPN). In contrast, in those areas where the problem of the congestion does not exist or is very rare, the IP layer may order the transport layer to release the existing traffic connections, thus determining a general increase in the efficiency and an optimization of the network resource allocation.

[0013] The wider the transport network serving the IP layer, the more efficient the resource allocation will be.

[0014] To achieve such objects, the present invention provides a telecommunication network as described in claim 1, which forms an integral part of the present description.

[0015] The present invention further provides the variants set forth in the dependent claims, which form an integral part of the present description.

[0016] The most evident advantages of the new network architecture are the following:
- vis-à-vis the first known type of network, "IP-over-ATM short-cutting", it does not use the ATM layer, thus avoiding the problem of the inefficient ATM cell mapping function, known as "cell tax";
- vis-à-vis the second known type of network, network resource overprovisioning, it uses the network and band resources only where necessary, ensuring a higher efficiency level in using the transport layer resources;
- in an international Internet network, the national service provider networks (ISP) can use the transport networks of the national service providers to manage the band requests and to control the congestions of the national networks, whilst the international portions of Internet can control the international transport networks to handle their band requests;
- the entire congestion control function is made by the IP layer, thus reducing the problem of the Quality of Service (QoS), namely packet loss or round trip delay.

[0017] Further objects and advantages of the present invention will be evident from the following detailed description of an embodiment thereof and from the attached drawings provided only by way of explanation and not of limitation, wherein:

- Figs. 1 and 2 show functional diagrams of the IP-layer controlled transmission network in accordance with the present invention;
- Fig. 3 shows a block diagram of a possible implementation of the management interface functionalities of Figs. 1 and 2;
- Fig. 4 shows an example of message flow through the management interface of Fig. 3.
- Figs. 5 to 9 show some further detailed examples of information flow exchange between the client and server layers, relating to some functions to be implemented.

[0018] With reference to Figs. 1 and 2, an IP layer controls an SDH/Sonet transport layer, which in turn may request connections with a high-capacity WDM/optical transmission layer.

[0019] This is implemented, in accordance with the present invention, by creating a management interface NM between the IP layer and the transport one which controls the configuration of the transport network itself: the IP layer acts as client and the transport layer acts as server.

[0020] In the known solutions, the IP and transport layers operate in an autonomous and independent manner, by exchanging only the pure traffic with each other through a known traffic interface TRI, that interconnects the transport network nodes with the IP network nodes provided with known devices termed routers ROU.

[0021] Therefore, in accordance with the present invention, an additional function is realized, said function being constituted by said management interface that, as shown in Fig. 2, splits into client function (CLI), residing in the IP layer, and server function (SER), residing in the Transport layer, respectively.

[0022] By means of the client portion CLI, the IP layer requests, possibly in a traffic increasing condition, more connections from the transport layer through the Server part SER, in a manner corresponding to the request for services by a customer in a public or virtual private network. On the contrary, the IP layer may order the transport layer to release the existing leased lines in those areas where the traffic decreases, thus determining an increase in the efficiency and an optimization of the network resource allocation.

[0023] Fig. 3 shows an example of the types of functionalities requested in the client CLI and server SER parts of the management interface NM.

[0024] The functionalities requested in the two parts of the interface are of the following types.

[0025] Functions of the client side CLI:
- resource inventory function: it collects information, taken from the transport layer, about the availability of communication resources which could be used by the IP layer;
- performance monitoring: it collects, from the transport layer, information to check whether the desired service quality is achieved by the transport layer itself;
- fault management: it requests alarm information from the transport layer;
- connection management: it requests the transport layer to establish a traffic connection configuration between some given ports used by IP routers to control the IP traffic congestion. In a similar way it may request the release of traffic connections if the latter are no longer necessary or they are underutilized.

Function of the server side SER:
- performance monitoring: it reports information from the transport layer on the network resources available to the IP layer;
- fault management: it processes alarm information from the transport layer to be reported to the IP layer;
- connection management: it carries out the requests from the IP layer to establish the traffic connection configurations between some given ports used by routers; in a similar way it may release traffic connections if these are no longer requested by the IP layer.

[0026] In order to provide such a functionality, information shall be exchanged between the IP and transport layers.

[0027] The information flowing from the client to the server is of the following type:
[0028] On the contrary, the information flowing in the opposite direction from server to client is of the following type:

- confirmation or rejection of the request for traffic connection configuration;
- confirmation or rejection of the quality of service request from the client;
- information about the requested resource inventory status of the transport network layer;
- confirmation of traffic connection release;
- reporting of alarm and performance monitoring information (on request);
- autonomous (spontaneous) alarm reporting.

[0029] In general, said functionalities requested in the client CLI and server SER parts of the management interface NM are of a known type, as e.g. described in the ITU-T Recommendation G.784, issued by the International Telecommunication Unit, concerning the SDH network management system organization, reference to which is made for a detailed description.

[0030] As to the information to be exchanged between the two layers for realizing said functionality, said information is present or can be directly obtained at the nodes of the respective IP and transmission layers.

[0031] The information necessary for the client part CLI can be obtained from the Internet Control Message Protocol (ICMP) of intercommunication between the IP Routers, for example relating to the Weighted Random Early Detection (WRED) signal for managing the buffers and the queues on the wide area network (WAN) traffic, or to the Exterior Border Gateway Protocol (EBGP) signal for balancing the traffic load on the WAN interfaces.

[0032] The information necessary for the server part SER can be obtained at the nodes of the transport network with known processing techniques of the SDH frame content, especially the header, as known e.g. from the ITU-T Recommendations G.784 cited above and G. 707 (chapters 3 and 9) which describes the structure of the frame and of the nodes of the SDH network.

[0033] In Fig. 4 there is illustrated and example of message flow through the management interface NM.

[0034] In the event of messages that serve to establish a connection (type A in the figure), a request for connection between two ports or nodes and/or a request for quality of service QoS between two ports or nodes is sent by the client CLI to the Server SER. Afterwards, once the related function has been carried out, the Server answers back to the Client with a confirmation message of established connection between the two ports or nodes.

[0035] In the event of messages that serve to check the network resource availability (type B in the figure), for instance a message of resource inventory status request is sent by the Client CLI to the Server SER. Afterwards, once the related function has been carried out, the Server answers back to the Client by an information message on the requested resource inventory status.

[0036] The message flows between the client and server functions can be supported by means of several types of physical connections and exchanged through the related known transmission protocols. For example:

- a LAN connection if client and server functions are carried out by computers or routers located in the same building;
- WAN connections if client and server functions are realized by computers or routers not located in the same building, with a number of options such as: X.25 standard public network, frame-relay network, IP www-type network, dedicated leased lines, ISDN public networks, modems connected to the PSTN network.

[0037] With reference to Figs. 5 to 9, some further detailed examples of information flow exchange are shown between the client and server layers, relating to some functions to be implemented, with indication of examples of known exchange protocols used, like RMI (Remote Method Invocation), CORBA, FTP (File Transfer Protocol), in both events of messages that serve to establish a connection (type A of Fig. 4), and messages that serve to check the network resource availability (type B of Fig. 4).

[0038] In Fig. 5 the "Initialization and login" function is shown, (type A) to be run at the initialization of the procedures. The two layers, client and server, exchange information and data by means of RMI or CORBA protocols, by the following procedure: the "connect" and "verify login" messages are sent from client to server, which in turn sends back a "connect OK" acknowledge message once the related function has been carried out. Then a message of "get initialization data" is sent from client to server relating to all the data for initialization: the server replies to the client with a "contract data" message, containing the data relating to the specific contract initialized, and then with messages relating to "VPN connection data" and "VPN termination point data" (VPN= Virtual Private Network).

[0039] In Fig. 6 the "Creation of Traffic Connection" function is shown, (type A) to be run at the creation of a new traffic connection. By means of RMI or CORBA protocols, the client sends a message of "create traffic connection" to the server, which in turn sends back a "create traffic connection" OK or KO acknowledge message,
In Fig. 7 the "Change Connectivity State" function is shown, (type A) to be run when a change in the connectivity status occurs. The Connectivity state is defined i.e. through the following states:

- **Defined**: The connectivity is created in Operating Systems (OS) with some characteristics like endpoints, rate, required type of protection.
- **Allocated**: when the connectivity reaches this state it means that, through automatic path search algorithm, an OS application had identified all the relevant network resources (Network Elements, Links...) in order to set-up the connectivity. These resources are reserved in the OSs Data Bases, but no command is sent to Network Elements.
- **Implemented**: The connectivity reaches this state when commands are sent from Network Management OoSs to relevant Network Elements in order to really set-up the Connectivity inside the Transport Network (SDH/WDM).
- **Commissioned**: in this state, possible alarms are stored in loggers and Performance Monitoring data collection is started.

In Fig. 8 the "Resource Inventory" function is shown, (type B). By means of RMI or CORBA protocols, the client sends a message of "get resource" to the server, which in turn replies with a "get resource response", once the related function has been carried out.

In Fig. 9 the "Performance Monitoring" function is shown, (type B). By means of RMI, CORBA or FTP protocols, the client sends a message of "get connectivity performance monitoring" to the server, which in turn replies with a message of "get response" OK or NOK, once the related function has been carried out. A message of "autonomous alarm report" can also be generated by the server to the client, to report unsolicited alarm condition.

The Management Interface according to the invention can be implemented by using known structures and languages: for example in the same way as the Network Management function of an SDH network is made, by using a known programming structure, i.e. an object oriented one, and a known language as C++, or any other suitable known language.

It is not deemed necessary to provide further description of the embodiment, as a person skilled in the art will be able to carry out the invention starting from the functional description given above.

Claims

1. Data-centered structure telecommunications network comprising:
 - an Internet protocol (IP) layer,
 - a transport layer,
 - a performance monitoring function: it reports information from the transport layer relating to the availability of communication resources which could be used by the IP layer;
 - a fault management function: it requests alarm information from the transport layer;
 - a connection management function: it requests the transport layer to establish a traffic connection configuration or the release of traffic connections when these are no longer necessary.

2. Telecommunications network according to claim 1, characterized in that said client functions (CLI) comprise:
 - a resource inventory function: it collects information from the transport layer in order to check whether the desired service quality is achieved by the transport layer itself;
 - a management interface (NM) comprising client functions (CLI), residing in the IP layer, and server functions (SER), residing in the transport layer, which exchange messages each other and which are directly interconnected via said management interface.

3. Telecommunications network according to claim 2, characterized in that said server functions (SER) comprise:
 - a performance monitoring function: it reports information from the transport layer about the
network resources which are available for the IP layer;
- a fault management function: it processes alarm information from the transport layer which should be reported to the IP layer;
- connection management function: it carries out the requests from the IP layer to establish the traffic connection configurations or to release traffic connections when these are no longer requested by the IP layer.

4. Transport layer for a telecommunications network, said transport layer being a combination of any of Plesiochronous Digital Hierarchy, Synchronous Digital Hierarchy, SONET, Wavelength Division Multiplex or optical network technologies, wherein a transport network configuration of said transport layer is controllable by an IP layer of said network via a management interface (NM), wherein server functions (SER) of said management interface (NM) reside in said transport layer, wherein said server functions (SER) are operable to exchange messages with client functions (CLI) residing in said IP layer, and wherein server functions (SER) are directly interconnectable with said client functions (CLI) via said management interface (NM).

5. Internet protocol layer for a telecommunications network wherein said Internet protocol (IP) layer is operable to control a transport network configuration of a transport layer of said network, said transport layer being a combination of any of Plesiochronous Digital Hierarchy, Synchronous Digital Hierarchy, SONET, Wavelength Division Multiplex or optical network technologies, wherein said IP layer is operable to control said transport network configuration of said transport layer through a management interface (NM), by, in a traffic increasing condition, requesting from said transport layer more traffic connections, and by, when traffic decreases, ordering said transport layer to release existing connections, wherein client functions (CLI) of said management interface (NM) reside in said IP layer, wherein said client function (CLI) are operable to exchange messages with server functions (SER) residing in said transport layer, and wherein said client functions (CLI) are directly interconnectable with said server functions (SER) via said management interface (NM).

Patentansprüche

1. Telekommunikationsnetzwerk mit datenzentrierter Struktur, umfassend:

2. Telekommunikationsnetzwerk nach Anspruch 1, dadurch gekennzeichnet, dass die besagten Client-Funktionen (CLI) umfassen:

3. Telekommunikationsnetzwerk nach Anspruch 2, dadurch gekennzeichnet, dass die besagten Server-Funktionen (SER) umfassen:

- Eine Internetprotokoll- bzw. IP-Schicht,
- eine Transportschicht, wobei die besagte Transportschicht eine beliebige Kombination von plesiochroner digitaler Hierarchie, synchroner digitaler Hierarchie, SONET, Wellenlängenmultiplex oder optischen Netzwerktechnologien ist, und wobei eine Transportnetzwerkkonfiguration der besagten Transportschicht von der besagten IP-Schicht gesteuert wird,
- eine Verwaltungsschnittstelle (NM), über welche die IP-Schicht die Transportschicht steuert, indem sie weitere Verkehrsverbindungen von der Transportschicht anfordert, wenn der Verkehr zunimmt, und die Transportschicht auffordert, bestehende Verbindungen freizugeben, wenn der Verkehr abnimmt,

- Eine Ressourceninventarfunktion: diese erfasst Informationen aus der Transportschicht, die sich auf die Verfügbarkeit von Kommunikationsressourcen, welche von der IP-Schicht benutzt werden könnten, beziehen;
- eine Leistungsüberwachungsfunktion: diese erfasst Informationen aus der Transportschicht, um zu überprüfen, ob die gewünschte Dienstgüte von der Transportschicht selbst erreicht ist;
- eine Fehlerverwaltungsfunktion: diese fordert Alarminformationen von der Transportschicht an;
- eine Verbindungsverwaltungsfunktion: diese fordert die Transportschicht auf, eine Verkehrsverbindungskonfiguration herzustellen oder Verkehrsverbindungen freizugeben, wenn diese nicht länger erforderlich sind.

- Eine Leistungsüberwachungsfunktion: diese meldet Informationen aus der Transportschicht über die Ressourcen, die für die IP-Schicht verfügbar sind;
- eine Fehlerverwaltungsfunktion: diese verarbeitet Alarminformationen aus der Transport-
schicht, welche an die IP-Schicht zu melden
sind;
- eine Verbindungsverwaltungsfunktion: diese
führt die Anforderungen von der IP-Schicht aus,
urn Verkehrsverbindungskonfigurationen her-
zustellen oder Verkehrsverbindungen freizuge-
ben, wenn diese nicht länger von der IP-Schicht
benötigt werden.

4. Transportschicht für ein Telekommunikationsnetz-
werk, wobei die besagte Transportschicht eine beliebige
Kombination von plesiochroner digitaler Hierarchie,
synchroner digitaler Hierarchie, SONET, Wellenlän-
genmultiplex oder optischen Netzwerktechnologien
ist, und wobei eine Transportnetzwerkkonfiguration der
besagten Transportschicht über eine Verwaltungs-
schnittstelle (NM) von einer IP-Schicht des besagten
Netzwerks gesteuert werden kann,
wobei sich Server-Funktionen (SER) der besagten
Verwaltungsschnittstelle (NM) in der besagten
Transportschicht befinden,
wobei die besagten Server-Funktionen (SER) be-
triebsfähig sind, um Nachrichten mit sich in der be-
sagten IP-Schicht befindenden Client-Funktionen
(CLI) auszutauschen,
und wobei Server-Funktionen (SER) über die besag-
te Verwaltungsschnittstelle (NM) direkt mit den be-
sagten Client-Funktionen (CLI) verbunden werden
können.

5. Internetprotokollsicht für ein Telekommunikati-
onsnetzwerk, wobei die besagte Internetprotokoll-bzw.
IP-Schicht betriebsfähig ist, um eine Transportnetzwerkkonfi-
guration einer Transportschicht des besagten Netz-
werks zu steuern, wobei die besagte Transportschicht eine beliebige Kombination von plesiochroner digitaler Hierarchie, synchroner digitaler Hierarchie, SONET, Wellenlängenmultiplex oder optischen Netzwerktechnologien ist, wobei die besagte IP-Schicht betriebsfähig ist, die besagte Transportnetzwerkkonfiguration der besagten Transportschicht über eine Verwaltungsschnittstelle (NM) zu steuern, indem sie bei zunehmendem Verkehr weitere Verkehrsverbindungen von der besagten Transportschicht anfordert und bei abnehmendem Verkehr die besagte Transportschicht auf-
fordert, bestehende Verbindungen freizugeben,
wobei sich Client-Funktionen (CLI) der besagten
Verwaltungsschnittstelle (NM) in der besagten IP-
Schicht befinden,
wobei die besagten Client-Funktionen (CLI) be-
triebsfähig sind, um Nachrichten mit Server-Funktionen
(SER), welche sich in der besagten Transportschicht befinden, auszutauschen,
und wobei die besagten Client-Funktionen (CLI)
über die besagte Verwaltungsschnittstelle (NM) di-
rekt mit den besagten Server-Funktionen (SER) verbun-
den werden können.

Revendications

1. Réseau de télécommunication à structure centrée
sur les données comprenant :
 - une couche de protocole Internet (IP),
 - une couche de transport,
 ladite couche de transport étant une combinaison de
n’importe quelles technologies parmi les technolo-
gies de hiérarchie numérique plesiochrone, de hié-
rarchie numérique synchrone, de hiérarchie SO-
NET, de multiplexage par répartition en longueur
d’onde et de réseau optique,
 et une configuration de réseau de transport de ladite
couche de transport commandée par ladite couche IP,
 - une interface de gestion (NM), par l’intermé-
diaire de laquelle la couche IP commande la
couche de transport,
 en demandant à la couche de transport plus de connexions de trafic dans une condition d’augmentation du trafic, et en ordonnant à la couche de transport de libérer des connexions existantes lorsque le trafic diminue,
de plus, ladite interface de gestion (NM) comprend
des fonctions client (CLI), résidant dans la couche IP, et des fonctions de serveur (SER), résidant dans
de la couche de transport, qui échangent des messages
tre elles et qui sont directement interconnectées par l’intermédiaire de ladite interface de gestion.

2. Réseau de télécommunication selon la revendica-
tion 1, **caractérisé en ce que lesdites fonctions
client (CLI) comprennent** :
 - une fonction d’inventaire de ressources : elle
collecte des informations provenant de la cou-
che de transport relatives à la disponibilité de
ressources de communication qui peuvent être
utilisées par la couche IP ;
 - une fonction de surveillance des
performances : elle collecte des informations
provenant de la couche de transport afin de vé-
fifier si la qualité de service souhaitée est obte-
 nue par la couche de transport elle-même ;
 - une fonction de gestion des pannes : elle de-
mande des informations d’alarme à la couche
de transport ;
 - une fonction de gestion de connexion : elle de-
mande à la couche de transport d’établir une
configuration de connexions de trafic ou la libération de connexions de trafic lorsqu’elles ne sont plus nécessaires.

3. Réseau de télécommunication selon la revendication 2, caractérisé en ce que lesdites fonctions de serveur (SER) comprennent :

- une fonction de surveillance des performances : elle rapporte des informations provenant de la couche de transport concernant les ressources de réseau qui sont disponibles pour la couche IP ;
- une fonction de gestion des pannes : elle traite des informations d’alarme provenant de la couche de transport qui doivent être rapportées à la couche IP ;
- une fonction de gestion de connexion : elle exécute les demandes de la couche IP pour établir les configurations de connexions de trafic ou pour libérer des connexions de trafic lorsqu’elles ne sont plus demandées par la couche IP.

4. Couche de transport pour un réseau de télécommunication,

ladite couche de transport étant une combinaison de n’importe quelles technologies parmi les technologies de hiérarchie numérique plésiochrone, de hiérarchie numérique synchrone, de hiérarchie SONET, de multiplexage par répartition en longueur d’onde et de réseau optique,
dans laquelle une configuration de réseau de transport de ladite couche de transport peut être commandée par une couche IP dudit réseau par l’intermédiaire d’une interface de gestion (NM),
dans laquelle les fonctions de serveur (SER) de ladite interface de gestion (NM) résident dans ladite couche de transport,
dans laquelle lesdites fonctions de serveur (SER) permettent d’échanger des messages avec les fonctions client (CLI) résidant dans ladite couche IP,
et dans laquelle les fonctions de serveur (SER) peuvent être directement interconnectées avec lesdites fonctions client (CLI) par l’intermédiaire de ladite interface de gestion (NM).

5. Couche de protocole Internet pour un réseau de télécommunication,

ladite couche de protocole Internet (IP) permettant de commander une configuration de réseau de transport d’une couche de transport dudit réseau,
ladite couche de transport étant une combinaison de n’importe quelles technologies parmi les technologies de hiérarchie numérique plésiochrone, de hiérarchie numérique synchrone, de hiérarchie SONET, de multiplexage par répartition en longueur d’onde et de réseau optique,
ladite couche IP permettant de commander ladite configuration de réseau de transport de ladite couche de transport par l’intermédiaire d’une interface de gestion (NM), en demandant à ladite couche de transport plus de connexions de trafic dans une condition d’augmentation du trafic, et en ordonnant à ladite couche de transport de libérer des connexions existantes lorsque le trafic diminue,
dans laquelle les fonctions client (CLI) de ladite interface de gestion (NM) résident dans ladite couche IP,
dans laquelle lesdites fonctions client (CLI) permettent d’échanger des messages avec des fonctions de serveur (SER) résidant dans ladite couche de transport,
et dans laquelle lesdites fonctions client (CLI) peuvent être directement interconnectées avec lesdites fonctions de serveur (SER) par l’intermédiaire de ladite interface de gestion (NM).
FIG. 3

FIG. 4
FIG. 5

FIG. 6
FIG. 7

CHANGE CONNECTIVITY STATE

CLIENT RMI / CORBA SERVER

Change connectivity state
Change conn. State OK / KO
Autonomous alarm report

FIG. 8

RESOURCE INVENTORY

CLIENT RMI / CORBA SERVER

Get resource
Get resource response
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5764645 A [0005]