Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] This invention is related to the processing of programs and associated content rating and system timing information received from multiple broadcast sources for program play, recording and playback.

[0002] In digital video and audio broadcast applications, packetized program information transmitted to a video decoder, such as a High Definition Television (HDTV) receiver, contains broadcast channels, e.g. Fox 5™, Channel 13™, from multiple broadcasters. The packetized program information of an individual broadcaster may contain the data content of several program sub-channels occupying the frequency spectrum previously occupied by a single analog broadcast channel. The sub-channels may comprise, for example, digital services including a main program channel, a financial service channel offering stock quotes, a sports news service channel and a shopping and interactive channel, all being conveyed within the 6 MHz bandwidth previously allocated to a single analog NTSC compatible broadcast channel.

[0003] The packetized program information of an individual broadcaster also contains ancillary information as well as the data content of the program sub-channels. The ancillary information includes system information and program specific data used in identifying and assembling packets comprising selected programs and also includes program guide and text information associated with the transmitted program data. In particular, the ancillary system information includes system timing information providing a time clock reference enabling determination of a time at which a specific program is to be broadcast. The ancillary program specific data may include program content rating information (such as PG-13 etc.) enabling parental control of viewing using a conditional access system such as a V-chip type system, for example. The ancillary system timing and content rating information is typically encoded along with program data to conform to the requirements of a known standard. One such standard detailing an information protocol incorporating system timing and content rating information for broadcast applications is entitled, Program and System Information Protocol for Terrestrial Broadcast and Cable, published by the Advanced Television Systems Committee (ATSC), 10 November 1997, hereinafter referred to as the PSI/P standard.

[0004] A number of problems may arise in a digital video system in processing system timing and program specific information from multiple broadcast sources. Specifically, problems arise in the use of the system timing information for scheduling program processing functions and for displaying a current time to a user. Problems also arise in providing a conditional access system that uses accurate program content rating information in authorizing access to programs whilst also providing desirable features such as the ability for a user to optionally override a previously set content rating limit. Thus there is a need to solve these problem and derivative problems.

[0005] EP 0 735 776 A2 discloses an apparatus for filtering TS packets multiplexed with a plurality of programs and sending the filtered packets to decoders. A packet landing buffer is provided in a RAM used for a microprocessor for system control. After a channel is selected, the microprocessor filters video and audio data and performs a value added service process.

[0006] US 5 812 205 provides a method and apparatus for automatically setting the time in a peripheral device in a television system. In the preferred embodiment, a datastream with packets of data is broadcast to the peripheral device. A time value within the received datastream is used to set the time within the peripheral device. The data within the received datastream also contains a cyclic redundancy check which is used to determine when an error is present in the received data packet. The time is set in the peripheral device only when the cyclic redundancy check has found no errors in the data packet. When needed, additional values within the received packet can later be used to correct the time which has been set in the peripheral device.

[0007] EP 0725 542 A2 describes a television device in which the time of a clock in a VTR is set using time information interpolated in a broadcast TV signal, wherein a broadcasting station for time setting is selected easily. Broadcasting station tables contain identification codes of broadcasting stations which transmit time information of areas (countries) separately for each area, and a microprocessor successively searches broadcasting stations and selects a broadcasting station whose broadcasting station identification code in the broadcasting station tables is contained in VPS or Teletext as the broadcasting station for time setting.; Not only broadcasting station identification codes, but also a priority order, may be stored in the broadcasting tables to select a broadcasting station having the highest priority among received broadcasting station identification codes as the broadcasting station for time setting.

[0008] In DE 198 03 319 A1, a method includes the steps of determining and storing time difference adjustment data, and selecting a corresponding channel in accordance with a key input of a user. A radio station identification (ID) is detected together with the time data from the broadcast signal of the chosen channel. The time difference adjustment data, which correspond to the recorded radio station, are read from a memory. The read time difference adjustment data and the recorded time data are added, and a time adjustment process is performed in accordance with the added time data. The time difference data of a broadcast signal reception area and a transmission area are preferably combined and stored in a table.

[0009] The present invention is a system according to claim 1 and a corresponding method according to claim 12. Other inventive features are found in the dependent claims.
Brief Description of the Drawings

[0010] In the drawing:

Figure 1 is a block diagram of digital video receiving apparatus for processing system timing and program content rating information from multiple broadcast sources, according to the principles of the invention.

Figure 2 shows a flowchart for scheduling and executing program processing functions and displaying a time clock, according to the invention.

Figure 3 shows a program guide user interface for initiating scheduling of program processing functions, according to the invention.

Figure 4 shows a flowchart for a method for conditioning access to programs based on program content ratings received from multiple broadcast sources, according to the invention.

Figure 5 shows a method for generating program specific information incorporating system timing and program content rating information, according to the invention.

Although the disclosed system is described as processing broadcast programs, this is exemplary only. The term ‘program’ is used to represent any form of packetized data such as audio data, telephone messages, computer programs, Internet data or other communications, for example.

[0012] In the video receiver system of Figure 1, a broadcast carrier modulated with signals carrying audio, video and associated data representing broadcast program content is received by antenna 10 and processed by unit 13. The resultant digital output signal is demodulated by demodulator 15. The demodulated output from unit 15 is trellis decoded, mapped into byte length data segments, deinterleaved and Reed-Solomon error corrected by decoder 17. The corrected output data from unit 17 is in the form of an MPEG compatible transport datastream containing program representative multiplexed audio, video and data components. The transport stream from unit 17 is demultiplexed into audio, video and data components by unit 22 which are further processed by the other elements of decoder system 100. In one mode, decoder 100 provides MPEG decoded data for display and audio reproduction on units 50 and 55 respectively. In another mode, the transport stream from unit 17 is processed by decoder 100 to provide an MPEG compatible datastream for storage on storage medium 105 via storage device 90.

[0013] A user selects for viewing either a TV channel (user selected channel-SC) or an on-screen menu, such as a program guide, by using a remote control unit 70. Controller 60 uses the selection information provided from remote control unit 70 via interface 65 to appropriately configure the elements of Figure 1 to receive a desired program channel for viewing. Controller 60 comprises processor 62 and processor 64. Unit 62 processes (i.e. parses, collates and assembles) system timing information and program specific information including program content rating, and program guide information. Processor 64 performs the remaining control functions required in operating decoder 100. Although the functions of unit 60 may be implemented as separate elements 62 and 64 as depicted in Figure 1, they may alternatively be implemented within a single processor. For example, the functions of units 62 and 64 may be incorporated within the programmed instructions of a microprocessor. Controller 60 configures processor 13, demodulator 15, decoder 17 and decoder system 100 to demodulate and decode the input signal format and coding type. Further, controller 60 configures units 13, 15, and 17 for other communication modes, such as for receiving cable television (CATV) signals and for bi-directional communication via coaxial line 14 or for bi-directional (e.g. Internet) communication, for example, via telephone line 11. In an analog video mode, an NTSC compatible signal is received by units 13, 15 and 17 and processed by decoder 100 for video display and audio reproduction on units 50 and 55 respectively. Units 13, 15, 17 and sub-units within decoder 100 are individually config-
ured for the input signal type by controller 60 setting control register values within these elements using a bi-directional data and control signal bus C.

The transport stream provided to decoder 100 comprises data packets containing program channel data and ancillary system timing information and program specific information including program content rating, and program guide information. Unit 22 directs the ancillary information packets to controller 60 which parses, collates and assembles this information into hierarchically arranged tables. Individual data packets comprising the User selected program channel SC are identified and assembled using the assembled program specific information. The system timing information contains a time reference indicator and associated correction data (e.g. a daylight savings time indicator and offset information adjusting for time drift, leap years etc.). This timing information is sufficient for a decoder to convert the time reference indicator to a time clock (e.g. United States east coast time and date) for establishing a time of day and date of the future transmission of a program by the broadcaster of the program. This time clock is useable for initiating scheduled program processing functions including program play, program recording and program playback, for example. Further, the program specific information contains conditional access, network information and identification and linking data enabling the system of Figure 1 to tune to a desired channel and assemble data packets to form complete programs. The program specific information also contains ancillary program content rating information (e.g. an age based suitability rating), program guide information (e.g. an Electronic Program Guide - EPG) and descriptive text related to the broadcast programs as well as data supporting the identification and assembly of this ancillary information.

The program specific and system timing information is assembled by controller 60 into multiple hierarchically arranged and inter-linked tables. An exemplary PSIP compatible hierarchical table arrangement includes a System Time Table (STT), a Master Guide Table (MGT), a Channel Information Table (CIT), Event Information Tables (EITs) and optional tables such as Extended Text Tables (ETTs) and a Rating Region Table (RRT). The STT contains a time reference indicator and associated correction data sufficient for a decoder to establish a time of transmission of a program by a broadcast source accurate to within plus or minus 4 seconds, for example. The MGT contains information for acquiring program specific information conveyed in other tables such as identifiers for identifying data packets associated with the other tables. The CIT contains information for tuning and navigation to receive a User selected program channel. The EIT contains descriptive lists of programs (events) receivable on the channels listed in the CIT. The ETT contains text messages describing programs and program channels.

The RRT contains program content rating information such as the MPAA (Motion Picture Association of America) or V-chip compatible rating information that is collated by region (e.g. by country or by state within the U.S.A.). Additional program specific information describing and supplementing items within the hierarchical tables is conveyed within descriptor information elements. Information associating a program content rating with a particular program from a particular broadcast source may be conveyed within a content advisory descriptor contained in an EIT or PMT. In other embodiments the system timing and program content rating information associating a specific program with a specific rating may be contained in other tables, data formats, or descriptors such as the caption service descriptor or the information may be conveyed in user definable data. Additional program content ratings are conveyed in vertical blanking intervals in NTSC compatible signals processed by analog processor 27 within decoder 100 in analog video mode. The program specific and system timing information acquired by controller 60 via unit 22 is stored within internal memory of unit 60. Controller 60 uses the acquired content rating and system timing information in conditioning access to programs and in scheduling program processing functions including program viewing, recording and playback.

Controller 60 employs the process of Figure 2 to execute scheduled program processing functions including program viewing, recording, and playback. In other embodiments, a process corresponding to the process of Figure 2 (and Figure 4) may be used to execute other scheduled functions including program transmission, program standards conversion, program encryption, decryption, scrambling, decoding and their derivative functions including the termination of any of these processing functions. In executing scheduled processing of a particular program, controller 60 adaptively generates a scheduling time clock from a time reference indication (e.g. in the STT) provided by the broadcast source of the particular program. This generated scheduling clock is used to time the initiation of scheduled program processing functions. Previously derived time clocks (e.g. from other broadcast sources) are disregarded in initiating scheduled processing of this particular program. The scheduling time clock is re-synchronized to the STT time reference information provided by a particular broadcast source prior to initiating scheduled processing of any programs produced by that particular source.

These features address the problem of preventing application of incorrect program specific information parameters (parameters within the MGT, CIT, EIT, ETT and RRT etc.) across program boundaries. This may occur if program processing is scheduled using an inaccurate time clock such as a clock derived from a broadcast source other than the source of the specific program to be processed. A time clock inaccuracy of 10 seconds or more is quite possible under these conditions due to program broadcasting delays and other delays occurring in a system using multiple broadcast sources.

As a result of this time clock inaccuracy, the
wrong program may be recorded (or viewed or played back) in overlap periods between initiation or termination of program recording and the actual broadcast time of the program. Further, a program may be erroneously recorded using the program specific information parameters of a previously processed program during program segments occurring in the overlap periods. Consequently, upon playback of the program, incorrect program specific parameters are applied during the overlap segments. This may cause faulty decoding including incorrect packet identification and acquisition or the use of incorrect program content ratings, for example. As a result, invalid and objectionable images may be transiently displayed to a user. Under such conditions a portion of an adult content rated program may be erroneously displayed to a child, for example.

[0020] Controller 60 employs the process of Figure 2 to schedule and execute program processing functions upon user initiation of a scheduling function. Following the start at step 200, controller 60 in step 203 schedules program viewing (including tuning and acquisition), recording or playback in response to a user scheduling command via the program guide interface of Figure 3 displayed on display 50 (Figure 1). Other embodiments may employ alternative user interfaces for this scheduling function.

[0021] In scheduling program viewing or recording via the program guide of Figure 3, a user navigates to the desired channel and program using menu icons 853 and 855. The user selects a program e.g. news program 849 by highlighting the news icon 849 and schedules the news program 849 for viewing or recording by selecting icon 805 or icon 810 respectively. A user may similarly schedule playback of a movie such as movie item 847 (Terminator II) from storage device 90 and medium 105 (Figure 1). The user schedules playback of the movie by highlighting the movie item 847 and selecting icon 815. In other embodiments a user may schedule program viewing, recording or playback by other methods such as by using remote unit 70 buttons rather than program guide icons 805, 810 and 815.

[0022] Upon user selection of icons 805 or 810 controller 60 stores the scheduled times of broadcast and termination of news item 849 in internal memory. Controller 60 determines scheduled times of broadcast and termination of news item 849 from stored program guide information previously derived from the EIT. Upon user selection of icon 815 controller 60 in conjunction with unit 37 (Figure 1) generates a scheduling menu enabling a user to enter a time for future playback of movie 847 or to select immediate playback of the movie. A user selects the control and navigation icons and enters times etc. using remote control 70 which supports cursor manipulation (or an alternative cursor based arrangement such as a mouse or keyboard system).

[0023] Returning to the process of Figure 2, controller 60 in step 205 configures units 13, 15 and 17 (Figure 1) and decoder 100 elements to receive packetized pro-

Note, the time clock from the time reference indication the following four values are computed:

1) Number of minutes from Base = \(\frac{\text{received seconds from Base}}{60} \)

2) Number of hours from Base = \(\frac{\text{received minutes from Base}}{60} \)

3) Number of days from Base = \(\frac{\text{hours from Base}}{24} \)

4) Number of years from Base = \(\frac{\text{days from Base}}{365} \)

where, days per year = 365, or 366 in a leap year

[0024] In step 215, in program recording and viewing modes, controller 60 derives a time clock using the acquired STT time reference indication (a value indicating the number of seconds elapsed since a base time, specifically since 12 a.m. January 6, 1980) together with STT correction data including an offset value and daylight savings time indicator (per PSIP standard section 6.1). The derived time clock consists of both a date and time and comprises year, month, day and time of day. In deriving the time clock from the time reference indication the following four values are computed:

1) current year = Base year + number of years from Base,

2) current day of year = number of days from Base - (number of years from Base * days per year),

3) current hour of day = number of hours from Base
the desired program for viewing, recording or playback

220. derived based on the scheduled clock determined in step
processing (previously scheduled in step 203) have ar-
processing time previously established in step 203. Con-
processing of the desired program at the scheduled
desired program, controller 60 uses a previously derived
information is available from the broadcast source of the
steps 205-215. In step 220, if no time clock reference
clock for each broadcast source) using the method of
derived time reference and correction information asso-
clock frequency within controller 60. Controller 60 creates
scheduling clock with the time clock information de-
ned from STT data from broadcast sources other than
back. In other embodiments, controller 60 may derive a
cheduling clock from a variety of other forms of time
clock data. It is advantageous that the time clock data
ed to derive the scheduling clock is synchronized with
the time clock transmitted by the broadcast source in
broadcasting the desired program. This is achieved, for
example, by using STT data from the broadcast source
of the desired program in viewing and recording modes
and by using a system clock synchronized with a play-
back device in playback mode. STT data and time clocks
derived from STT data from broadcast sources other than
the source of the desired program are disregarded in
initiating scheduled processing of the desired program.

In step 215 in program playback mode, controller 60 uses an internal system clock synchronized with operation of storage device 90 for initiation of movie playback. In other embodiments, controller 60 may derive a scheduling clock from a variety of other forms of time clock data. It is advantageous that the time clock data used to derive the scheduling clock is synchronized with the time clock transmitted by the broadcast source in broadcasting the desired program. This is achieved, for example, by using STT data from the broadcast source of the desired program in viewing and recording modes and by using a system clock synchronized with a playback device in playback mode. STT data and time clocks derived from STT data from broadcast sources other than the source of the desired program are disregarded in initiating scheduled processing of the desired program.

In step 220, controller 60 updates (i.e. corrects and re-synchronizes) an internally maintained and stored scheduling time clock with the time clock information derived in step 215. The scheduling clock is periodically updated in this manner from derived time clock values obtained from the updated STT data received at intervals of one second or less. In the time intervals between updating the scheduling clock from the STT data the scheduling clock is maintained using an internal crystal derived clock frequency within controller 60. Controller 60 creates and maintains separate scheduling clocks and/or STT derived time reference and correction information associated with each program broadcast source (e.g. one clock for each broadcast source) using the method of steps 205-215. In step 220, if no time clock reference information is available from the broadcast source of the desired program, controller 60 uses a previously derived scheduling clock. Controller 60 in step 225 initiates processing of the desired program at the scheduled processing time previously established in step 203. Controller 60 determines whether the times for initiating processing (previously scheduled in step 203) have arrived based on the scheduled clock determined in step 220.

Controller 60 in step 225 initiates processing of the desired program for viewing, recording or playback at the scheduled processing time by identifying and acquiring the packets comprising the desired program. Specifically, controller 60 and processor 22 (Figure 1) determine from the CIT the PIDs of video, audio and sub-picture streams in the packetized decoded transport stream input to decoder 100 from unit 17. The video, audio and sub-picture streams constitute the desired program being transmitted on selected channel SC. Processor 22 provides MPEG compatible video, audio and sub-picture streams for to video decoder 25, audio decoder 35 and sub-picture processor 30 respectively. The video and audio streams contain compressed video and audio data representing the selected channel SC program content. The sub-picture data contains EITs, ETT and RRT information associated with the channel SC program content.

Decoder 25 decodes and decompresses the MPEG compatible packetized video data from unit 22 and provides decompressed program representative pixel data to NTSC encoder 45 via multiplexer 40. Similarly, audio processor 30 decodes the packetized audio data from unit 22 and provides decoded and amplified audio data, synchronized with the associated decompressed video data, to device 55 for audio reproduction. Processor 30 decodes and decompresses sub-picture data received from unit 22.

Processor 30 assembles, collates and interprets EIT, RRT, and ETT data from unit 22 to produce formatted program guide data for output to OSD 37. OSD 37 processes the EIT, RRT and ETT and other information to generate pixel mapped data representing subtitles, control and information menu displays including selectable menu options and other items for presentation on the display device 50. The control and information menus that are displayed enable a user to select a program to view and to schedule future program processing functions including a) tuning to receive a selected program for viewing, b) recording of a program onto storage medium 105, and c) playback of a program from medium 105.

The control and information displays, including text and graphics produced by OSD generator 37, are generated in the form of overlay pixel map data under direction of controller 60. The overlay pixel map data from unit 37 is combined and synchronized with the decompressed pixel representative data from MPEG decoder 25 in encoder 45 via multiplexer 40 under direction of controller 60. Combined pixel map data representing a video program on channel SC together with associated sub-picture data is encoded by NTSC encoder 45 and output to device 50 for display.

In step 230 (Figure 2), controller 60 generates a second time clock for presentation to a user such as the displayed time clock item 857 (also comprising a date) depicted in the program guide of Figure 3, for example. The second time clock is different to the scheduling clock and is generated to prevent time change discontinuities that occur in the scheduling clock from being displayed
and from disturbing a user. Controller 60 generates the second time clock a) by filtering the scheduling time clock values to prevent abrupt discontinuities e.g. by using a low pass filter, or b) by updating the second time clock in periods when it is not visible to a user. Alternatively, a second time clock may be used that is independent of the scheduling clock and is a) based on an internal clock of the controller 60 and decoder 100 system, b) is received on a channel that is separate and distinct from the program content channels, or c) is received embedded within a composite program guide that lists programs from multiple broadcast sources, for example. The process of Figure 2 terminates at step 235.

Controller 60 employs the method of Figure 4 to process packetized program information from different broadcast sources using functionally equivalent program specific information parameters including program content rating data dynamically selected from alternative broadcast sources. In processing packetized program information, controller 60 advantageously adaptively selects a program specific parameter based on the broadcast source of the parameter. The process of Figure 4 is also applicable to the scheduling of analog video NTSC compatible programs and to the acquisition and processing of rating information derived from vertical blanking intervals.

In the exemplary embodiment of Figure 4, controller 60 conditions access to programs based on program content ratings received from multiple broadcast sources that provide either analog or digital data. Controller 60 conditions access to programs in response to user commands entered via control and information menus generated by OSD unit 37 and displayed on unit 50 (as described in connection with Figure 2). The control and information menus enable a user to enter content rating profiles for himself and others, upon providing entitlement data comprising a user identification (ID) and a predetermined password, for example. A content rating profile allows a user to set a maximum rating limit threshold for individual users of decoder 100 according to a user selected rating system. A user may select rating limit thresholds according to one of a number of different rating systems such as the V-chip, MPAA, or other systems. Thereby decoder 100 enables parental control over access to broadcast programs by children and others. In addition, the control and information menus enable a user to override a selected preset maximum rating limit upon entry of authorization data such as a userid and password.

In executing the process of Figure 4 and following the start at step 300, controller 60 in step 303 initiates scheduling of program viewing (including tuning and acquisition), recording or playback. Controller 60 initiates scheduling in response to a user scheduling command via the program guide interface of Figure 3 as previously discussed. Controller 60 in step 305 configures units 13, 15 and 17 (Figure 1) and decoder 100 elements to receive composite program guide information from a first broadcast source. The composite program guide information contains program description and other information supporting assembly and decoding of packet data constituting individual programs produced by multiple different broadcast sources. Controller 60 configures processor 13, demodulator 15 and decoder 17 to receive the specific channel frequency and data format of the transmission channel provided by the first broadcast source. Thereby in step 305 controller 60, in conjunction with unit 22, acquires composite program guide information containing program specific information including a program content rating for the desired program from the first broadcast source. Also, in step 305 controller 60 stores the program specific information in internal memory and in step 310 retrieves the content rating of the desired program from a content advisory descriptor contained in an EIT of the stored program specific information. Controller 60 determines the rating system of the retrieved content rating (i.e. whether the desired program is rated according to a V-chip or MPAA compatible system, for example) from an acquired RRT of the stored program specific information.

In step 315, controller 60 compares the retrieved program content rating with a maximum rating threshold limit contained in a predetermined user specific rating profile. The rating threshold limit determines the maximum program content rating that the present user of the decoder 100 system is authorized to access. If the content rating of the desired program does not exceed the maximum content rating threshold, controller 60 schedules processing of the desired program in step 315. The retrieved program content rating and maximum content rating threshold limit are compatible with a content rating system contained within the previously stored RRT. An exemplary age based rating system is depicted in the program guide of Figure 3 (items 860-872) and comprises TV-M, TV-14, TV-PG, TV-G, TV-Y7, TV-Y ratings.

A number of problems may occur in using content ratings from a composite program guide (or another rating information source) in scheduling processing of programs in the manner disclosed in steps 303-315. Specifically, problems may arise because a) the content rating supplied in the composite guide provided by the first broadcast source may be inaccurate, and b) the verification of user authorization performed in step 315 may be rendered invalid for a variety of reasons. The verification may be rendered invalid, for example, because either the program guide limit threshold is subsequently overridden and altered by an authorized user or because of a subsequent re-rating of the content of the desired program. Consequently, controller 60 in step 320 acquires a second content rating of the desired program from program specific information provided by the broadcast source of the desired program. The content rating from this second broadcast source is acquired reasonably close to the time of program broadcast to enable a current and reliable second validation of user authorize-
tion to access the desired program. In step 325, controller 60 converts the content rating acquired from the second source (the broadcaster of the desired program) to be compatible with the content rating system used by the first source (the composite guide broadcaster). Controller 60 converts the content rating using predetermined equivalence mapping information for mapping content ratings of one broadcast source to a rating system of another source.

In step 330, if the ratings acquired from the first and second broadcast sources are different, controller 60 selects between them. Once selected, the content rating is used in further processing and may be used by controller 60 in step 330 to update an existing different rating such as a rating displayed in the program guide of Figure 3, for example. Controller 60, in step 330, selects a program specific information parameter from the broadcast source deemed to be the most reliable and accurate considering a) the type of parameter being selected (a content rating in this example), and b) the time and stage in the processing scheme at which the parameter is being processed. A program specific information parameter from one broadcast source may be deemed more reliable at a particular point in time than an equivalent parameter from another source. Consequently, parameter selection may be advantageously varied based on the source of the parameter and time and processing stage at which it is acquired. In other embodiments, the rating conversion step 325 may be unnecessary and it may alternatively be used to convert a rating to the system of the second source or to a third and different system. It is advantageous in conditioning access based on program content ratings to select the content rating that: a) is provided from the broadcast source of the desired program, and b) is the most recently acquired rating especially if the rating is acquired substantially close to the time of broadcast of the desired program.

In step 335, controller 60 uses the rating selected in step 330 to perform a second validation of user authorization to access the desired program in the manner described in connection with step 315. Specifically, controller 60 compares the retrieved program content rating with the maximum rating threshold limit contained in the predetermined user specific rating profile. Upon successful validation, controller 60 in step 337 initiates processing of the desired program by configuring demultiplexer 22 with the PIDs for identifying and acquiring the packets comprising the datastreams constituting the desired program. Decoder 100 processes the identified packets of the desired program for viewing, recording or playback in the manner previously described in connection with Figure 2. The process of Figure 4 terminates at step 340.

The process of Figure 4 is also used in conditioning access to analog video programs and in the acquisition and processing of program content ratings derived from the vertical blanking intervals of NTSC compatible analog video signals. Consequently steps 303-320 similarly involve scheduling analog video processing and tuning to analog video sources for deriving content ratings (e.g. V-chip compatible ratings) from NTSC compatible vertical or horizontal blanking intervals. Further, the mapping, selection, validation and processing of steps 325-337 use ratings derived from analog video signal as well as from digital program specific information.

Figure 5 shows a method for generating program specific information incorporating system timing and program content rating information, according to the invention. The method may be employed at an encoder for broadcasting video data such as the data received by antenna 10 of Figure 1 or the method may be employed within a decoder unit such as within controller 60 of Figure 1 in a storage mode, for example.

In a storage mode of the system of Figure 1, the corrected output data from unit 17 is processed by decoder 100 to provide an MPEG compatible datastream for storage. In this mode, a program is selected for storage by a user via remote unit 70 and interface 65. Processor 22, in conjunction with controller 60 forms condensed system and program specific information including STT, MGT, CIT, EIT, ETT and RRT data containing the advantageous features previously described. The condensed information supports decoding of the program selected for storage but excludes unrelated information. Controller 60, in conjunction with processor 22 forms a composite MPEG compatible datastream containing packetized content data of the selected program and associated condensed program specific information. The composite datastream is output to storage interface 95.

Storage interface 95 buffers the composite datastream to reduce gaps and bit rate variation in the data. The resultant buffered data is processed by storage device 90 to be suitable for storage on medium 105. Storage device 90 encodes the buffered datastream from interface 95 using known error encoding techniques such as channel coding, interleaving and Reed Solomon encoding to produce an encoded datastream suitable for storage. Unit 90 stores the resultant encoded datastream incorporating the condensed program specific information on medium 105.

An encoder employs the method of Figure 5 for generating system and program specific information including STT, MGT, CIT, EIT, ETT and RRT data and descriptors for each broadcaster and for combining the information in a composite datastream. The generated information may be transmitted to a decoder system such as the system of Figure 1 for reception by antenna 10 and subsequent decoding as previously described for example. Following the start at step 400 of Figure 5, STT, MGT, CIT, EIT, ETT and RRT data and descriptors for each broadcaster is generated in steps 405 and 410. Specifically, a CIT is generated in step 405. The CIT contains channel and program identification information enabling acquisition of available broadcast programs and
channels produced by an individual broadcaster. The CIT incorporates channel identification numbers and packet identifiers for identifying individual packetized data streams that constitute individual programs to be transmitted on particular channels. The generated CIT also incorporates items linked to listed program channels including a program number, a language code indicator, and a stream type identifier, as previously described in connection with Figure 1.

[0048] In step 410, an EIT is generated containing program guide information including descriptive lists of programs (events) receivable on the channels listed in the CIT. The EIT is generated to include a content advisory descriptor containing program content ratings selected and processed from rating information provided by multiple broadcast sources in the manner described in connection with Figure 4. The EIT associates a specific program with a specific rating. An ETT and an RRT are also generated in step 410. The ETT contains text messages describing programs, for example, and the RRT contains program content rating information for various rating systems as previously described. In step 410, an MGT is also generated containing data identifiers enabling the identification and assembly of CIT, EIT, and RRT information. The MGT also conveys table size information for the previously generated CIT, EIT, ETT and RRT. An STT is also generated in step 410 containing a time reference indicator and associated correction data sufficient for a decoder to establish a time of transmission of a program by the program broadcaster.

[0049] In step 415, the STT, MGT, CIT, EIT, ETT and RRT data and descriptors generated for each broadcaster in steps 405 and 410 are formed into composite system and program specific information for multiple broadcast sources. The composite system and program specific information is advantageously formed to associate individual STT time references with their corresponding broadcast sources. In step 420, the composite information produced in step 415 is combined with video and audio program representative components for multiple channels and is formatted into a transport stream for output. In step 423, the output transport stream is further processed to be suitable for transmission to another device such as a receiver, video server, or storage device for recording on a storage medium, for example. The processes performed in step 423 include known encoding functions such as data compression Reed-Solomon encoding, interleaving, scrambling, trellis encoding, and carrier modulation. The process is complete and terminates at step 425. In the process of Figure 5, multiple CIT, EIT, ETT and RRT tables may be formed and incorporated in the program specific information in order to accommodate expanded numbers of channels.

[0050] The architecture of Figure 1 is not exclusive. Other architectures may be derived in accordance with the principles of the invention to accomplish the same objectives. Further, the functions of the elements of decoder 100 of Figure 1 and the process steps of Figures 2, 4 and 5 may be implemented in whole or in part within the programmed instructions of a microprocessor. In addition, the principles of the invention apply to any form of MPEG or non-MPEG compatible electronic program guide. A datastream formed according to the invention principles may be used in a variety of applications including video server or PC type communication via telephone lines, for example. A program datastream with one or more components of video, audio and data formed to incorporate system and program specific information according to invention principles may be recorded on a storage medium and transmitted or re-broadcast to other servers, PCs or receivers.

Claims

1. A system for initiating scheduled program processing functions for use in a video decoder receiving program information from different broadcast sources, said program information from an individual broadcast source containing program content, system timing and program specific information data, the system comprising:

- means for receiving (13, 15, 17, 22) program information containing a desired program from a first and second broadcast source; and
- a processor (22, 60) for identifying and acquiring system timing data comprising a current time reference indication provided by said first broadcast source in said program information wherein said processor is configured to derive a first time clock based on said current time reference indication provided by said first broadcast source and to use said first derived time clock in initiating scheduled processing functions for programs derived from said first broadcast source, characterized in that said program information is packetized program information, and in that said processor is further configured for identifying and acquiring system timing data comprising a current time reference indication provided by a second broadcast source in program information received from said second broadcast source, and in that said processor is configured to derive a second time clock based on a current time reference indication provided by said second broadcast source and to use said second derived time clock in initiating scheduled processing functions for programs derived from said second broadcast source.

2. A system according to claim 1, characterized in that, in initiating scheduled processing functions said processor (22, 60) is configured to disregard a time clock derived from a current time reference in-
dication provided by a source other than the broad-
cast source for which a scheduled processing func-
tions is being initiated.

3. A system according to claim 1, characterized in that
said processor (22, 60) is configured to update a
stored scheduling time clock with the first derived
time clock prior to using said scheduling time clock
in initiating scheduled processing functions for pro-
grams derived from said first broadcast source.

4. A system according to claim 1, characterized in that
in the absence of a valid current time reference in-
dication being available from said first or second
broadcast source
said processor (22, 60) is configured to initiate
scheduled processing functions using a clock value
derived from a current time reference indication pro-
vided by a source other than said first or second
broadcast source.

5. A system according to claim 13, characterized in that
said display time clock is a filtered time clock to pre-
vent a user from seeing an abrupt time change dis-
continuity.

6. A system according to claim 13, characterized in that
said display time clock is updated during periods
when said display time clock is not displayed to pre-
vent a user from seeing an abrupt time change dis-
continuity.

7. A system according to claim 13, characterized in that
said display time clock is updated using current time
reference indications independently of the broadcast
sources of said current time reference indications

8. A system according to claim 13, characterized in that
said display time clock is updated using current time
reference indications from a single source.

9. A system according to claim 1, characterized in that
said processor (22, 60) is configured to initiate a
scheduled processing function in response to a user
selection made via a displayed electronic program
guide.

10. A system according to claim 1, characterized in that
said processor (22, 60) is configured to initiate
scheduled processing function is including at least
one of, a) program recording, b) program playback
and c) program selection and display.

11. A system according to claim 1, characterized in that
said means for receiving (13, 15, 17, 22) is config-
ured to receive said packetized program information
transmitted on a particular RF transmission channel
carrier frequency used by said first broadcast source,
and
said processor (22, 60) is configured to identify and
acquire system timing data provided by said partic-
ular broadcast source using a) a data identifier and
b) a table identifier.

12. A method for initiating scheduled program process-
ing functions for use in a video decoder receiving
program information from different broadcast sourc-
es, said program information from an individual
broadcast source containing program content, sys-

13. A system according to claim 1, characterized in that
said processor derives a display time clock for dis-
play to a user and said display time clock is different
to said first derived time clock used in initiating
scheduled processing functions for programs.

14. A method according to claim 12, characterized by
the further step of displaying (230) a time clock that
is different from said first derived time clock.
Patentansprüche

1. System zum Initiieren geplanter Programmverarbeitungsfunktionen zur Verwendung in einem Videodecoder, der Programminformationen von unterschiedlichen Rundfunkquellen empfängt, wobei die Programminformationen von einer einzelnen Rundfunkquelle Programminhalts-, Systemzeitgebungs- und programmsspezifische Informationsdaten enthalten, wobei das System umfasst:

 - Mittel zum Empfangen (13, 15, 17, 22) von Programminformationen, die ein gewünschtes Programm enthalten, von einer ersten und von einer zweiten Rundfunkquelle; und
 - einen Prozessor (22, 60) zum Identifizieren und Erfassen von Systemzeitgebungsdiensten, die eine von der ersten Rundfunkquelle gestartete Zeitreferenzangabe umfassen, in den Programminformationen, wobei der Prozessor zum Ableiten eines ersten Zeittakts auf der Grundlage der von der ersten Rundfunkquelle gestarteten Zeitreferenzangabe und zum Verwenden des ersten abgeleiteten Zeittakts beim Initiieren geplanter Verarbeitungsfunktionen für von der ersten Rundfunkquelle abgeleitete Programme konfiguriert ist.

2. System nach Anspruch 1, dadurch gekennzeichnet, dass beim Initiieren geplanter Verarbeitungsfunktionen der Prozessor (22, 60) dafür konfiguriert ist, einen Zeittakt, der von einer gegenwärtigen Zeitreferenzangabe abgeleitet ist, die durch eine andere Quelle als die erste oder die zweite Rundfunkquelle geliefert wird, konfiguriert ist.

3. System nach Anspruch 1, dadurch gekennzeichnet, dass der Prozessor (22, 60) zum Aktualisieren eines gespeicherten Planungszeitzeittakts mit einem ersten abgeleiteten Zeittakt vor Verwendung des Planungszeitzeittakts beim Initiieren geplanter Verarbeitungsfunktionen für von der ersten Rundfunkquelle abgeleitete Programme konfiguriert ist.

4. System nach Anspruch 1, dadurch gekennzeichnet, dass in Abwesenheit einer gültigen gegenwärtigen Zeitreferenzangabe, die von der ersten oder von der zweiten Rundfunkquelle verfügbar ist, der Prozessor (22, 60) zum Initiieren geplanter Verarbeitungsfunktionen unter Verwendung eines Zeitzeittakts, der von einer gegenwärtigen Zeitreferenzangabe abgeleitet ist, die durch eine andere Quelle als die erste oder die zweite Rundfunkquelle geliefert wird, konfiguriert ist.

5. System nach Anspruch 13, dadurch gekennzeichnet, dass der Anzeigezeittakt ein filterter Zeittakt ist, um zu verhindern, dass ein Nutzer eine plötzliche Zeitänderungsunstetigkeit sieht.

9. System nach Anspruch 1, dadurch gekennzeichnet, dass der Prozessor (22, 60) zum Initiieren einer geplanten Verarbeitungsfunktion in Reaktion auf eine Nutzerauswahl, die über einen angezeigten elektronischen Programmführer getroffen wird, konfiguriert ist.

10. System nach Anspruch 1, dadurch gekennzeichnet, dass der Prozessor (22, 60) der Prozessor (22, 60) zum Initiieren einer geplanten Verarbeitungsfunktion einschließlich a) einer Programmaufzeichnung und/oder b) einer Programmwiedergabe und/oder c) einer Programmauswahl und -anzeige konfiguriert ist.

11. System nach Anspruch 1, dadurch gekennzeichnet, dass das Mittel zum Empfangen (13, 15, 17, 22) zum Empfangen der Paketprogramminformationen konfiguriert ist, die auf der von der ersten Rundfunkquelle verwendeten Trägerfrequenz eines bestimmten RF-Sendekanals übertragen werden, und der Prozessor (22, 60) zum Identifizieren und Erfass-
sen von Systemzeitgebungsdaten, die von der be-
sten Rundfunkquelle geliefert werden, unter
Verwendung a) einer Datenkennung und b) einer Ta-
bellenkennung konfiguriert ist.

12. Verfahren zum Initiieren geplanter Programmverar-
beitungsfunktionen zur Verwendung in einem Vide-
codecoder, der Programminformationen von unter-
schiedlichen Rundfunkquellen empfängt, wobei die
Programminformationen von einer einzelnen Rund-
funkquelle Programminhalts-, Systemzeitgebungs-
und programmspezifische Informationsdaten ent-
halten, wobei das Verfahren die folgenden Schritte
umfasst:

Empfangen (205) von Programminformationen,
die ein gewünschtes Programm enthalten, das
von einer ersten und von einer zweiten Rund-
funkquelle erzeugt wird;
Identifizieren (210) und Erfassen von Zeitge-
bungsdaten,
die eine von der ersten Rundfunkquelle empfan-
gene gegenwärtige Zeitreferenzangabe umfas-
sen, in den Programminformationen,
dadurch gekennzeichnet, dass die Programminformationen Paketprogrammformati-
on sind, und ferner gekennzeichnet durch die
folgenden Schritte:
Identifizieren (210) und Erfassen von Zeitge-
bungsdaten, die eine von einer zweiten Rund-
funkquelle gelieferte gegenwärtige Zeitreferen-
zenrangabe umfassen, in von der zweiten
Rundfunkquelle empfangenen Programminformati-
onen;
Ableiten (215) eines ersten Zeittakts auf der
Grundlage der von der ersten Rundfunkquelle
gelieferten gegenwärtigen Zeitreferenzangabe;
Ableiten (215) eines zweiten Zeittakts auf der
Grundlage der von der zweiten Rundfunkquelle
gelieferten gegenwärtigen Zeitreferenzangabe;
Initieren (225) geplanter Verarbeitungsfunktionen
für Programme von der ersten Rundfunk-
quelle unter Verwendung des ersten abgeleite-
ten Zeittakts; und
Initieren (225) geplanter Verarbeitungsfunktionen
für Programme von der zweiten Rundfunk-
quelle unter Verwendung des zweiten abgelei-
teten Zeittakts.

13. System nach Anspruch 1, dadurch gekennzeich-
net, dass der Prozessor einen Anzeigezeitakt zum
Anzeigen für einen Nutzer ableitet und dass sich der
Anzeigezeitakt von dem beim Initiieren geplanter
Verarbeitungsfunktionen für Programme verwende-
ten ersten abgeleiteten Zeitakt unterscheidet.

14. Verfahren nach Anspruch 12, gekennzeichnet
durch den weiteren Schritt des
Anzeigens (230) eines Zeittakts, der sich von dem
ersten abgeleiteten Zeitakt unterscheidet.

Revendications

1. Système permettant le lancement des fonctions de
traitement d’un programme planifiées pour utilisation
dans un décodeur vidéo recevant des informations
de programme en provenance de diverses sources
de radiodiffusion, lesdites informations de pro-
gramme provenant d’une source de radiodiffusion indivi-
duelle comprenant du contenu de programme, des
données d’informations temporelles et des données
de programme spécifiques, et comprenant :

un moyen de réception (13, 15, 17, 22) d’infor-
mations de programme contenant un programme
voulu à partir d’une première et d’une se-
conde source de radiodiffusion ; et
un processeur (22, 60) permettant l’identifica-
tion et l’acquisition de données temporelles de
système comprenant une indication de référen-
ce temporelle en cours fournie par ladite pre-
mière source de radiodiffusion dans ladite infor-
mation de programme où
ledit processeur est configuré pour dériver une
première horloge temporelle basée sur ladite in-
dication de référence temporelle en cours four-
nie par ladite première source de radiodiffusion
et pour utiliser ladite première horloge tempo-
relle dérivée dans le lancement des fonctions
de traitement planifiées pour les programmes
dérivés de ladite première source de radiodiffu-
sion, caractérisé en ce que lesdites informa-
tions de programme sont des informations de
programme en paquets, et en ce que
ledit processeur est en outre configuré pour
identifier et acquérir des données temporelles
du système comprenant une indication de réfé-
rence temporelle en cours fournie par une se-
conde source de radiodiffusion dans les informa-
tions de programme reçues provenant de la-
dite seconde source de radiodiffusion, et en ce
que
ledit processeur est configuré pour dériver une
seconde horloge temporelle basée sur une in-
dication de référence temporelle en cours four-
nie par ladite seconde source de radiodiffusion
et pour utiliser ladite seconde horloge temporel-
le dérivée dans le lancement des fonctions de
traitement planifiées pour les programmes dé-
rivés de ladite seconde source de radiodiffusion.

2. Système selon la revendication 1, caractérisé en
ce que, au lancement des fonctions de traitement
planifiées,
ledit processeur (22, 60) est configuré pour ignorer
une horloge temporelle dérivée d’une indication de référence temporelle en cours fournie par une source autre que la source de radiodiffusion pour laquelle des fonctions de traitement planifiées sont lancées.

3. Système selon la revendication 1, caractérisé en ce que ledit processeur (22, 60) est configuré pour mettre à jour une horloge temporelle de planification enregistrée avec la première horloge temporelle dérivée avant utilisation de ladite horloge temporelle de planification dans le lancement des fonctions de traitement planifiées pour les programmes dérivés de ladite première source de radiodiffusion.

4. Système selon la revendication 1, caractérisé en ce que, en l’absence d’une indication de référence temporelle en cours valide et disponible auprès de ladite première ou seconde source de radiodiffusion, ledit processeur (22, 60) est configuré pour lancer les fonctions de traitement planifiées à l’aide d’une valeur d’horloge dérivée d’une indication de référence temporelle en cours fournie par une source autre que ladite première ou seconde source de radiodiffusion.

5. Système selon la revendication 13, caractérisé en ce que ladite horloge temporelle d’affichage est une horloge temporelle filtrée permettant d’empêcher un utilisateur de voir une discontinuité brutale dans le changement temporel.

6. Système selon la revendication 13, caractérisé en ce que ladite horloge temporelle d’affichage est mise à jour pendant les périodes où ladite horloge temporelle d’affichage n’est pas affichée dans le but d’empêcher un utilisateur de voir une discontinuité brutale dans le changement temporel.

7. Système selon la revendication 13, caractérisé en ce que ladite horloge temporelle d’affichage est mise à jour à l’aide des indications de référence temporelles en cours indépendamment des sources de radiodiffusion desdites indications de référence temporelles en cours.

8. Système selon la revendication 13, caractérisé en ce que ladite horloge temporelle d’affichage est mise à jour à l’aide des indications de référence temporelle en cours à partir d’une source unique.

9. Système selon la revendication 1, caractérisé en ce que ledit processeur (22, 60) est configuré pour lancer une fonction de traitement planifiée en réponse à une sélection de l’utilisateur effectuée via un guide de programmes électronique affiché.

10. Système selon la revendication 1, caractérisé en ce que ledit processeur (22, 60) est configuré pour lancer une fonction de traitement planifiée comprenant au moins un des éléments suivants, a) enregistrement de programme, b) reproduction de programme et c) sélection et affichage de programme.

11. Système selon la revendication 1, caractérisé en ce que ledit moyen de réception (13, 15, 17, 22) est configuré pour recevoir lesdites informations de programme en paquets sur une fréquence porteuse de canal de transmission RF spécifique utilisée par ladite première source de radiodiffusion, et ledit processeur (22, 60) est configuré pour identifier et acquérir des données temporelles du système fournies par ladite source de radiodiffusion en particulier à l’aide a) d’un identificateur de données et b) d’une identification de table.

12. Procédé permettant le lancement des fonctions de traitement d’un programme planifiées pour utilisation dans un décodeur vidéo recevant des informations de programme en provenance de diverses sources de radiodiffusion, lesdites informations de programme issues d’une source de radiodiffusion individuelle comprenant du contenu de programme, des données d’informations temporelles et des données de programme spécifiques, comprenant les étapes de : réception (205) d’informations de programme contenant un programme voulu produit par une première et seconde source de radiodiffusion ; identification (210) et acquisition de données temporelles comprenant une indication de référence temporelle en cours, indication reçue par ladite première source de radiodiffusion dans lesdites informations de programme, caractérisé en ce que lesdites informations de programmes sont des informations de programme en paquets et caractérisé en outre par les étapes suivantes : identification (210) et acquisition des données temporelles comprenant une indication de référence temporelle en cours fournie par une seconde source de radiodiffusion dans les informations de programme reçues de ladite seconde source de radiodiffusion ; dérivation (215) d’une première horloge temporelle basée sur ladite indication de référence temporelle en cours fournie par ladite source de radiodiffusion ; dérivation (215) d’une seconde horloge basée sur ladite indication de référence temporelle en
cours fournie par ladite seconde source de radiodiffusion ;
lancement (225) de fonctions de traitement plan-
nifiées pour des programmes provenant de la-
dite première source de radiodiffusion à l’aide
de ladite première horloge temporelle dérivée ;
et
lancement (225) de fonctions de traitement plan-
nifiées pour des programmes provenant de la-
dite seconde source de radiodiffusion à l’aide
de ladite seconde horloge temporelle dérivée.

13. Système selon la revendication 1, caractérisé en
 ce que
 ledit processeur dérive une horloge temporelle d’af-
 fichage pour affichage à destination d’un utilisateur
 et ladite horloge temporelle d’affichage est différente
 de ladite première horloge temporelle dérivée utili-
 sée lors du lancement de fonctions de traitement plan-
nifiées pour des programmes.

14. Procédé selon la revendication 12, caractérisé par
 l’étape supplémentaire d’affichage (230) d’une hor-
 loge temporelle différente de ladite première horloge
dérivée.
FIG. 2
FIG. 4

1. INITIATE SCHEDULING OF PROCESSING OF A DESIRED PROGRAM INCLUDING:
 A) PROGRAM RECORDING,
 B) PROGRAM PLAYBACK, OR
 C) PROGRAM TUNING AND DISPLAY

2. TUNE TO RECEIVE COMPOSITE PROGRAM GUIDE INFORMATION CONTAINING
 PROGRAM SPECIFIC INFORMATION ASSOCIATED WITH THE DESIRED PROGRAM
 PRODUCED BY A FIRST BROADCAST SOURCE

3. RETRIEVE FROM MEMORY A PROGRAM SPECIFIC INFORMATION PARAMETER COMPRISING A PROGRAM CONTENT RATING OF THE
 DESIRED PROGRAM RECEIVED FROM THE FIRST BROADCAST SOURCE

4. 1) VALIDATE USER AUTHORIZATION TO ACCESS THE DESIRED PROGRAM BY
 COMPARING THE PROGRAM CONTENT RATING FROM THE FIRST BROADCAST
 SOURCE WITH A PREDETERMINED USER SPECIFIC RATING PROFILE COMPRISING
 A MAXIMUM RATING THRESHOLD THAT IS SUBJECT TO OVERRIDE.
 2) SCHEDULE PROGRAM PROCESSING UPON SUCCESSFUL VALIDATION.

5. DETERMINE A PROGRAM CONTENT RATING OF THE DESIRED
 PROGRAM FROM A PROGRAM SPECIFIC INFORMATION
 PARAMETER RECEIVED FROM A SECOND BROADCAST SOURCE

6. MAP THE PROGRAM CONTENT RATING FROM THE SECOND
 SOURCE TO A CONTENT RATING SYSTEM OF THE FIRST SOURCE

7. SELECT A PROGRAM SPECIFIC INFORMATION PARAMETER (A
 PROGRAM CONTENT RATING IN THIS EXAMPLE) BASED ON
 THE BROADCAST SOURCE OF THE PARAMETER AND DISPLAY
 THE RATING IN A PROGRAM GUIDE, FOR EXAMPLE.

8. VALIDATE USER AUTHORIZATION TO ACCESS THE DESIRED PROGRAM BY
 COMPARING THE SELECTED PROGRAM CONTENT RATING WITH A
 PREDETERMINED USER SPECIFIC RATING PROFILE COMPRISING
 A MAXIMUM RATING THRESHOLD

9. INITIATE PROCESSING OF THE DESIRED PROGRAM UPON SUCCESSFUL
 VALIDATION OF USER AUTHORIZATION TO ACCESS THE DESIRED PROGRAM

END
START

FORM A CHANNEL MAP (CIT) FOR EACH BROADCASTER TO INCLUDE AN IDENTIFICATION NUMBER FOR IDENTIFYING A BROADCAST CHANNEL AND TO ASSOCIATE THE CHANNEL WITH A BROADCAST SOURCE OF THE CHANNEL

GENERATE STT, MGT, EIT, ETT AND RRT DATA FOR EACH BROADCASTER

FORM COMPOSITE SYSTEM AND PROGRAM SPECIFIC INFORMATION FOR MULTIPLE BROADCAST SOURCES TO ASSOCIATE TIME REFERENCES WITH THEIR CORRESPONDING BROADCAST SOURCES

COMBINE COMPOSITE SYSTEM AND PROGRAM SPECIFIC INFORMATION WITH VIDEO AND AUDIO DATA TO FORM AN MPEG COMPATIBLE TRANSPORT STREAM

CONDITION TRANSPORT STREAM FOR OUTPUT ON A TRANSMISSION CHANNEL

END

FIG. 5
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 0735776 A2 [0005]
- US 5812205 A [0006]
- EP 0725542 A2 [0007]
- DE 19803319 A1 [0008]

Non-patent literature cited in the description