EUROPEAN PATENT SPECIFICATION

DATE OF PUBLICATION AND MENTION OF THE GRANT OF THE PATENT:
20.10.2004 Bulletin 2004/43

APPLICATION NUMBER:
98936822.0

DATE OF FILING:
23.07.1998

DATE OF PUBLICATION OF APPLICATION:
10.05.2000 Bulletin 2000/19

PROPERTY:
EASTMAN CHEMICAL COMPANY
Kingsport, TN 37660 (US)

INVENTOR:
KHEMANI, Kishan, Chand
Kingsport, TN 37660 (US)

REPRESENTATIVE:
Wibbelmann, Jobst, Dr., Dipl.-Chem.
Wuesthoff & Wuesthoff,
Patent- und Rechtsanwälte,
Schweigerstrasse 2
81541 München (DE)

FOAMABLE COPOLYESTERS CONTAINING DIVALENT METAL SULFONATE GROUPS
VERSCHÄUMBARE COPOLYESTER, DIE SULFONSÄURESALZGRUPPEN ZWEIWERTIGER METALLE ENTHALTEN
COPOLYESTERS CONTENANT DES GROUPES SULFONATE DE METAUX DIVALENTS

INT CL.
C08G 63/688, C08J 9/00

REFERENCES CITED:
- CHEMICAL ABSTRACTS, vol. 98, no. 10, 7 March 1983 Columbus, Ohio, US; abstract no. 73759, XP002081777 & JP 57 143323 A (TEIJIN LTD.) 4 September 1982
- MUNARI, A. ET AL: "RHEOLOGICAL BEHAVIOR OF POLY(1,4-BUTYLENE ISOPHTHALATE) CONTAINING SODIUM SULFONATE GROUPS" JOURNAL OF APPLIED POLYMER SCIENCE, vol. 50, no. 1, 5 October 1993, pages 159-164, XP000462192

NOTE: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

[0001] This invention relates to high molecular weight copolyester compositions and, more particularly, to such copolyesters compositions possessing high melt viscosity and melt strength which render them foamable with a wide range of foaming agents.

Background of the Invention

[0002] Thermoplastic polymeric materials are foamed to provide low density articles such as films, cups, food trays, decorative ribbons, and furniture parts. For example, polystyrene beads containing low boiling hydrocarbons such as pentane are formed into lightweight foamed cups for hot drinks such as coffee, tea, hot chocolate, and the like. Polypropylene can be extruded in the presence of blowing agents such as nitrogen or carbon dioxide gas to provide decorative films and ribbons for package wrappings. Also, polypropylene can be injection molded in the presence of blowing agents to form lightweight furniture parts such as table legs and to form lightweight chairs.

[0003] Polyesters such as poly(ethylene terephthalate) typically have a much higher density (e.g. 1.3 g/cc) than other polymers. Therefore, it would be desirable to be able to foam polyester materials to decrease the weight of molded parts, films, sheets, food trays, and the like. Such foamed articles also have better insulating properties than unfoamed parts. However, it is difficult to foam such polyester materials because of the low melt viscosity and low melt strength of typical poly(ethylene terephthalate) and related polyester polymers. The low melt viscosity and low melt strength of the polyesters is a problem because the polymer melt will not adequately retain the bubbles of an expanding gas. It would be desirable therefore to be able to provide polymers which could be foamed with conventional foaming systems.

[0004] One approach to providing polyesters having high melt strengths and melt viscosities involves treating preformed polyesters with multifunctional carboxylic acids or polyols to provide branched polyesters. Such compositions are disclosed in U.S. Patents 4,132,707; 4,145,466; 4,999,388; 5,000,991; 5,110,844; 5,128,383; and 5,134,028. The branching agents used include tri- and tetracarboxylic acids and anhydrides such as trimesic acid, pyromellitic acid, and pyromellitic dianhydride or polyols such as trimethylolpropane and pentaerythritol.

[0005] Polyesters containing dicarboxylic acid sulfonates are disclosed in U.S. Patents 3,734,874; 3,779,993; 4,335,220; 4,233,196; 3,853,820; and 5,053,482. U.S. Patents 3,734,874 and 4,233,196 are concerned with amorphous water dispersible polyesters which contain at least 8 mole percent of a sulfonomonomer and substantial amounts of a difunctional glycol ether component. U.S. Patent 3,853,820 describes an amorphous water dissipatable polyester with at least 20 mole percent of a poly(ethylene glycol) which is a condensation polymer of ethylene glycol. In addition, U.S. Patent 5,053,482 describes fiber- and film-forming polyesters based on polyethylene terephthalate polyesters containing 20 to 40 mole percent of diethylene glycol for use in disposable products such as disposable diapers. U.S. Patents 4,499,262; and 4,579,936 pertain to polyester compositions useful for the manufacture of bottles.

[0006] U.S. Patent 5,399,595 discloses polyesters which contain small amounts of residues of a dicarboxylic acid sulfonate monomer containing monovalent metal ions, e.g., alkali metals, and foamed articles prepared therefrom. According to the patent, the presence of an alkali metal sulfonate monomer, e.g., residues of 5-sodiumsulfoisophthalic acid, in the polyesters provides the copolyester compositions with increased melt viscosities.

Summary of the Invention

[0007] Accordingly, one object of the present invention is to provide crystalline hydrophobic polyesters which possess improved melt strength and melt viscosity which render the polyesters especially useful for extruding, molding or foaming into useful objects.

[0008] Another object of the invention is to provide novel copolyester compositions derived from one or more aromatic dicarboxylic acids, a dicarboxylic acid sulfonate monomer containing a divalent metal ion, and at least one aliphatic or cycloaliphatic glycol which are foamable to produce articles exhibiting good physical properties and appearance.

[0009] These and other objects are accomplished herein by the present invention which provides a copolyester having an I.V. of 0.70-1.20 dL/g and a melt strength and melt viscosity sufficiently high to permit foaming during extrusion or molding operations, wherein the copolyester consists essentially of (A) dicarboxylic acid residues comprising (i) from 99.9 to 95 mol% of residues of an aromatic dicarboxylic acid having 8 to 12 carbon atoms and (ii) from 0.1 to 5.0 mol% of residues of an aromatic dicarboxylic acid sulfonate monomer containing at least one divalent metal sulfonate group attached to an aromatic nucleus, and (B) diol residues comprising residues of at least one aliphatic or cycloaliphatic diol having 2 to 8 carbon atoms, the mol% being based on 100 mol% of aromatic dicarboxylic acid residues and 100 mol% of diol residues.

[0010] Also, according to the present invention there is provided a method of increasing the melt viscosity and melt strength of a copolyester used in producing a foamed article, the copolyester consisting essentially of residues of from 100 mol% of a dicarboxylic acid component and residues from a diol component, the method comprising copolymerizing into the copolyester 0.1 to
5.0 mol% of a dicarboxylic acid sulfonate monomer containing at least one divalent metal sulfonate group attached to an aromatic nucleus.

Description of the Invention

[0011] A wide range of polyester compositions can be modified with small amounts of a dicarboxylic acid sulfonate monomer to provide copolyester compositions with increased melt viscosities and melt strengths which have good foaming characteristics. Polymers suitable for foaming must have a melt viscosity and melt strength which is sufficient to retain the bubbles of an expanding gas during molding or extrusion operations. Good melt viscosity and melt strength is also essential for the manufacture of rigid foams and foamed containers having uniform wall thickness.

[0012] The polyesters of the present invention consist essentially of diacid residues comprising terephthalic residues, naphthalenedicarboxylic acid residues, and dicarboxylic acid sulfonate monomer residues and diol residues comprising an aliphatic or cycloaliphatic glycol residues, based on 100 mol% percent diacid residues and 100 mol% diol residues. The term “consisting essentially of” means that in addition to the terephthalic or naphthalenedicarboxylic acid residues, dicarboxylic acid sulfonate monomer residues and glycol component residues, other dicarboxylic acids and diols may be present in the copolyester provided that the basic and essential characteristics of the polyester are not materially affected thereby. For example, the copolyesters of the present invention optionally may be modified with up to 25 mole percent, based on 100 mole percent diacid residues, of one or more residues derived from dicarboxylic acids different from terephthalic acid or suitable synthetic equivalents, and the dicarboxylic acid sulfonate monomer. Such additional dicarboxylic acids include aromatic dicarboxylic acids preferably having 8 to 14 carbon atoms, aliphatic dicarboxylic acids preferably having 4 to 12 carbon atoms, or cycloaliphatic dicarboxylic acids preferably having 8 to 12 carbon atoms. Examples of dicarboxylic acids to be included with terephthalic acids preferably having 8 to 12 carbon atoms. Examples of such diols to be included with ethylene glycol are: 1,4-cyclohexanedicarboxylic acid, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,3-hexanediol, 3-methyl-2,4-pentanediol, 2-methyl-1,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,4-di-(hydroxyethoxy)-benzene, 2,2-bis-(4-hydroxy cyclohexyl)propane, 2,2-bis-(3-hydroxyethoxyphenyl)propane, and the like. Polymers may be prepared from two or more of the above diols.

[0014] The dicarboxylic acid sulfonate monomer component of the polyester is derived from a dicarboxylic acid or ester thereof containing a divalent metal sulfonate group. The metal ion of the sulfonate salt may be Mg ++ , Zn ++ , Ca ++ , Ba ++ , and the like. The sulfonate salt group is attached to an aromatic acid nucleus such as a benzene, naphthalene, diphenyl, oxydiphenyl, sulfonryldiphenyl, or methylenediphenyl nucleus. Preferably, the sulfonate monomer is the residue of a sulfonate-substituted phthalic acid, terephthalic acid, isophthalic acid, naphthalene-2,7-dicarboxylic acid. Most preferably, the sulfonate monomer residues are magnesium isophthalic-5-sulfonate acid residues.

[0015] The dicarboxylic acid sulfonate monomer residues are present in a critical amount of 0.1 to 5 mole % based on the total diacid content. The use of dicarboxylic acid sulfonate monomer residues containing divalent metal ions in the present invention provides foamable copolyester compositions with increased melt viscosity and melt strength. The divalent metal ion serves as an ionic linking agent in these copolyesters for the pendant sulfonate ions on neighboring or adjacent polymeric chains, and thereby provides a “pseudo branching” or “pseudo cross-linking” effect due to the strong ionic bonds. This results in a highly enhanced melt strength and melt viscosity for the resulting copolyesters.

[0016] In addition to the presence of the dicarboxylic acid sulfonate monomer, the polyesters of the present invention also must have high molecular weight in order to achieve sufficient melt strength and melt viscosity to be foamed. High molecular weight polymers for the purpose of this invention are defined as polyesters having an inherent viscosity (I.V.) of greater than 0.70 dL/g. It is important to note that a correlation exists between the I.V. of the polyester and the amount of dicarboxylic acid sulfonate monomer required to provide the polyesters with sufficient melt strength and melt viscosity to be useful for foaming. For example, polyesters having an I.V. of 0.75 dL/g require 0.25 to 0.5 mole % of the sulfonate monomer.

Polyesters having an I.V. of 1.0 dL/g to 1.1 dL/g require...
only 0.1 to 0.2 mole percent of the sulfonmonomer to be useful for foaming. Thus, the amount of the dicarboxylic acid sulfonmonomer added is generally inversely proportional to the inherent viscosity of the polyester.

[0017] To achieve the high molecular weight polyesters which are necessary for the present invention, it is necessary to use a combination of melt phase and solid state polymerization. The combination is used because polymerization in the melt phase to high molecular weight causes thermal degradation of the polymer. In the melt polymerization, the dicarboxylic acids or ester forming derivatives thereof, and one or more diols are heated in the presence of esterification and/or polymerization catalysts at temperatures in the range of 150°C to 300°C, and pressures of atmospheric to 0.0266 kPa (0.2 mm Hg). Normally, the dicarboxylic acids or derivatives thereof are esterified or transesterified with the diol(s) at atmospheric pressure and at a temperature at the lower end of the specified range. Polymerization then is effected by increasing the temperature and lowering the pressure while excess diol is removed from the mixture. The polymerization reaction is continued until the inherent viscosity of the polymer melt reaches 0.35 dl/g or greater. At this point, the melt is cooled to produce a solid which is pelletized, chopped, granulated, or powdered.

[0018] The pellets or other solid forms are then subjected to a solid state polymerization at 215°C wherein diol is removed by circulating or blowing an inert gas, such as nitrogen, through the pellets. A polycondensation reaction is thus conducted in the solid state. The solid state polycondensation reaction is continued until the inherent viscosity of the polymer reaches 0.70 dl/g or greater.

[0019] The preferred copolymers of the present invention have an inherent viscosity of 0.7 to 1.2 dl/g and consist essentially of (A) 99.75 to 97.0 mole percent terephthalic acid residues and 0.25 to 3.0 mole percent of isophthalic acid 5-sulfonate residues containing a divalent metal selected from Mg++, Zn++, Ca++, Ba++, and Co++ and (B) ethylene glycol residues, wherein the mole percentages are based on 100 mole percent diacid residues and 100 mole percent glycol residues. Copolymers in which the isophthalic acid 5-sulfonate residues are derived from magnesium isophthalic acid 5-sulfonate are particularly preferred.

[0020] The polymer compositions of this invention are readily foamed by a wide variety of methods. These include the injection of an inert gas such as nitrogen or carbon dioxide into the melt during extrusion or molding operations. Alternatively, inert hydrocarbon gases such as methane, ethane, propane, butane, and pentane, or chlorofluorocarbons, hydrochlorofluorocarbons, and like may be used. Another method involves the dry blending of chemical blowing agents with the polyester and then extrusion or molding the compositions to provide foamed articles. During the extrusion or molding operation, an inert gas such as nitro-
but are not limited to, hindered phenols, phosphites, di-
phosphites, polyphosphites, and mixtures thereof. Combinations of aromatic and aliphatic phosphite com-
pounds may also be included.

[0025] The materials and testing procedures used for the results shown herein are as follows:

[0026] Inherent viscosity (I.V.) is measured at 25°C using 0.50 grams of polymer per 100 mL of a solvent
consisting of 80% by weight phenol and 40% by weight tetrachloroethane.

[0027] Melt Strength and Die Swell are determined according to ASTM D3835 by extruding the molten poly-
ester downward through a die 0.1 inch in diameter and 0.25 inches long at a shear rate of 20 second⁻¹ using an
Instron rheometer and allowing the extrudate to fall free-
ly. Die Swell is determined by measuring the diameter of the extrudate immediately outside the orifice and di-
viding by the diameter of the orifice. Die Swell is reported as percent Die Swell. The diameter of the end of a six
inch length of extrudate, measured from the orifice of the die, is measured. The percent Melt Strength is de-
termined from the formula:

\[
\text{Melt Strength} = \left(\frac{D - 0.1}{0.1} \right) \times 100
\]

wherein D is the diameter, in inches, of the extrudate
supporting a six inch length of extrudate. If D is less than
0.1 inch, the Melt Strength is a negative number since
there is no increase in the diameter of the extrudate. If
D is greater than 0.1 inch, the Melt Strength is a positive
number.

Elongation: ASTM-D638
Flexural Modulus: ASTM-D790
Flexural Strength: ASTM-D790
Heat Deflection Temperature: ASTM-D785
Izod Impact Strength: ASTM-D256
Rockwell Hardness: ASTM-D648
Tensile Strength: ASTM-D638

[0028] The mole percentages of the 5-magnesium sulfoisophthalate acid residues of the polyesters are de-
termined by measuring the percent sulfur by X-ray flo-
rescence technique. The mole percentages of the diol
and acid residues are determined by gas chromatogra-
phy or NMR.

[0029] The copolyesters provided by the present in-
vention and the preparation thereof are further illustrat-
ed by the following examples wherein all parts and per-
centages are by weight unless otherwise stated.

EXAMPLE 1

[0030] Magnesium acetate \([\text{Mg(OAc)}_2 \cdot 4\text{H}_2\text{O}; \text{Aldrich; 383.88 g, 3.58 equivalents}]\) was dissolved in 800 mL of
distilled water in a three liter beaker. Four batches of
solutions of 5-sodiosulfoisophthalic dimethyl ester (50 g
each, 0.169 equivalents) in hot distilled water (200 mL
each) also were prepared in separate, one-liter beakers.

The beaker containing the magnesium acetate solution
was placed on a hot plate and stirred vigorously using
a magnetic stirring bar. The four 5-sodiosulfoisophthalic
dimethyl ester solutions were slowly added into the
above stirred solution one-at-a-time. The resulting white
precipitate-containing mixture was heated and stirred
continuously until a clear solution was obtained. The
stirring and heating were discontinued and the solution
allowed to cool to room temperature. The white precip-
itate was collected on a large Buchner funnel and rinsed
with a little cold distilled water (-100 mL). The precipitate
t was transferred to a clean three liter beaker and
stirred vigorously into 1000 mL of distilled water and fil-
tered using a large Buchner funnel. The precipitate was
rinsed with cold water once again (-100 mL). Next, the
precipitate was placed with 1400 mL of distilled water in
another clean three liter beaker, and heated on a hot
plate under stirring until dissolved to give a clear solu-
tion. The beaker containing this solution was covered
with an aluminum foil and allowed to cool and crystal-
lized over 48 hours. The white crystals formed were col-
lected by filtration on a Buchner funnel and dried under
a mild vacuum at room temperature for 2 hours; then at
ambient pressure and temperature for 24 hours. Finally
it was dried in a vacuum oven at 60°C for 24 hours at
18 inches of Hg. The dried product was 5-magnesium-
sulfoisophthalic dimethyl ester and weighed 190 grams
(94.8% yield). The product was fully characterized by
analytical techniques such as FTIR, 1H-NMR, Karl
Fischer titration, DSC, TGA, weight % S, ICP etc.

EXAMPLE 2

[0031] A polymer synthesis vessel was charged with
49.75 mole percent dimethyl terephthalate, 100 mole
percent ethylene glycol, 0.50 mole percent dimethyl
5-magnesiumsulfoisophthalate and 1 mole percent so-
dium acetate. To this mixture were added 20 ppm Ti (as
titanium tetraisopropoxide), 55 ppm Mn (as manganese
acetate tetrahydrate), 80 ppm Co (as cobalt acetate)
and 230 ppm Sb (as antimony oxide). The mixture was
purged with nitrogen under vigorous agitation, and heat-
ed initially to 200°C. After an hour, the temperature was
raised to 210°C. Two hours later, 108 ppm P (as Zonyl
A) was added and the temperature was raised to 280°C.
The nitrogen purge was cut-off at this point and a vac-
uum was applied to reduce the pressure in the reactor
vessel to 0.2 mm of Hg. The temperature was main-
tained at 280°C with agitation and the reduced pressure
for 40 minutes. Near the end of this period, the agitation
becomes very difficult due to the high melt strength and
melt viscosity of the resin melt. The melt phase-pre-
pared copolymer thus prepared and had an inherent vis-
cosity of 0.61 dL/g, a melt strength of - 68% and a die
swell of 2%. The polymer then was solid-stated (8 hours
at 215°C) to an I.V. of 0.90 dL/g by conventional solid
stating methods. The solid-stated copolyester had a
melt strength of - 21% and a die swell of 10%.
Claims

1. A copolyester having an I.V. of 0.70-1.20 dL/g and a melt strength and melt viscosity sufficiently high to permit foaming during extrusion or molding operations, wherein the copolyester consists essentially of (A) diacid residues comprising (i) from 99.9 to 95.0 mol% of residues of an aromatic dicarboxylic acid having 8 to 12 carbon atoms and (ii) from 0.1 to 5.0 mol% of residues of an aromatic dicarboxylic acid sulfonate monomer containing at least one divalent metal sulfonate group attached to an aromatic nucleus, and (B) diol residues comprising residues of at least one aliphatic or cycloaliphatic diol having 2 to 8 carbon atoms, the mol% being based on 100 mol% dicarboxylic acid residues and 100 mol% diol residues.

2. A copolyester according to Claim 1 wherein diacid residues (A) comprise (i) from 99.9 to 95.0 mol% of residues of terephthalic acid residues, naphthalenedicarboxylic acid residues or a mixture thereof and (ii) from 0.1 to 5 mol% of residues of isophthalic acid 5-metal sulfonate wherein the metal is Mg++, Zn++, Ca++, Ba++, or Co++.

3. A copolyester having an inherent viscosity of 0.7 to 1.2 dL/g and consisting essentially of (A) 99.75 to 97.0 mole percent terephthalic acid residues and 0.25 to 3.0 mole percent of isophthalic acid 5-sulfonate residues containing a divalent metal selected from Mg++, Zn++, Ca++, Ba++, and Co++ and (B) ethylene glycol residues, wherein the mole percentages are based on 100 mole percent diacid residues and 100 mole percent ethylene glycol residues.

4. A copolyester according to Claim 3 wherein the isophthalic acid 5-sulfonate residues are derived from magnesium isophthalic acid 5-sulfonate.

5. A foamed article comprising a copolyester having an I.V. of 0.70-1.20 dL/g and a melt strength and melt viscosity sufficiently high to permit foaming during extrusion or molding operations, wherein the copolyester consists essentially of (A) diacid residues comprising (i) from 99.9 to 95.0 mol% of residues of an aromatic dicarboxylic acid having 8 to 12 carbon atoms and (ii) from 0.1 to 5.0 mol% of residues of an aromatic dicarboxylic acid sulfonate monomer containing at least one divalent metal sulfonate group attached to an aromatic nucleus, and (B) diol residues comprising residues of at least one aliphatic or cycloaliphatic diol having 2 to 8 carbon atoms, the mol% being based on 100 mol% dicarboxylic acid residues and 100 mol% diol residues.

6. A foamed article comprising a copolyester having an inherent viscosity of 0.7 to 1.2 dL/g and consisting essentially of (A) 99.75 to 97.0 mole percent terephthalic acid residues and 0.25 to 3.0 mole percent of isophthalic acid 5-sulfonate residues containing a divalent metal selected from Mg++, Zn++, Ca++, Ba++, and Co++ and (B) ethylene glycol residues, wherein the mole percentages are based on 100 mole percent diacid residues and 100 mole percent ethylene glycol residues.

7. A foamed article according to Claim 6 wherein the isophthalic acid 5-sulfonate residues are derived from magnesium isophthalic acid 5-sulfonate.

Patentansprüche

1. Copolyester mit einer I.V. von 0,70 - 1,20 dL/g und einer ausreichend hohen Schmelzfestigkeit und Schmelzviskosität, um ein Schäumen während der Extrusions- oder Formungsoperationen zu ermöglichen, wobei der Copolyester aus (A) Disäureresten, umfassend (i) 99,9 bis 95,0 Mol-% Reste einer aromatischen Dicarbonsäure mit 8 bis 12 Kohlenstoffatomen und (ii) 0,1 bis 5,0 Mol-% Reste eines aromatischen Dicarbonsäuresulfonatmonomers, das mindestens eine an einen aromatischen Kern gebundene zweiwertige Metallsulfonatgruppe enthält, und (B) Diolresten, umfassend Reste von mindestens einem aliphatischen oder cycloaliphatischen Diol mit 2 bis 8 Kohlenstoffatomen besteht, wobei die Mol-% auf 100 Mol-% Dicarbonsäureresten und 100 Mol-% Diolresten basieren.

2. Copolyester nach Anspruch 1, wobei Disäurereste (A) (i) 99,9 bis 95,0 Mol-% Reste von Terephthaläureresten, Naphthalindicarbonsäureresten oder eine Mischung davon und (ii) 0,1 bis 5 Mol-% Reste von Isophthalsäure-5-metallsulfonat umfassen, wobei das Metall Mg++, Zn++, Ca++, Ba++ oder Co++ ist.

3. Copolyester mit einer logarithmischen Viskositätszahl von 0,7 bis 1,2 dL/g und bestehend im Wesentlichen aus (A) 99,75 bis 97,0 Mol-% Terephthalsäureresten und 0,25 bis 3,0 Mol-% Isophthalsäure-5-sulfonatresten, enthaltend ein zweiwertiges Metall gewählt aus Mg++, Zn++, Ca++, Ba++ und Co++, und (B) Ethylenlykolresten, wobei die Molprozente auf 100 Mol-% Disäureresten und 100 Mol-% Ethylenglykolresten basieren.

5. Geschäumter Artikel, umfassend einen Copolyester mit einer I.V. von 0,70 - 1,20 dL/g und einer
ausreichend hohen Schmelzfestigkeit und Schmelzviskosität, um ein Schäumen während der Extrusions- oder Formungsoperationen zu ermöglichen, wobei der Copolyester im Wesentlichen aus (A) Disäureresten, umfassend (i) 99,9 bis 95,0 Mol-% Reste einer aromatischen Dicarbonsäure mit 8 bis 12 Kohlenstoffatomen und (ii) 0,1 bis 5,0 Mol-% Reste eines aromatischen Dicarbonsäuresulfonatmonomers, das mindestens eine an einen aromatischen Kern gebundene zweiwertige Metallsulfonatgruppe enthält, und (B) Diolresten, umfassend Reste von mindestens einem aliphatischen oder cycloaliphatischen Diol mit 2 bis 8 Kohlenstoffatomen, besteht, wobei die Mol-% auf 100 Mol-% Dicarbonsäureresten und 100 Mol-% Diolresten basieren.

6. Geschäumter Artikel, umfassend einen Copolyester mit einer logarithmischen Viskositätszahl von 0,7 bis 1,2 dL/g und bestehend im Wesentlichen aus (A) 99,75 bis 97,0 Mol-% Terephthalsäurereste und 0,25 bis 3,0 Mol-% Isophthalsäure-5-sulfonatresten, enthaltend ein zweiwertiges Metallgewählt aus Mg++, Zn++, Ca++, Ba++ und Co++ und (B) Ethylenglykolresten, wobei die Molprozente auf 100 Mol-% Disäureresten und 100 Mol-% Ethylenglykolresten basieren.

7. Geschäumter Artikel nach Anspruch 6, wobei die Isophthalsäure-5-sulfonatreste von Magnesiumisophthalsäure-5-sulfonat abgeleitet sind.

Revendications

1. Copolyester ayant une I.V. (viscosité intrinsèque) de 0,70-1,20 dL/g et une résistance à l’état de fusion et une viscosité à l’état de fusion suffisamment élevées pour permettre l’expansion pendant des opérations d’extrusion ou de moulage, dans lequel le copolyester est essentiellement constitué (A) de résidus de diacide comprenant (i) de 99,9 à 95,0 % en mole de résidus d’un acide dicarboxylique aromatique ayant de 8 à 12 atomes de carbone et (ii) de 0,1 à 5,0 % en mole de résidus d’un monomère de sulfonate d’acide dicarboxylique aromatique contenant au moins un groupe sulfonate de métal divalent fixé à un noyau aromatique, et (B) de résidus de diol comprenant des résidus d’au moins un diol aliphatique ou cycloaliphatique ayant de 2 à 8 atomes de carbone, les % en mole étant rapportés à 100 % en mole de résidus d’acide dicarboxylique et 100 % en mole de résidus de diol.

2. Copolyester selon la revendication 1, dans lequel les résidus de diacide (A) comprennent (i) de 99,9 à 95,0 % en mole de résidus d’acide téréphtalique, de résidus d’acide naphtalénedicarboxylique ou d’un mélange de ceux-ci et (ii) de 0,1 à 5 % en mole de résidus de sulfonate 5-métallique d’acide isophthalique où le métal est Mg++, Zn++, Ca++ Ba++ ou Co++.

3. Copolyester ayant une viscosité inhérente de 0,7 à 1,2 dL/g et essentiellement constitué de (A) 99,75 à 97,0 % en mole de résidus d’acide téréphtalique et 0,25 à 3,0 % en mole de résidus 5-sulfonate d’acide isophthalique contenant un métal divalent choisi parmi Mg++, Zn++, Ca++, Ba++ et Co++ et (B) de résidus d’éthyléneglycol, où les pourcentages en mole sont rapportés à 100 % en mole de résidus de diacide et 100 % en mole de résidus d’éthyléneglycol.

4. Copolyester selon la revendication 3, dans lequel les résidus de 5-sulfonate d’acide isophthalique sont dérivés de 5-sulfonate d’acide isophthalique de magnésium.

5. Article expansé comprenant un copolyester ayant une I.V. de 0,70-1,20 dL/g et une résistance à l’état de fusion et une viscosité à l’état de fusion suffisamment élevées pour permettre l’expansion pendant des opérations d’extrusion ou de moulage, où le copolyester est essentiellement constitué (A) de résidus de diacide comprenant (i) de 99,9 à 95,0 % en mole de résidus d’un acide dicarboxylique aromatique ayant de 8 à 12 atomes de carbone et (ii) de 0,1 à 5,0 % en mole de résidus d’un monomère de sulfonate d’acide dicarboxylique aromatique contenant au moins un groupe sulfonate de métal divalent fixé à un noyau aromatique, et (B) de résidus de diol comprenant des résidus d’au moins un diol aliphatique ou cycloaliphatique ayant de 2 à 8 atomes de carbone, les % en mole étant rapportés à 100 % en mole de résidus d’acide dicarboxylique et 100 % en mole de résidus de diol.

6. Article expansé comprenant un copolyester ayant une viscosité inhérente de 0,7 à 1,2 dL/g et essentiellement constitué de (A) 99,75 à 97,0 % en mole de résidus d’acide téréphtalique et 0,25 à 3,0 % en mole de résidus 5-sulfonate d’acide isophthalique contenant un métal divalent choisi parmi Mg++, Zn++, Ca++, Ba++ et Co++ et (B) de résidus d’éthyléneglycol, où les pourcentages en mole sont rapportés à 100 % en mole de résidus de diacide et 100 % en mole de résidus d’éthyléneglycol.

7. Article expansé selon la revendication 6, dans lequel les résidus de 5-sulfonate d’acide isophthalique sont dérivés du 5-sulfonate d’acide isophthalique de magnésium.