EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

(21) Application number: 99120694.7

(22) Date of filing: 19.10.1999

(54) Chamber for an IC module handler
Kammer für eine Handhabungsvorrichtung für ein IC-Modul
Chambre pour dispositif de manipulation d’un module à circuit intégré

(84) Designated Contracting States:
DE FR GB

(30) Priority:
19.10.1998 KR 9843685
19.10.1998 KR 9843686

(43) Date of publication of application:

(73) Proprieter: Mirae Corporation
Chunan-shi, Choongchungnam-do (KR)

(72) Inventors:
• An, Tae Sung
 Cheuncheun-myun,
 Jangsu-gun,
 Jeunbuk (KR)
• Park, Chan Ho
 Umbong-myun,
 Asan-shi,
 Choongnam (KR)
• Moon, Yong Soo
 Chungwon-gun,
 Choongbuk (KR)
• Seong, Eun Hyoung
 Seoul (KR)
• Kim, Ku Kyong
 Seoul (KR)

(74) Representative: Viering, Jentschura & Partner
Postfach 22 14 43
80504 München (DE)

(56) References cited:
WO-A-92/04989

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a module IC handler, and, more particularly to an improved chamber for a module IC handler including a pre-heater for appropriately heating at a set temperature while a carrier served with a plurality of module ICs is moved, and a test site for enabling an outside tester to test by being pushed the carrier by a pusher.

Description of the Prior Art

[0002] In general, as shown in Fig. 1, a module IC is an independent circuit by soldering for a plurality of ICs and components 3 to one side or both sides of a substrate 2, and is mounted on a main board. The module IC serves to increase a capacity. In Fig. 1, number 3a denotes a pattern.

[0003] The conventional module IC manufacturing process have problems as follows.

[0004] An equipment, in which the module IC 1 is automatically loaded in a test socket to be tested and is automatically distributed it according to the result of the test so that the module IC 1 is not loaded to a customer tray not shown, should have been developed. However, because the equipment like that has not been developed, an operator should extract the module IC from the tray one by one for loading into the test socket and performs the test during a predetermined time. After the test, the module IC is distributed to receive the customer tray according to the result of the test thereby causing a working efficiency to be deteriorated.

[0005] Meanwhile, the handler has been developed by the applicant for selecting a good product from the bad product according to the result of the test while the manufactured module IC is automatically moved between the processes. In this case it is possible to manufacture a mass product, however, the quality of products is a little deteriorated. That is, the module IC can not be handled from the chamber by the pickup means thereby causing a reliability of product to be deteriorated.

SUMMARY OF THE INVENTION

[0006] Accordingly, the present invention has been made to solve the above problems, it is an object to provide a chamber for a module IC handler in which a carrier for loading a plurality of module ICs to be tested is disposed in a chamber so that the module IC is heated at a predetermined temperature.

[0007] Another object is to provide a chamber for a module IC handler having a test site in which a module IC is longitudinally disposed to contact with a manipulator so that a replacing operation can be easily executed.

[0008] To achieve the above objects, the present invention provides a chamber for a module IC handler as defined in claim 1, and formed with a plurality of receiving grooves at the upper surface thereof for being placed a carrier served with a module IC; an operating piece disposed in a predetermined portion of the receiving piece, disposed at the lowest point thereof at the upper surface of the receiving piece and formed at the upper surface thereof with a receiving groove same interval to the receiving groove of the receiving piece for performing up/down movement and advance/retract movement; operating piece up/down movement means for going up/down the operating piece to be higher the upper surface thereof than the upper surface of the receiving piece; operating piece advance/retract movement means.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Other objects and aspects of the invention will become apparent from the following description of embodiments with reference to the accompanying drawings in which:

Fig. 1 is a front view of a conventional module IC;
Fig. 2 is a perspective view of a chamber for a module IC handler according to an embodiment of the present invention;
Fig. 3 is a bottom perspective view of Fig. 2;
Fig. 4 is a sectional view of A-A line in Fig. 2;
Fig. 5a is a view showing the state that a carrier is received into a first receiving groove of a receiving piece;
Fig. 5b is a view showing a separated state of a carrier from the receiving piece by rising an operating piece to a highest point;
Fig. 5c is a view showing a one step fed state of the operating piece;
Fig. 5d is a view showing the state that one step fed carrier is received into the receiving piece by dropping the operating piece to the lowest point;
Fig. 6 is a left side view of Fig. 5a;
Fig. 7 is a perspective view showing a test site of a chamber for a module IC handler according to another embodiment of the present invention;
Fig. 8 is a sectional view of B-B line in Fig. 7;
Fig. 9 is a plane view of Fig. 8;
Fig. 10 is a sectional view of C-C line in Fig. 7;
Fig. 10a is a view showing an initial state that a carrier served with a module IC is fed to a test site;
Fig. 10b is a view showing the state in that a carrier is fed to a test socket by a pusher; and
Fig. 11 is a front view showing a carrier feeding control means.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

[0010] As shown in Fig. 2, a chamber for a module IC
The carrier 5 to be placed on the receiving groove 6a is served with a plurality of module ICs to be tested. The inlet and outlet are installed with a shutter not shown to open/close when the carrier 5 is inputted/outputted. Furthermore, on the carrier feeding path at the longitudinal and horizontal direction to the inlet and outlet, sensors 7 and 8 are disposed for sensing the feeding state of the carrier 5.

At the side wall closed to the receiving groove 6a to be placed with the carrier 5 through the inlet, a heater not shown is disposed for heating the module IC 1, and a plurality of fans not shown are disposed for blowing a high temperature toward the carrier 5.

Furthermore, at the inside of the receiving piece 6 an operating piece 9 is disposed to perform an up/down movement and an advance/recess movement. The operating piece 9 is placed at a lower position than the upper surface of the receiving groove 6a when it is in the lowest point and placed at a higher position than the receiving piece 6 when it is in the highest point. Furthermore, the operating piece 9 is, at the upper surface thereof, formed with a receiving groove 9a. The receiving groove 9a has a same distance to the distance of the receiving groove 6a of the receiving piece 6. This is because the carrier 5 on the receiving piece 6 should be fed toward the feeding path of the test site 100 by one step according to the up/down movement and advance/recession movement of the operating piece 9. Here, the operating piece 9 may be disposed at a region between the receiving piece 6.

The operating piece 9 installed in the chamber for feeding the carrier 5 by one step performs the up/down movement at a region between the highest point and the lowest point by the up/down movement means.

As shown in Figs. 2 and 3, the up/down movement means comprises a cylinder 12 secured to the bottom surface of a mounting plate 11, an up/down movement plate 13 secured to the rod of the cylinder 12, and the guide rods 14 secured at a region between the up/down movement plate 13 and the operating piece 9. The guide rod 14 secured between the up/down movement plate 13 and the operating piece 9 is, at the upper surface thereof, formed with a receiving groove 21a for receiving the module IC 1 heated at the appropriated temperature. At this time, the receiving groove 21a should be same to the size of the long hole 4a of the lower plate 4. Furthermore, on the carrier feeding path at the lower side of the test site 100 by one step according to the movement of the up/down movement plate 13 and the operating piece 9.

The up/down movement means performs the advance/recess movement by one pitch same to the distance between the receiving groove according to the advance/recess movement means.

As shown in Figs. 3 and 5a, the operating piece advance/recess movement means comprises a stepping motor 15 fixed to the mounting plate 11, a ball screw 16 voidly rotationally coupled between the lower plate 4 of the chamber and the mounting plate 11, and a timing belt 18 for transmitting the rotation power from the stepping motor 15 to the ball screw 16. The timing belt 18 is wound to the pulley 17 and 18 secured to the axis of the stepping motor 15 and the ball screw 16. Here, the operating advance/recess movement means may be constructed with other motor and cylinder.

Because the guide rod 14 secured between the up/down movement plate 13 and the operating piece 9 performs the advance/recess movement at a predetermined region, the moving region of the guide rod 14 should be sealed at its maximum for keeping constantly the temperature in the chamber. To achieve the sealing state like that, as shown in Figs. 4, 5a to 5d, the lower plate 4 is formed with a long hole 4a and is, at the upper and lower surfaces thereof, installed with upper and lower shutters 19 and 20 to be performed the advance/recess movement with the guide rod 14. The up and lower shutters 19 and 20 are, one side thereof, that is, a right side in Fig. 5a, formed to be longer than the feeding amount L of the guide rod 14. This is because the high temperature in the chamber can be prevented from being emitted through the long hole 4a by closing the long hole 4a by the upper and lower shutter 19 and 20 although the operating piece 9 is advanced in the arrow direction in Fig. 2 for feeding the carrier 5.

As shown in Figs. 4 and 6, a fixing block 21 is secured to the lower plate 4 for preventing the lower shutter 20 from being deviated and is, at the upper surface thereof, formed with a receiving groove 21a for receiving the lower shutter 20 and formed with a long hole 21b same to the size of the long hole 4a of the lower plate 4.

At this time, the receiving groove 21b should be formed in the advance direction of the guide rod 14 to be longer than the feeding amount L.

As shown in Fig. 2, a feeding means is installed on the upper side of the test site for holding the carrier 5 served with the module IC 1 heated at the appropriated test temperature thereby to be fed toward the test site 10. The carrier 5 is fed by one step.

The feeding means comprises a ball screw 24 voidly rotationally installed between the bracket 23 disposed at the upper side of the carrier 5 on the feeding path 22 of the test site 100, a pair of guide rods 25 secured to both sides of the ball screw 24, a slider 26 coupled to the ball screw 24 by a screw and inserted into the guide rod 25 for coming and going, a push plate 27 secured to the bottom surface of the slider 26 for pushing the carrier 5 toward the test site 100 according to the movement of the slider 26, and a stepping motor 28 secured to one end of the ball screw 24 extracted from the chamber for rotating the ball screw 24.

An operation of the chamber for the module IC handler having the above construction will now be explained.

Firstly, the operation for feeding the carrier into the chamber will be explained.

The carrier 5 is kept in horizontal state at the point for loading the module IC 1. Under the state that a locking member not shown installed in the carrier 5 is rotated, a plurality of module ICs 1 held by the pickup means is, in series, fed to the carrier 5 to be served. After that, the locking member is returned to the initial state. Therefore, the module IC 1 is, the upper surface thereof, pressed by the locking member and the operation for
loading the module IC 1 to the carrier 5 is completed.

[0026] After the module IC 1 to be tested are loaded to the carrier 5, the carrier 5 is rotated at an angle of 90 degrees by the rotator thereby to be placed on the first receiving groove 6a of the receiving piece 6 through the inlet of the chamber.

[0027] Under this state, when the sensor 7 senses the carrier 5 that placed on the first receiving groove 6a, the module IC 1 served in the carrier 5 is heated under the test condition because the high temperature is transmitted by the heater and the fan during the predetermined time.

[0028] While the module IC 1 on the first receiving groove 6a is heated, the rotator is returned to the initial state for holding a new carrier. At this time, the carrier 5 on the receiving piece 6 is fed by one step according to the up/down movement and the advance/retract movement of the operating piece 9.

[0029] Fig. 5a is a view showing the state that the carrier is placed on the first receiving groove of the receiving piece.

[0030] Under this state, when the cylinder 12 operates to pull the rod, the carrier 5 is separated from the receiving groove 6a because a pair of the operating pieces 9 connected to the up/down movement plate 13 by the guide rod 14 rises to the highest point. That is, because the carrier 5 on the receiving groove 6a rises to the highest point at the state of being placed on the receiving groove 9a of the operating piece 9, the carrier 5 is separated from the receiving piece 6 as shown in Fig. 5b. The above operation is possible because the guide rod 14 is inserted into the upper and lower shutters 19 and 20 to be up/down movement.

[0031] After the carrier 5 is separated from the receiving piece 6 by the operating piece 9, the operating piece 9 is fed by one step as shown in Fig. 5b according to the driving of the stepping motor 15. That is, when the rotation power generated by the stepping motor 15 is transmitted to the ball screw 24 through the timing belt 18 to be rotated, the cylinder 12 and the advance/retract movement means are simultaneously fed in the arrow direction as shown in Fig. 5b because the ball screw 16 is coupled to the mounting plate 11 by the screw.

[0032] Therefore, the guide rod 14 inserted into the mounting plate 11 is fed as shown in Fig. 4 according to the feeding of the mounting plate 11. At this time, because the upper and lower shutters 19 and 20 disposed at the upper surface and the lower surface of the lower plate 4 are moved with the guide rod 14, the long hole 4a formed in the lower plate 4 is kept at the closed state by the upper and lower shutters 19 and 20. Therefore, the carrier 5 is, as shown in Fig. 5, at the right upper portion of the second receiving groove 6a, formed in the receiving piece 6 as shown in Fig. 5c.

[0033] Furthermore, when the cylinder 12 is re-operated, the operating piece 9 goes down to the lowest point so that the carrier 5 can be placed on the second receiving groove 6a of the receiving piece 6. Therefore, the carrier 5 is completed its one step operation.

[0034] After the carrier 5 is fed by one step, the operating piece 9 is returned to the initial state as shown in Fig. 5a by the driving of the stepping motor 15. It is possible the operating piece 9 to be returned to the initial state because the lowest point of the operating piece 9 is lower than the upper surface of the receiving groove 6a.

[0035] Next, a new carrier is supplied through the inlet according to the driving of the rotator so that it is placed on the first receiving groove 6a formed in the receiving piece 6. Therefore, because the foregoing operation is performed, two carriers are simultaneously fed toward the test site 100 by one step.

[0036] After the carrier 5 supplied in advance is fed toward the feeding path 22 of the test site 100, the push plate 27 secured to the slider is in the back side(left in the drawing) of the carrier 5 because the slider 26 is in the solid line of Fig. 2 for feeding the carrier toward the test site. That is, under the state that the carrier 5 is on the feeding path of the test site 100, the module IC 1 served in the carrier 5 is kept in the state of being heated to comply with the test condition.

[0037] After the carrier 5 is fed toward the feeding path of the test site 100, the sensor 8 senses the state and the shutter not shown of the outlet is opened, and, at the same time, the ball screw 24 is rotated according to the driving of the stepping motor 28 so that the slider 26 coupled to the ball screw 24 by the screw is fed toward the test site 100 along the guide rod 25.

[0038] According to the movement of the slider 26 the carrier 5 is fed toward the test site 100. When the slider is returned to the initial state, the push plate 27 is in the backward of the carrier 5 thereby to be prevented an interference from being generated.

[0039] The foregoing description is for feeding one carrier 5 supplied into the chamber by one step and for heating to be complied with the test temperature and feeding it toward the test site 100. Therefore, as long as the carrier 5 is continuously supplied into the chamber, the same operation will be continuously performed.

[0040] Another embodiment of the present invention will now be explained with reference to Figs 7 to 11.

[0041] As shown in Figs 7 to 11, the chamber for the module IC handler according to another embodiment of the present invention comprises a carrier feeding control means provided at the lower plate 115 of the chamber 114, which is kept an appropriate temperature to be complied with the test, for feeding the carrier 5 served with the module ICs 1 to be tested to the outside of the chamber 114, a carrier feeding guide means for guiding the feeding of the carrier 5 while the carrier 5 is advanced or retreated toward the socket assembly 117 to be tested, a pushing means for pushing the carrier 5 toward the socket assembly 117 during test, and an extracting means for the module IC 1 served in the carrier 5 from the socket assembly 117 after test.

[0042] As shown in Figs. 9 and 11, the carrier feeding control means comprises of a feeding plate 118 movable
installed at the lower plate 115 constructing the chamber 114 in the same direction to the feeding direction of the carrier 5, a fixing stopper 119 installed on the feeding plate 118 for controlling the feeding of the carrier 5 into the chamber 114, an operating stopper 121 rotationally installed on the basis of the axis 120 at the inlet of the carrier 5 for supporting the side of the carrier 5, a cylinder 122 installed at the bottom surface of the feeding plate 118 for rotating the stopper 121 on the basis of the feeding of the carrier 5 into the chamber 114, and a driving unit installed at the bottom surface of the feeding plate 118 for feeding in horizontal the feeding plate 118.

[0043] As shown in Fig. 8, the feeding plate 118 for feeding the carrier 5 to the outside of the chamber should be decided its size to prevent its end from being deviated from the chamber although the carrier 5 is extracted from the chamber in its maximum. This is for preventing a high temperature in the chamber from being emitted to the outside because an outlet, that is, feeding path of the feeding plate is generated in the chamber according to the extraction of the feeding plate 118 from the chamber.

[0044] According as the carrier 5 is fed into the chamber 114, a pin 123 is changed its position drawing a circle on the basis of the axis 120 during to the driving of the cylinder 122 because the rod of the cylinder 122 for supporting the side of the carrier 5 according to the driving the stopper 121 is inserted into one end of the stopper 121 rotating on the basis of the axis 120.

[0045] Furthermore, the other end of the cylinder 122 is voidly rotationally coupled to the pin 124 so that the stopper 121 can be rotated centering the pin 123.

[0046] As shown in Fig. 8, the driving unit for feeding the plate 118 is constructed so that the chamber 114 is, the lower plate thereof, rotationally disposed with the ball screw 125 and installed the motor 127 for rotating the ball screw 125. Between the pulley 128a and 128b secured to one end of the ball screw 125 and the axis of the motor 127, the timing belt 129 is wound at the pulley 128a. The timing belt 129 is wound for transmitting the power from the motor 127 to the ball screw 125.

[0047] Because the ball screw 125 rotating according to the driving of the motor 127 is coupled with the slider 130, the feeding plate 118 is moved in horizontal along the ball screw 125 when the ball screw 125 is rotated according to the driving of the motor 127.

[0048] Because the driving unit is, as shown in Fig. 8, covered with a U-shaped closing plate 126 disposed to be extended to the outside of the chamber 114, the chamber 114 is separated its inside and outside each other by the slider. This is for preventing a high temperature in the chamber from being emitted to the outside because the feeding plate 118 is extracted to the outside for feeding the carrier 5 to the outside of the chamber 114 after test.

[0049] As shown in Fig. 11, at the both sides of the slider 130 inserted to the ball screw 125, a guide block 132 is secured thereto. The guide block 132 is inserted to the LM guide 131 and is made to be the same length. This is for being distributed uniformly a fraction resistance generated when the feeding plate 118 is in horizontal moved by the guide block 132 and the LM guide 131 because of the rotation of the ball screw 125 thereby to stabilize the operation of the feeding plate 118.

[0050] The slider 130 is constructed so that a hole 130a is formed to be passed through its inside and a heat-resistant tube 133 is connected between the cylinder 122 and the hole 130a and a general tube 134 is connected to the hole formed at the other end communicating with the outside of the chamber 114. The heat resistant tube 133 is used because the temperature in the chamber 114 is high when a supplying line should be constructed for supplying a compressed air to the cylinder 122 in order to drive the cylinder 122.

[0051] The heat-resistant tube 133 has a high heat-resistant property, however, it has a very weak point about a transformation. Therefore, because the horizontal movement of the feeding plate 118 causes to be easily cut when the entire supplying line is applied as the heat-resistant tube, the heat-resistant tube 133 should be connected between the cylinder 122. Furthermore, the hole 130a disposed in the high temperature chamber and the general tube 134 should be connected to the hole 130a disposed at the outside of the chamber 114. Therefore, when the feeding plate 118 is fed, the length and shape's transformation can be prevented.

[0052] The carrier feeding guide means for feeding the carrier 5 comprises a lower guide 135 installed at the feeding plate 118 to advance and retreat toward the socket assembly 117, and LM guide 138 and 139 for guiding the feeding of the upper and lower guides.

[0053] The pushing means for pushing the carrier 5 toward the socket assembly 117 during test comprises a pair of guide rods 141 movably coupled to the front plate 140, a pusher 142 installed at the front end of the guide rod 141 for pushing the carrier 5 toward the socket assembly 117 according as the guide rod 141 is advanced, a supporting block 145 secured to one end of the guide rod 141 disposed at the outside of the chamber 114 and rotationally installed at the bracket 143 and inserted to the ball screw 144, and a motor 147 installed at the bracket 143 for rotating the ball screw 144 through the timing belt 146.

[0054] The rotation power generated by the motor 147 can be transmitted to the ball screw 144 through the timing belt 146. The timing belt 146 is wound at the pulley 148a and 148b secured to one end of the ball screw 144.

[0055] At the front end of the guide rod 141 to be advanced and retreated according to the rotation of the ball screw 144 by the motor 147, a support frame 149 having a guide rail 149 is secured. The guide rail 149a formed at the supporting frame 149 is detachably mounted with the pusher 142 for pushing the carrier 5 toward the socket assembly 117 after test. This is for enabling the replaced pusher 142 to be rapidly used when the pushing distance is
changed on the basis of differentiating the standard mode of the module IC served in the carrier 5.

[0056] The pusher 142 mounted at the guide rail 149a of the supporting frame 149 serves to prevent the deviation from the supporting frame 149 by the other supporting means, such as, a bolt not shown during its operation.

[0057] The extracting means for extracting the module IC 1 served in the carrier 5 from the socket assembly 117 after the test is completed the test comprises an upper locking lever 150 secured to the both sides of the upper guide 137 for pulling the upper side of the carrier 5 by locking to the upper side of the pusher 142 toward the opposition direction of the socket assembly 117 when the pushing means is returned, a lower locking lever 151 secured to the lower center portion of the supporting frame 149 for pulling the lower portion of the carrier 5 toward the opposition direction of the socket assembly 117 when the pushing means is returned.

[0058] The operation of the test site of the chamber for the module IC handler having the above construction will now be explained.

[0059] As shown in Fig. 8, if the carrier served with the module IC 1 is not placed in the chamber 114, but in the heating chamber, the stopper 121 is kept the rotated state in the anti-clockwise centering the axis 120 in order to be placed at the lower point than the upper surface of the lower guide 135. Under this state, when the push plate 152 pushes the fixing slider 153 in the right direction in the drawing according as the inlet shutter not shown is opened and the ball screw 125 is rotated by the driving of the motor 127, the carrier 5 is fed toward the chamber 114. At this time, the carrier 5 is stably fed toward the chamber 114 by the upper and lower guide 135 and 137.

[0060] After the carrier 5 is fed toward the chamber 114 and its front end is controlled not to be fed anymore by being locked the front end thereof to the stopper 119, the slider 153 is returned to the initial state, and, at the same time, the chamber 114 is closed by being closed the inlet shutter. After the carrier 5 having the module IC 1 to be tested is fed toward the chamber 114, the compressed air is supplied to the inside of the cylinder 122 through the general tube 134, hole 130a formed in the slider 130, tube 133 in order so that the cylinder 122 is operated thereby to push the rod because the compressed air is supplied to the inside of the cylinder 122 disposed at the lower portion of the feeding plate 118.

[0061] When the stopper 121 is rotated in the clockwise centering the axis 120 by advancing the cylinder rod in order to be closed to the side wall of the carrier 5, the carrier 5 is inserted into the upper and lower guide 135 and 137 to prevent the movement thereof.

[0062] After that, as shown in Fig. 10a, when the motor 147 transmits its rotation power to the ball screw 144 through the timing belt, the supporting block 145 inserted into the ball screw 144 is advanced in the left direction in the drawing. Therefore, the supporting frame 149 secured to the supporting block 145 by the guide rod 141 is advanced with the supporting block 145 so that the pusher 142 mounted at the guide rail 149a of the supporting frame 149 pushes the module IC 1 served in the carrier 5 toward the socket assembly 117.

[0063] Therefore, the module IC 1, as shown in Figs. 10a and 10b, turns on an electric current with the tester not shown connected to the test socket 154 so that the test for the module IC 1 is performed during the predetermined time.

[0064] As the foregoing description, when the carrier 5 is advanced toward the socket assembly 117 by the advancing of the pusher 142, the carrier 5 is stably fed by the LM guide 138 and 139 disposed at the upper and lower guide 135 and 137.

[0065] After test during the predetermined time, the pushing means is returned to the initial state by the driving of the motor 147. When the pushing means is returned to the initial state, the module IC 1 connected to the test socket 154 is separated from the socket assembly 117 by the extracting means.

[0066] When the pusher 142 moved to the right side in the drawing is returned to the initial state, the carrier 5 is retreated with the pusher 142 because the upper and lower guide 135 and 137 are pulled together by the lower locking lever 151 secured to the supporting frame 149 and inserted into the groove 135a of the lower guide 135 and the upper locking lever 150 connected to the back-ward surface of the pusher 142. Therefore, the module IC 1 is extracted from the test socket 154.

[0067] If the carrier 5 is served with 16 module ICs 1 and the socket assembly 117 is mounted with four test sockets 154, test for the first, fifth, ninth and thirteenth module IC 1 is performed when the carrier 5 is performed in its first advance/retrait movement by the pushing means and the extracting means.

[0068] After the feeding plate 118 is fed by one step (the distance between the module IC served in the carrier) in the right direction in the drawing, test for the second, sixth, tenth and fourteenth module IC 1 is performed when the carrier 5 is performed in its second advance/retrait movement, and test for the third, seventh, eleventh and fifteenth module IC 1 is performed when the carrier 5 is performed in its third advance/retrait movement and test for the fourth, eighth, twelfth and sixteenth module IC 1 is performed when the carrier 5 is performed in its last advance/retrait movement.

[0069] The distance for feeding the feeding plate 118 is determined on the basis of the number of the module IC served in the carrier 5 and the number of the test socket 154 mounted in the socket assembly 117.

[0070] After the test for all module ICs is completed, the carrier 5 should be extracted from the chamber 114.

[0071] For this operation when the ball screw 125 is rotated by the driving of the motor 127, the feeding plate 118 is moved to the right side in the drawing to be extracted from the chamber 114 thereby to be positioned in Fig. 8 because the ball screw 125 is inserted with the slider 130 secured to the bottom surface of the feeding
Claims

1. A chamber for an integrated circuit, carrier handler, comprising:

 a lower plate (4);
 at least one receiving piece (6) attached to the lower plate (4), wherein each receiving piece (6) comprises a plurality of grooves (6a), and wherein each groove (6a) is configured to receive an IC carrier (5);
 a mounting plate (11) coupled to the lower plate (4);
 an up/down movement plate (13) that is movable attached to the mounting plate (11);
 at least one operating piece (9), wherein each operating piece (9) is attached to the up/down movement plate (13) by guide rods (14), wherein each guide rod (14) passes through an elongated hole (4a) in said lower plate (4), wherein each operating piece (9) comprises a plurality of grooves (9a), wherein each groove (9a) is configured to receive an IC carrier (5), and wherein the at least one operating piece (9) is configured to vertically move IC carriers (5) off the at least one receiving piece (6), to horizontally move the IC carriers (5) relative to the at least one receiving piece (6) by a distance equal to the interval between said receiving piece grooves, and to vertically move the IC carriers (5) back into engagement with the at least one receiving piece (6); and
 an upper and lower shutter configured to seal the elongated hole (4a) around each at least one guide rod (14) passing therethrough.

2. The IC carrier handler of claim 1, further comprising a vertical driver configured to move the up/down movement plate (13) and the at least one operating piece (9) vertically with respect to the mounting plate (11).

3. The IC carrier handler of claim 2, wherein when the at least one operating piece (9) is moved to its highest point, it is located above said at least one receiving piece (6), and when the at least one operating piece (9) is moved to its lowest point, it is located below the at least one receiving piece (6).

4. The IC carrier handler of claim 2, wherein said driver comprises a piston and cylinder (12).

5. The IC carrier handler of claim 1, further comprising a horizontal driver configured to move the mounting plate (11) and the at least one operating piece (9) horizontally with respect to the lower plate (4).

6. The IC carrier handler of claim 5, wherein said driver comprises a stepper motor (15) and ball screw (16) attached to one of the mounting plate (11) and the lower plate (4), and a threaded block attached to the other of the mounting plate (11) and lower plate (4), wherein the threaded block is coupled to the ball screw (16).

7. The IC carrier handler of claim 5, further comprising a vertical driver configured to move the up/down movement plate (13) and the at least one operating piece (9) vertically with respect to the mounting plate (11).

8. The IC carrier handler of claim 1, wherein the at least one guide rod (14) passes through the mounting plate (11) and the lower plate (4), and wherein the at least one operating piece (9) is mounted on top of said at least one guide rod (14).

9. The IC carrier handler of claim 1, further comprising an operating piece driver configured to move the at least one operating piece (9) in vertical and horizontal directions relative to the at least one receiving piece (6).
Patentansprüche

1. Kammer für einen integrierten Schaltkreis-, IC-Träger-Handhaber, aufweisend:

 - eine Unter-Platte (4);
 - mindestens ein Aufnahme-Stück (6), welches an der Unter-Platte (4) angebracht ist, wobei jedes Aufnahme-Stück (6) eine Mehrzahl von Nuten (6a) aufweist und wobei jede Nut (6a) zum Aufnehmen eines IC-Trägers (5) konfiguriert ist;
 - eine Montage-Platte (11), welche an die Unter-Platte (4) gekoppelt ist;
 - eine Aufwärts/Abwärts-Bewegungs-Platte (13), welche an der Montage-Platte (11) bewegbar angebracht ist;
 - mindestens ein Betätigungs-Stück (9), wobei jedes Betätigungs-Stück (9) an der Aufwärts/Abwärts-Bewegungs-Platte (13) über Führungsstäbe (14) angebracht ist, wobei jeder Führungs-Stab (14) durch ein Langloch (4a) in der Unter-Platte (4) hindurchpassiert, wobei jedes Betätigungs-Stück (9) eine Mehrzahl von Nuten (9a) aufweist, wobei jede Nut (9a) zum Aufnehmen eines IC-Trägers (5) konfiguriert ist und wobei das mindestens eine Betätigungs-Stück (9) zum vertikalen Bewegen von IC-Trägern (5) weg von dem mindestens einen Aufnahme-Stück (6), zum horizontalen Bewegen der IC-Träger (5) relativ zu dem mindestens einen Aufnahme-Stück (6) um einen Abstand gleich dem Intervall zwischen den Aufnahme-Stück-Nuten und zum vertikalen Bewegen der IC-Träger (5) zurück in den Eingriff mit dem mindestens einen Aufnahme-Stück (6) konfiguriert ist und einen oberen und einen unteren Verschluss, welche zum Abdichten des Langloches (4a) um jeden der wenigsten einen dort hindurch passierenden Führungs-Stab (14) herum konfiguriert sind.

2. IC-Träger-Handhaber gemäß Anspruch 1, ferner aufweisend einen Vertikal-Antrieb, welcher zum vertikalen Bewegen der Aufwärts/Abwärts-Bewegungs-Platte (13) und dem mindestens einen Betätigungs-Stück (9) relativ zu der Montage-Platte (11) konfiguriert ist.

3. IC-Träger-Handhaber gemäß Anspruch 2, wobei, wenn das mindestens eine Betätigungs-Stück (9) in seine Höchst-Stelle bewegt ist, es über dem mindestens einen Aufnahme-Stück (6) angeordnet ist und, wenn das mindestens eine Betätigungs-Stück (9) in seiner Unterst-Stelle bewegt ist, es wenigstens unter dem mindestens einen Aufnahme-Stück (6) angeordnet ist.

4. IC-Träger-Handhaber gemäß Anspruch 2, wobei der Antrieb einen Kolben und einen Zylinder (12) aufweist.

5. IC-Träger-Handhaber gemäß Anspruch 1, ferner aufweisend einen Horizontal-Antrieb, welcher zum horizontalen Bewegen der Montage-Platte (11) und dem mindestens einen Betätigungs-Stück (9) relativ zu der Unter-Platte (4) konfiguriert ist.

6. IC-Träger-Handhaber gemäß Anspruch 5, wobei der Antrieb einen Schritt-Motor (15) und eine Kugelumlaufspindel (16), welche an einer von der Montage-Platte (11) und von der Unter-Platte (4) angebracht ist, und einen Gewinde-Block aufweist, welcher an der anderen von der Montage-Platte (11) und von der Unter-Platte (4) angebracht ist, wobei der Gewinde-Block an die Kugelumlaufspindel (16) gekoppelt ist.

7. IC-Träger-Handhaber gemäß Anspruch 5, ferner aufweisend einen Vertikal-Antrieb, welcher zum vertikalen Bewegen der Aufwärts/Abwärts-Bewegungs-Platte (13) und dem mindestens einen Betätigungs-Stück (9) relativ zu der Montage-Platte (11) konfiguriert ist.

8. IC-Träger-Handhaber gemäß Anspruch 1, wobei der mindestens eine Führungs-Stab (14) durch die Montage-Platte (11) und die Unter-Platte (4) hindurchpassiert und wobei das mindestens eine Betätigungs-Stück (9) auf der Unter-Platte (4) konfiguriert ist.

9. IC-Träger-Handhaber gemäß Anspruch 1, ferner aufweisend einen Betätigungs-Stück-Antrieb, welcher zum Bewegen des mindestens einen Betätigungs-Stückes (9) in Vertikal- und Horizontal-Richtung relativ zu dem mindestens einen Aufnahme-Stück (6) konfiguriert ist.

Revendications

1. Une enceinte pour gestionnaire de support de circuit intégré, comprenant:
 - une plaque inférieure (4);
 - au moins une pièce de réception (6) fixée à la plaque inférieure (4), chaque pièce de réception (6) comprenant une pluralité de cannelures (6a) et chaque canalure (6a) étant configurée pour recevoir un support de circuit intégré (5);
 - une plaque de fixation (11) couplée à la plaque inférieure (4);
 - une plaque de mouvement haut/bas (13) fixée de façon amovible à la plaque de fixation (11);
 - au moins une pièce opérante (9), chaque pièce opérante (9) étant fixée à la plaque de mouve-
ment haut/bas (13) par des tiges de guidage (14), qui chacune passent à travers un trou allongé (4a) prévu dans ladite plaque inférieure (4), chaque pièce opérante (9) comprenant une pluralité de rainures (9a), qui chacune est configurée pour recevoir un support de circuit intégré (5), et la au moins une pièce opérante (9) étant configurée pour écarter verticalement des supports de circuit intégré (5) de la au moins une pièce de réception (6), afin de permettre le déplacement horizontal des supports de circuit intégré par rapport à la au moins une pièce de réception, d’une distance égale à l’intervalle entre lesdites cannelures de pièce de réception, et afin de permettre le déplacement vertical des supports de circuit intégré (5) vers le bas lors de l’enclenchement avec la au moins une pièce de réception (6); et
- un obturateur supérieur et inférieur configuré pour boucher le trou allongé (4a) autour de chaque au moins une tige de guidage (14) passant au travers.

2. Le gestionnaire de supports de circuit intégré selon la revendication 1, comprenant en outre un conducteur vertical configuré pour permettre le déplacement de la plaque de mouvement haut/bas (13) et de la au moins une pièce opérante (9) verticalement par rapport à la plaque de fixation (11).

3. Le gestionnaire de support de circuit intégré selon la revendication 2, dans lequel lorsque la au moins une pièce opérante (9) est déplacée jusqu’à son point le plus haut, elle est située au dessus de ladite au moins une pièce de réception (6), et lorsque la au moins une pièce opérante (9) est déplacée à son point le plus bas, elle est située sous la au moins une pièce de réception (6).

4. Le gestionnaire de support de circuit intégré selon la revendication 2, dans lequel ledit conducteur comprend un piston et un cylindre (12).

5. Le gestionnaire de support de circuit intégré selon la revendication 1, comprenant en outre un conducteur horizontal configuré pour déplacer la plaque de fixation (11) et la au moins une pièce opérante (9) horizontalement par rapport à la plaque inférieure (4).

6. Le gestionnaire de support de circuit intégré selon la revendication 5, dans lequel ledit conducteur comprend un moteur pas à pas (15) et une vis sphérique (16) fixés à l’une des deux plaque de fixation (11) ou plaque inférieure (4), et comprend un bloc fileté fixé à l’autre plaque inférieure (4) ou plaque de fixation (11), le bloc fileté étant couplé à la vis sphérique (16).