(45) Date of publication and mention of the grant of the patent:
12.11.2003 Bulletin 2003/46

(21) Application number: 99117200.8

(22) Date of filing: 01.09.1999

(54) Polyurea elastomeric microcellular foam
Elastomerer microzellulärer Polyharnstoffschaum
Mousse de polyurée elastomère microcellulaire

(84) Designated Contracting States:
DE FR GB IT

(43) Date of publication of application:
08.03.2000 Bulletin 2000/10

(73) Proprietor: AIR PRODUCTS AND CHEMICALS, INC.
Allentown, PA 18195-1501 (US)

(72) Inventors:
• Kushner, Sandra Ann
 New Tripoli, PA 18195 (US)

• Miller, John William
 New Tripoli, PA 18195 (US)

• Tobias, James Douglas
 Topton, PA 19562 (US)

(74) Representative: Kador & Partner
Corneliusstrasse 15
80469 München (DE)

(56) References cited:
EP-A- 0 279 376
US-A- 4 732 959
EP-A- 0 630 666

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
FIELD OF THE INVENTION

[0001] The invention relates to the preparation of polyurea (PUR) microcellular elastomeric foam using the one-shot method.

BACKGROUND OF THE INVENTION

[0002] In the current technology for microcellular and dynamic polyurethane elastomer applications, the elastomer is prepared by the reaction of naphthalene diisocyanate (1,5-NDI) with an adipate ester polyol followed by chain extension with short chain diols, e.g., 1,4-butanediol. The drawbacks of this elastomer technology are its inherently limited shelf stability and the need for processors to react monomeric isocyanate with a polyol on site. 1,5-NDI melts as high as 127°C; therefore the reaction must take place above 130°C, a temperature which undesirable side reactions can occur promoting product instability. (Wirpsza, Z., Polyurethanes Chemistry, Technology, and Applications, 1993, Ellis Horwood Limited, pp.143.) The resultant prepolymer must then be extended within 30 minutes. This entire process requires significant capital investment in processing equipment due to the need for precise ratios of components, short shelf-life and the need to heat the materials to lower the viscosity for processing. Additionally, the system reacts very quickly allowing a very short working time, i.e., pot life of 0.5-5.0 min.

[0003] Following the completed reaction, complex cure schedules and annealing processes are employed that are dependent upon the geometry of the parts. Annealing is completed by running several cycles at high temperatures (110°C) followed by room temperature cycling. This curing cycle can become quite rigorous and must be stringently followed in order to avoid shrinkage, undercure, and inferior physical properties. Deviation from this process results in significant final microcellular part inconsistency and an inability to meet the industry's desire for "Zero Defect" production and compromises quality.

[0004] In general, the expenses due to components, equipment, limited shelf-stability and processing of the NDI-based system pose serious drawbacks to its use. Health, safety, and environmental issues associated with the use of NDI are also of concern to the processors employing this technology.

[0005] In addition to the NDI-based system, other high viscosity isocyanate-terminated prepolymers, such as those based on MDI and polyester polyols, have been evaluated in elastomeric applications where specific dynamic and static physical properties are necessary. These consist of high viscosity isocyanate-terminated prepolymers that may offer a cost advantage over the NDI-based system; however, ease of processing is limited. A major concern with prepolymer-type systems is the loss of isocyanate functionality (loss of total NCO content) upon continued heating which, in turn, causes degradation of the system. Typically, stability of a prepolymer at a typical processing temperature of 85-90°C can be limited to only a few hours. (Wirpsza, Z., Polyurethanes Chemistry, Technology, and Applications, 1993, Ellis Horwood Limited, pp.142) This in turn causes a shift in stoichiometry (ratio of isocyanate to -OH and/or -NH₂ groups) which requires a ratio adjustment. Without adjustment of the stoichiometry, the physical properties may be adversely affected, again resulting in inferior properties and inconsistent elastomer quality.

[0006] U.S. 4,328,322 discloses making synthetic polymers by the reaction of a polyisocyanate with substantially an equivalent of an oligomeric aminobenzoic acid ester or amide. Although directed to making cast elastomeric materials, the patent suggests that polymeric foams can be prepared by including any of a variety of blowing agents.

[0007] U.S. 4,504,648 discloses a polyurethaneurea comprising the polyaddition reaction product of polyisocyanate and a polyether polyl derivative having at least one terminal amino group in which at least one hydroxyl group is substituted by para-amino-benzoic acid ester. Example 7 shows the preparation of a cellular article having a density of 0.086 g/cm³.

[0008] U.S. 4,537,945 discloses a poly(urethane)ureamide made by the reaction of a polyether polyl derivative and a polyisocyanate. Cellular products are suggested by incorporating a blowing agent into the reaction mixture, but no examples for making foam are provided.

[0009] U.S. 4,732,959 discloses a poly(urethane)ureamide made by the reaction of a polyester polyl derivative and a polyisocyanate. Example 8 shows the preparation of a soft foam sheet allegedly having a density of 0.60 g/cm³.

BRIEF SUMMARY OF THE INVENTION

[0010] The present invention is directed to a method for making a polyurea (PUR) microcellular elastomeric foam by the reaction of a polyisocyanate with a polyl derivative in the presence of a blowing agent and, optionally, urethane catalyst and cell stabilizing agent. The inventive method reacts an organic polyisocyanate, especially a carbodiimide-modified 4,4’-diphenylmethane diisocyanate, with a di-(aminobenzoate) ester of an oligomeric polyl, i.e., an oligomeric diamine.
Another embodiment of the invention is a one-shot method for making a microcellular elastomeric foam which comprises mixing and reacting the following components, the wt% based on the total amount of the first five components and the amount of polyisocyanate expressed in terms of an Isocyanate Index (NCO Index):

<table>
<thead>
<tr>
<th>Component</th>
<th>wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligomeric di-(aminobenzoate) ester</td>
<td>75-98</td>
</tr>
<tr>
<td>Water</td>
<td>0-0.8</td>
</tr>
<tr>
<td>Other Blowing Agent</td>
<td>0-8</td>
</tr>
<tr>
<td>Urethane Catalyst</td>
<td>0-5</td>
</tr>
<tr>
<td>Cell Stabilizer</td>
<td>0-5</td>
</tr>
<tr>
<td>Polyisocyanate</td>
<td>85-105</td>
</tr>
</tbody>
</table>

Advantages provided by the invention include:

- A microcellular foam exhibiting superior physical properties such as tear strength, tensile strengths, % elongation at break at the prescribed densities.
- Dynamic mechanical properties such as dynamic stiffness as a function of temperature show enhanced performance over a low to high temperature range and good loss tangent.
- The resultant elastomers have a markedly uniform modulus of elasticity curve over a broad temperature range (E') by Dynamic Mechanical Analysis.
- The ability to make a microcellular elastomeric foam using the economical current one-shot technology which is typically used in the flexible molded polyurethane industry.
- The ability to make microcellular elastomeric foam meeting specific dynamic and vibrational frequency characteristics at varying densities through formulation.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 compares the Storage Modulus (E') of microcellular elastomeric foams prepared from a conventional prepolymer and from an oligomeric diamine according to the invention.

Figure 2 compares the Loss Modulus (E'') of microcellular elastomeric foams prepared from a conventional prepolymer and from an oligomeric diamine according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

The PUR microcellular elastomeric foam is prepared by reacting a polyisocyanate with an oligomeric diamine in the presence of a blowing agent and optionally, but preferably, urethane catalyst and cell stabilizing agent.

Polyisocyanates useful in the invention are those commonly known to those skilled in the art. Included are aromatic and aliphatic organic compounds that have two or more available isocyanate (NCO) groups. Examples of suitable diisocyanates include toluene diisocyanates (TDI), diphenylmethane diisocyanates (MDI), polymeric MDI or poly(phenylene isocyanates), carbodiimide-modified MDIs and polymeric MDIs, cyclohexane diisocyanates (CHDI), isophorone diisocyanates (IPDI), naphthalene diisocyanates (NDI), 3,3'-dimethyl-4,4'-diphenylene diisocyanate (TDI), phenylene diisocyanates including para-phenylene diisocyanate (PPDI) and mixtures thereof. Also suitable but less desirable are isocyanate-terminated PU prepolymer of any of the above polyisocyanate monomers prereacted with a polyether or polyester polyol or other flexible chain containing terminal hydroxyl or amine groups as is well known in the art.

Polyisocyanates useful in the invention include toluene diisocyanates (TDI), diphenylmethane diisocyanates (MDI), polymeric MDI or poly(phenylene isocyanates), carbodiimide-modified MDIs and polymeric MDIs, cyclohexane diisocyanates (CHDI), isophorone diisocyanates (IPDI), naphthalene diisocyanates (NDI), 3,3'-dimethyl-4,4'-diphenylene diisocyanate (TDI), phenylene diisocyanates including para-phenylene diisocyanate (PPDI) and mixtures thereof. Also suitable but less desirable are isocyanate-terminated PU prepolymer of any of the above polyisocyanate monomers prereacted with a polyether or polyester polyol or other flexible chain containing terminal hydroxyl or amine groups as is well known in the art.

Polyisocyanates useful in the invention include toluene diisocyanates (TDI), diphenylmethane diisocyanates (MDI), polymeric MDI or poly(phenylene isocyanates), carbodiimide-modified MDIs and polymeric MDIs, cyclohexane diisocyanates (CHDI), isophorone diisocyanates (IPDI), naphthalene diisocyanates (NDI), 3,3'-dimethyl-4,4'-diphenylene diisocyanate (TDI), phenylene diisocyanates including para-phenylene diisocyanate (PPDI) and mixtures thereof. Also suitable but less desirable are isocyanate-terminated PU prepolymer of any of the above polyisocyanate monomers prereacted with a polyether or polyester polyol or other flexible chain containing terminal hydroxyl or amine groups as is well known in the art.

Polyisocyanates useful in the invention include toluene diisocyanates (TDI), diphenylmethane diisocyanates (MDI), polymeric MDI or poly(phenylene isocyanates), carbodiimide-modified MDIs and polymeric MDIs, cyclohexane diisocyanates (CHDI), isophorone diisocyanates (IPDI), naphthalene diisocyanates (NDI), 3,3'-dimethyl-4,4'-diphenylene diisocyanate (TDI), phenylene diisocyanates including para-phenylene diisocyanate (PPDI) and mixtures thereof. Also suitable but less desirable are isocyanate-terminated PU prepolymer of any of the above polyisocyanate monomers prereacted with a polyether or polyester polyol or other flexible chain containing terminal hydroxyl or amine groups as is well known in the art.

The oligomeric diamines useful in the invention are those taught in US Patents 4,328,322 and 5,410,009, the disclosures of which are incorporated by reference.

The oligomeric diamines useful in the invention are those taught in US Patents 4,328,322 and 5,410,009, the disclosures of which are incorporated by reference.

The oligomeric di-(aminobenzoate) esters utilized in the practice of the present invention are aminobenzoate esters of oligomeric polyol materials, especially oligomeric diols, and can be conveniently provided by reaction of a nitro-substituted benzoyl halide, or a nitro-substituted benzoic acid, with a suitable polyol, such as polyalkylene ether or ester polyol, followed by reduction of the nitro groups of the resulting product to the corresponding amino groups. Thus, for example, an oligomeric di-(p-aminobenzoate) ester useful herein can be prepared by reaction by two moles of p-nitrobenzoyl chloride with one mole of a dihydric alcohol such as poly(tetramethylene glycol) having a molecular
weight in the range of from 400 to 6,000 and by reduction of the resulting poly(tetramethylene glycol) di-(p-nitrobenzoate) ester. (All molecular weights in this specification and the claims are weight average molecular weights.)

[0019] Suitable oligomeric diaminobenzoate esters would have the following structure:

\[
\begin{align*}
\text{H}_2\text{N}_n & \quad \text{O} \quad \text{G} \quad \text{O} \quad \text{C} \\
\text{C} & \quad \text{HO}(\text{RO})_a \text{H} \\
\text{n} & \quad \text{G} \quad \text{C} \\
\end{align*}
\]

where \(n \) is 1 or 2 and \(G \) is a divalent radical.

[0020] The nature of the radical \(G \) of the aminobenzoates can vary and will depend upon the nature of the oligomeric polyol used. The radical \(G \) will be derived from a polyol material having a molecular weight of from 400 to 6,000, preferably in the range of 650 to 2,000. The radical \(G \) can comprise a divalent saturated or unsaturated, straight chain or branch chain hydrocarbon radical which can be interrupted by oxygen ether atoms. For example, where a polyether polyol is used in the preparation of an oligomeric aminobenzoate, the corresponding \(G \) radical will comprise repeating oxygen ether atoms. Preferably, radical \(G \) will include such oxygen ether atoms.

[0021] A preferred class of polyol materials useful in the preparation of the oligomeric aminobenzoate esters comprises the polyalkylene ether glycols which provide a divalent \(G \) radical and which may be represented by the formula \(\text{HO}(\text{RO})_a \text{H} \) wherein \(R \) is an alkylene radical containing up to 10 carbon atoms and \(a \) is an integer sufficient to provide a molecular weight within the range of from 400 to 6,000, and preferably from 650 to 2,000. Preferably, \(R \) is an alkylene radical of from 2 to 4 carbon atoms. Examples of polyalkylene ether glycols useful include polyethylene ether glycol, polypropylene ether glycol, polyethylene ether glycol, polytetramethylene ether glycol, polydecamethylene ether glycol, poly-1,2-dimethylethylene ether glycol, and the copolymer of tetrahydrofuran and 1-allyloxy-2,3-epoxypropene. The polyalkylene ether glycols can be readily obtained, for example, by polymerization of an alkylene ether, e.g., ethylene oxide, tetrahydrofuran, propylene oxide, or, a mixture thereof, in the presence of water or other low molecular alcohol or hydrogen-donor compound.

[0022] Preferred are the p-aminobenzoates and especially preferred are those esters of polyether polyols having molecular weights from 650 to 2000, particularly polytetramethylene ether glycols.

[0023] Suitable oligomeric di-(aminobenzoates) useful in making the microcellular elastomeric foams are commercially available and are marketed under the VERSALINK trademark by Air Products and Chemicals, Inc.

[0024] In like manner, oligomeric aminobenzamides can be provided using a suitable oligomeric polyamine in place of the polyol. In addition, oligomeric compounds having both hydroxyl and amino groups can be utilized for the preparation of mixed aminobenzoate/amide compounds. Thus, these oligomeric di-(aminobenzamides) and oligomeric di-(aminobenzoate/amides) are contemplated as functional equivalents of the oligomeric di-(aminobenzoates) for purposes of this invention. They all are oligomeric diaminobenzenes.

[0025] Obviously to make a cellular, or foam, product the polyisocyanate are reacted in the presence of a blowing agent such as water, CFCs, HCFCs, HFCs, pentane and mixtures of these agents. Water may be used at 0.05 to 0.8 wt%, preferably 0.1 to 0.3 wt% of the B-side composition. The water for the reaction with the isocyanate to generate carbon dioxide may be present in the oligomeric diamine composition as a result of its preparation or in the catalyst composition, or may simply be added in the appropriate amount, or both. Physical blowing agents such as the CFCs, HCFCs, HFCs, and pentane may be used at 0.5 to 8 wt%, preferably 1 to 3 wt% of the B-side composition.

[0026] Other typical materials which may be used in the PUR microcellular elastomeric foam formulations include urethane catalysts such as the tertiary amines and metal-based catalysts well known in the urethane art for the gelling and blowing reactions; other polyamine curatives such as MOCA, polyols and short chain diols, cell stabilizers such as silicones and polysiloxane polyether glycols, antioxidants antifungal agents and antihydrolysis agents.

[0027] The polyisocyanate is reacted with the di-(aminobenzoate) ester at an equivalents ratio of 0.85 to 1.1 eq NCO per diamine eq, in the presence of a blowing agent to yield a high molecular weight, microcellular PUR elastomer foam. The components can be mixed in a polyurethane dispensing machine as is typically done in the one-shot polyurethane foam art, e.g., the diamine (B-side component) and the polyisocyanate (A-side component) are mixed together, and charge into a heated mold. No prereaction as is done in the prepolymer method is necessary. The reaction temperature of the mold will commonly be within the range of ambient to 70°C; a more preferred range being from 60°C to 66°C.

[0028] A one-shot process involves mixing and reacting an A-side comprised of the polyisocyanate with a B-side comprising the remaining components of the formulation, e.g., in the following formulation the oligomeric diamine, blowing agent, urethane catalyst(s) and cell stabilizing surfactant would compose the B-side. The A-side and B-side are mixed at room temperature or elevated temperature and dispensed into molds.
The amount of the B-side components are expressed in wt% of the total B-side while the amount of polyisocyanate is expressed in equivalents % of active hydrogen equivalents of the B-side components.

Advantageous to the performance of this system is the balanced reaction rate gained by employment of the specific catalyst levels. The rate of reaction yielded solely by use of the oligomeric diamine/polyisocyanate combination is enhanced by the combination of tertiary amines. Thus the entire heat of reaction of this process takes place within the mold contributing to the overall rise in temperature and resultant rapid production of finished microcellular parts.

The microcellular PUR elastomeric foams prepared using the described oligomeric diamines method have a density of 20-65 lb/ft³ (320-1041 kg/m³), preferably 40-55 lb/ft³ (640-881 kg/m³), and usually closed cells 70-200 μm in diameter and of roughly uniform size. The properties of such elastomeric foams as measured by Dynamic Mechanical Analysis (DMA) indicate lower heat build up under dynamic load which may imply longer service life. In addition, use of the oligomeric diamines provides retention of storage modulus over a broad temperature range, particularly a range experienced by weather or seasonal changes.

In the examples, the following materials were used:

- Versalink® P-1000 -- poly(tetramethylene oxide)-di-p-aminobenzoate from Air Products and Chemicals, Inc. (80-85 mole% di-aminobenzoate and 15-20 mole% mono-aminobenzoate; Amine Eq Wt = 640-690 g/mole eq and Total Eq Wt = 575-625 g/mole eq)
- Dabco 33-LV® -- 33 wt% triethylenediamine in dipropylene glycol from Air Products and Chemicals, Inc.
- Dabco® BL--11-70 wt% bis(dimethylaminoethyl) ether in dipropylene glycol from Air Products and Chemicals, Inc.
- Isonate® 2143L -- modified MDI from Dow Chemical.
- QE 130 -- quasi-prepolymer based on poly(tetramethylene glycol) and MDI from Air Products and Chemicals, Inc.
- Rubinate® M -- polymeric MDI from ICI Americas.

EXAMPLES 1-7

General Microcellular Foam Procedure -- In the following examples the B-side components were blended with the A-side isocyanate-terminated prepolymer in the amounts (grams) shown in Table 1. A more than sufficient amount of the blend to fill the mold was charged into a mold that was 0.25 inch (0.635 cm) thick having a volume of 0.0072 ft³ (204 cm³) and heated to 150°F (66°C). The reaction was complete and the part demolded in four minutes.
The data in Table 1 shows tensile strengths can be acceptably maintained over a range of densities while also maintaining the Shore A hardness necessary for part integrity and performance. Although the Example 2 foam was unacceptable possibly due to the quasi-prepolymer being heat sensitive, reformulation using a different oligomeric diamine and/or polyisocyanate may afford an acceptable foam.

Using Dynamic Mechanical Analysis, data was collected on samples of the microcellular foam of Example 1 (Table 1). DMA measures the ability of a viscoelastic material to store and dissipate mechanical energy. (See Clift, S. M., "Understanding the Dynamic Properties of Polyurethane Cast Elastomers", SPI 33rd Annual Technical/Marketing Conference, 1990.) The measurements are based on applying a small sinusoidal strain and measuring the difference in response of the viscous and elastic components. The resultant stress measurements were collected in tensile mode at a frequency of 1 Hertz over a temperature range of -150°C to 250°C.

Figure 1 exemplifies the typical DMA of the microcellular elastomer of Example 1 versus a prepolymer based on an MDI-polyester prepolymer typically used in the industry. The spectra indicate the retention of storage modulus E' over a broad temperature range (similar to a range of exposure experienced through weather or seasonal changes; -25°C to >150°C). The advantage is little or no change in product properties over this broad temperature range as well as less temperature dependent stiffness. In addition, higher hard segment melting point is observed with the oligomeric diamine system. This again supports the utility of the material in applications where exposure to high heat is an issue.

Figure 2 demonstrates using loss compliance as a function of temperature to gauge the hysteretic energy loss. (Loss compliance is defined as a measure of the energy lost as heat per cycle at a given stress amplitude.) The oligomeric diamine-based system yielded successively lower loss compliance. Advantages derived from this would be indicative of less heat generation during use.

STATEMENT OF INDUSTRIAL APPLICATION

The invention provides for the production of microcellular polyurethane/urea elastomeric foam which can be used for jounce bumpers in the undercarriage spring assemblies for cars, chassis mounts and other applications which require good vibrational dampening characteristics as well as low temperature resistance and flexibility, high temperature resistance, suitable mechanical properties (i.e., tensile strength), and ease of processing.

Table 1

<table>
<thead>
<tr>
<th>EXAMPLES</th>
<th>1</th>
<th>2a</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-Side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versalink P-1000</td>
<td>210</td>
<td>94</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>Dabco 33-LV</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Dabco BL-11</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Water</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.4</td>
<td>0.6</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>HCFC-141b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>A-Side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isonate 2143L</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>QE 130</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rubinate M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54</td>
</tr>
</tbody>
</table>

Foam Physical Properties

<table>
<thead>
<tr>
<th></th>
<th>1101; 7.7</th>
<th>70; 0.6</th>
<th>1226; 8.6</th>
<th>237; 1.7</th>
<th>258; 1.9</th>
<th>1071; 7.5</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Tensile (psi; MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Elongation (%)</td>
<td>410</td>
<td>19</td>
<td>470</td>
<td>726</td>
<td>212</td>
<td>449</td>
<td>-</td>
</tr>
<tr>
<td>Hardness Shore A</td>
<td>65</td>
<td>40</td>
<td>82</td>
<td>59</td>
<td>52</td>
<td>82</td>
<td>32</td>
</tr>
<tr>
<td>Density (pcf; kg/m³)</td>
<td>48; 769</td>
<td>33; 529</td>
<td>55; 881</td>
<td>34; 545</td>
<td>29; 465</td>
<td>55; 881</td>
<td>54; 868</td>
</tr>
</tbody>
</table>

a Foam difficult to de-mold, undercured, unacceptable
Claims

1. In a method for making a polyurea microcellular elastomeric foam by reacting an organic polyisocyanate with a polyol in the presence of a blowing agent and, optionally, urethane catalyst and a cell stabilizing agent, the improvement which comprises reacting the polyisocyanate with a di-(aminobenzoate) ester of an oligomeric diol, a di-(aminobenzamide) of an oligomeric diamine or a di-aminobenzoate acid ester/amide of an oligomeric compound having both a hydroxyl group and an amino group.

2. The method of Claim 1 in which the polyisocyanate is reacted with a di-(aminobenzoate) ester having the following structure:

![Structure](image)

where n is 1 or 2 and G is a divalent radical derived from an oligomeric diol having a molecular weight of from 400 to 6,000.

3. The method of Claim 2 in which G is a divalent saturated or unsaturated, straight chain or branch chain hydrocarbon radical which can be interrupted by oxygen ether atoms.

4. The method of Claim 2 in which the oligomeric diol may be represented by the formula HO(RO)ₐH wherein R is an alkylene radical containing up to 10 carbon atoms and a is an integer sufficient to provide a molecular weight within the range of from 400 to 6,000.

5. The method of Claim 4 in which the oligomeric diol is a poly(ethylene oxide) glycol, a poly(propylene oxide) glycol, a poly(tetramethylene oxide) glycol, a poly(propylene oxide)-co-poly(ethylene oxide) glycol, a poly(propylene oxide) tipped with poly(ethylene oxide), or mixtures thereof.

6. The method of Claim 1 in which the oligomeric diol is a poly(tetramethylene oxide) glycol.

7. The method of Claim 1 in which the polyisocyanate is selected from toluene diisocyanates (TDI), diphenylmethane diisocyanates (MDI), polymeric MDI, poly(phenylene isocyanates), carbodiimide-modified MDIs, carbodiimide-modified polymeric MDIs, cyclohexane diisocyanates (CHDI), isophorone diisocyanates (IPDI), naphthalene diisocyanates (NDI), 3,3’-dimethyl-4,4’-diphenylene diisocyanate (TODI), phenylene diisocyanates, para-phenylene diisocyanate (PPDI) and mixtures thereof.

8. The method of Claim 1 in which the blowing agent comprises water.

9. The method of Claim 8 in which the blowing agent also comprises a CFC, HCFC, HFC or pentane.

10. The method of Claim 9 in which the microcellular foam has a density of 20-65 lb/ft³ (320-1041 kg/m³).

11. A method for making a polyurea microcellular elastomeric foam having a density of 320 to 1041 kg/m³ which comprises mixing and reacting the following components in wt%:

<table>
<thead>
<tr>
<th>Component</th>
<th>wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligomeric di-(aminobenzoate) ester</td>
<td>75-98</td>
</tr>
<tr>
<td>Water</td>
<td>0-0.8</td>
</tr>
<tr>
<td>Other Blowing Agent</td>
<td>0-8</td>
</tr>
<tr>
<td>Urethane Catalyst</td>
<td>0-5</td>
</tr>
<tr>
<td>Cell Stabilizer</td>
<td>0-5</td>
</tr>
</tbody>
</table>

with a polyisocyanate at an NCO Index of 85-105, the di-(aminobenzoate) ester being a poly(alkylene glycol ether)-
di-p-aminobenzoate in which the poly(alkylene glycol ether) has a molecular weight of 650 to 2000.

12. The method of Claim 11 in which the polyisocyanate is selected from toluene diisocyanates (TDI), diphenylmethane diisocyanates (MDI), polymeric MDI, poly(phenylene isocyanates), carbodiimide-modified MDIs, carbodiimide-modified polymeric MDIs, cyclohexane diisocyanates (CHDI), isophorone diisocyanates (IPDI), naphthalene diisocyanates (NDI), 3,3'-dimethyl-4,4'-diphenylene diisocyanate (TODI), phenylene diisocyanates, para-phenylene diisocyanate (PPDI) and mixtures thereof.

13. The method of Claim 12 in which the di-(aminobenzoate) ester is a poly(tetramethylene oxide)-di-p-aminobenzoate.

14. The method of Claim 13 in which poly(tetramethylene oxide) has a molecular weight of about 1000.

15. The method of Claim 13 in which the polyisocyanate is a carbodiimide-modified diphenylmethane diisocyanate of higher functionality.

16. The method of Claim 15 in which the other blowing agent is an HCFC.

17. The method of Claim 11 in which the polyurea microcellular elastomeric foam has a density of 640 to 881 kg/m³ and comprises mixing and reacting the following components in wt%:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligomeric di-(aminobenzoate) ester</td>
<td>75-85 wt%</td>
</tr>
<tr>
<td>Water</td>
<td>0.1-0.3 wt%</td>
</tr>
<tr>
<td>Other Blowing Agent</td>
<td>1-3 wt%</td>
</tr>
<tr>
<td>Urethane Catalyst</td>
<td>0.5-2 wt%</td>
</tr>
<tr>
<td>Cell Stabilizer</td>
<td>0-1 wt%</td>
</tr>
</tbody>
</table>

with a polyisocyanate at an NCO Index of 85-105, the di-(aminobenzoate) ester being a poly(tetramethylene oxide)-di-p-aminobenzoate in which the poly(tetramethylene oxide) has a molecular weight of 650 to 2000.

18. The method of Claim 17 in which the polyisocyanate is selected from toluene diisocyanates (TDI), diphenylmethane diisocyanates (MDI), polymeric MDI, poly(phenylene isocyanates), carbodiimide-modified MDIs, carbodiimide-modified polymeric MDIs, cyclohexane diisocyanates (CHDI), isophorone diisocyanates (IPDI), naphthalene diisocyanates (NDI), 3,3'-dimethyl-4,4'-diphenylene diisocyanate (TODI), phenylene diisocyanates, para-phenylene diisocyanate (PPDI) and mixtures thereof.

19. The method of Claim 17 in which the polyisocyanate is a carbodiimide-modified diphenylmethane diisocyanate of higher functionality.

20. The method of Claim 19 in which the other blowing agent is HCFC-141b.

Patentansprüche

1. Verfahren zur Herstellung von mikroporösem, elastomerem Polyharnstoffschaum durch Reaktion eines organischen Polyisocyanats mit einem Polyol in Gegenwart eines Blähmittels und gegebenenfalls eines Urethankatalysators und eines Zellstabilisators, wobei die Verbesserung die Reaktion des Polyisocyanats mit einem Di(aminobenzoat)ester eines oligomeren Diols, einem Di(aminobenzenamid) eines oligomeren Diamins oder einem Diaminobenzoatsäureester/amid einer oligomeren Verbindung, die sowohl eine Hydroxylgruppe als auch eine Aminogruppe aufweist, umfaßt.

2. Verfahren nach Anspruch 1, wobei das Polyisocyanat mit einem Di(aminobenzoat)ester mit der folgenden Struktur umgesetzt wird:
worin n 1 oder 2 ist und G ein zweiwertiger Rest ist, der von einem oligomeren Diol mit einem Molekulargewicht von 400 bis 6000 abgeleitet ist.

3. Verfahren nach Anspruch 2, wobei G ein zweiwertiger gesättigter oder ungesättigter, geradkettiger oder verzweigter Kohlenwasserstoffrest ist, der von Ether-Sauerstoffatomen unterbrochen sein kann.

4. Verfahren nach Anspruch 2, wobei das oligomere Diol mit der Formel HO(RO)n H angegeben werden kann, worin R ein Alkylenrest mit bis zu 10 Kohlenstoffatomen ist und a eine ausreichende ganze Zahl ist, damit ein Molekulargewicht im Bereich von 400 bis 6000 bereitgestellt wird.

5. Verfahren nach Anspruch 4, wobei das oligomere Diol ein Poly(ethyleneoxyd)glycol, Poly(propyleneoxyd)glycol, Poly(tetramethyleneoxyd)glycol, Poly(propyleneoxyd)-co-poly(ethyleneoxyd)-glycol, Poly(propyleneoxyd) mit Poly(ethyleneoxyd)-Enden oder Gemische davon ist.

6. Verfahren nach Anspruch 1, wobei das oligomere Diol ein Poly(tetramethyleneoxyd)glycol ist.

7. Verfahren nach Anspruch 1, wobei das Polyisocyanat aus Toluoldiisocyanaten (TDI), Diphenylmethandiisocyanaten (MDI), polymerem MDI, Poly(phenylenisocyanaten), mit Carbodiimid modifizierten MDI, mit Carbodiimid modifizierten, polymeren MDI, Cyclohexandiisocyanaten (CHDI), Isophorondiisocyanaten (IPDI), Naphthalindiisocyanaten (NDI), 3,3'-Dimethyl-4,4'diphenyleniisocyanat (TODI), Phenylendiisocyanaten, p-Phenylendiisocyanat (PPDI) und Gemischen davon ausgewählt ist.

8. Verfahren nach Anspruch 1, wobei das Blähmittel Wasser umfaßt.

9. Verfahren nach Anspruch 8, wobei das Blähmittel auch einen FCK, FCKW, FKW oder Pentan umfaßt.

10. Verfahren nach Anspruch 9, wobei der mikroporöse Schaum eine Dichte von 20 bis 65 lb/ft³ (320 bis 1041 kg/m³) aufweist.

11. Verfahren zur Herstellung eines mikroporösen, elastomerischen Polyharnstoffschmaus mit einer Dichte von 320 bis 1041 kg/m³, das das Mischen und Umsetzen folgender Komponenten in Gew.-%:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Gew.-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>oligomerer Di(aminobenzoat)ester</td>
<td>75 - 98</td>
</tr>
<tr>
<td>Wasser</td>
<td>0 - 0,8</td>
</tr>
<tr>
<td>weiteres Blähmittel</td>
<td>0 - 8</td>
</tr>
<tr>
<td>Urethankatalysator</td>
<td>0 - 5</td>
</tr>
<tr>
<td>Zellstabilisator</td>
<td>0 - 5</td>
</tr>
</tbody>
</table>

12. Verfahren nach Anspruch 11, wobei das Polyisocyanat aus Toluoldiisocyanaten (TDI), Diphenylmethandiisocyanaten (MDI), polymerem MDI, Poly(phenylenisocyanaten), mit Carbodiimid modifizierten MDI, mit Carbodiimid modifizierten, polymeren MDI, Cyclohexandiisocyanaten (CHDI), Isophorondiisocyanaten (IPDI), Naphthalindiisocyanaten (NDI), 3,3'-Dimethyl-4,4'diphenyleniisocyanat (TODI), Phenylendiisocyanaten, p-Phenylendiisocyanat (PPDI) und Gemischen davon ausgewählt ist.

13. Verfahren nach Anspruch 12, wobei der Di(aminobenzoat)ester ein Poly(tetramethyleneoxyd)-di-p-aminobenzoat
14. Verfahren nach Anspruch 13, wobei das Poly(tetramethylenoxid) ein Molekulargewicht von etwa 1000 aufweist.

15. Verfahren nach Anspruch 13, wobei das Polyisocyanat ein mit Carbodiimid modifiziertes Diphenylmethandiisocyanat mit einer höheren Funktionalität ist.

16. Verfahren nach Anspruch 15, wobei das andere Blähmittel ein FCKW ist.

17. Verfahren nach Anspruch 11, wobei der mikroporöse, elastomere Polyharnstoff-Schaum eine Dichte von 640 bis 881 kg/m³ aufweist und das das Mischen und Umsetzen folgender Komponenten in Gew.-%:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Gew.-%</th>
</tr>
</thead>
<tbody>
<tr>
<td>oligomer Di(aminobenzoat)ester</td>
<td>75-85</td>
</tr>
<tr>
<td>Wasser</td>
<td>0,1-0,3</td>
</tr>
<tr>
<td>weiteres Blähmittel</td>
<td>1-3</td>
</tr>
<tr>
<td>Urethana-Katalysator</td>
<td>0,5-2</td>
</tr>
<tr>
<td>Zellstabilisator</td>
<td>0-1</td>
</tr>
</tbody>
</table>

mit einem Polyisocyanat bei einem NCO-Index von 85 bis 105 umfaßt, wobei der Di(aminobenzoat)ester ein Poly(tetramethylenoxid)-di-p-aminobenzoat ist, bei dem das Poly(tetramethylenoxid) ein Molekulargewicht von 650 bis 2000 aufweist.

18. Verfahren nach Anspruch 17, wobei das Polyisocyanat aus Toluoldiisocyanaten (TDI), Diphenylmethandiisocyanaten (MDI), polymerem MDI, Poly(phenylenisocyanaten), mit Carbodiimid modifizierten MDI, mit Carbodiimid modifizierten, polymeren MDI, Cyclohexandiisocyanaten (CHDI), Isophorondiisocyanaten (IPDI), Naphthalindiisocyanaten (NDI), 3,3'-Dimethyl-4,4'-diphenylenisocyanat (TODI), Phenylendiisocyanaten, p-Phenylendiisocyanat (PPDI) und Gemischen davon ausgewählt ist.

19. Verfahren nach Anspruch 17, wobei das Polyisocyanat ein mit Carbodiimid modifiziertes Diphenylmethandiisocyanat mit einer höheren Funktionalität ist.

20. Verfahren nach Anspruch 19, wobei das andere Blähmittel HCFC-141b ist.

Revidications

1. Procédé de production d'une mousse micro-alvéolaire d'élastomère de type polyurée, en faisant réagir un polyisocyanate organique avec un polyol en présence d'un agent gonflant, et éventuellement, d'un catalyseur à base d'uréthane et d'un agent de stabilisation d'alvéole, l'amélioration consistant en ce que l'on fait réagir le polyisocyanate avec un ester de type di-(aminobenzoate) dérivé d'un diol oligomère, un di-(aminobenzamide) dérivé d'une diane oligomère, ou un ester/amide d'acide dianobénoïque dérivé d'un composé oligomère comportant tant un groupe hydroxy qu'un groupe amino.

2. Procédé selon la revendication 1, dans lequel on fait réagir le polyisocyanate avec un ester de type dianobenzoate ayant la structure suivante :

 \[
 \begin{align*}
 &\text{H}_2\text{N} - \text{O} - \text{G} - \text{O} - \text{C} - \text{O} - \text{G} - \text{O} - \text{C} - \text{O} - \text{N}(\text{H}_2)\text{N} \\
 \end{align*}
 \]

 dans laquelle \(n\) est égal à 1 ou 2, et G représente un groupe divalent dérivé d'un diol oligomère ayant un poids moléculaire de 400 à 6 000.

3. Procédé selon la revendication 2, dans lequel G représente un groupe hydrocarboné divalent à chaîne linéaire ou
ramifiée, saturé ou insaturé, qui peut être interrompu par des atomes d’oxygène d’éther.

4. Procédé selon la revendication 2, dans lequel le diol oligomère peut être représenté par la formule HO(RO)ₐH dans laquelle R représente un groupe alkylène contenant jusqu’à 10 atomes de carbone, et a est un entier suffisant pour obtenir un poids moléculaire dans la plage de 400 à 6 000.

5. Procédé selon la revendication 4, dans lequel le diol oligomère est un poly(oxyéthylène)glycol, un poly(oxypropylène)glycol, un poly(oxytétraméthylène)glycol, un poly(oxypropylène)-copoly(oxyéthylène)glycol, un poly(oxypropylène)glycol à extrémité poly(oxyéthylène), ou leurs mélanges.

6. Procédé selon la revendication 1, dans lequel le diol oligomère est un poly(oxytétraméthylène)glycol.

7. Procédé selon la revendication 1, dans lequel le polyisocyanate est choisi parmi les diisocyanates de toluène (TDI), les diisocyanates de diphénylméthane (MDI), les MDI polymères, les poly(isocyanates de phénylène), les MDI modifiés par carbodiimide, les MDI polymères modifiés par carbodiimide, les diisocyanates de cyclohexane (CHDI), les diisocyanates d’isophorone (IPDI), les diisocyanates de naphthalène (NDI), le disocyanate de 3,3’-diméthyl-4,4’-diphenylène (TODI), les diisocyanates de phénylène, le disocyanate de para-phénylène (PPDI) et leurs mélanges.

8. Procédé selon la revendication 1, dans lequel l’agent gonflant comprend de l’eau.

9. Procédé selon la revendication 8, dans lequel l’agent gonflant comprend également un CFC, un HCFC, un HFC ou du pentane.

10. Procédé selon la revendication 9, dans lequel la mousse micro-alvéolaire a une masse volumique de 20 à 65 lb/ft³ (de 320 à 1 041 kg/m³).

11. Procédé de production d’une mousse micro-alvéolaire d’élastomère de type polyurée ayant une masse volumique de 320 à 1 041 kg/m³, comprenant un mélange et une réaction des composants suivants, en % en poids :

<table>
<thead>
<tr>
<th>Composition</th>
<th>% en poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ester oligomère de type di-(aminobenzoate)</td>
<td>75 à 98 % en poids</td>
</tr>
<tr>
<td>Eau</td>
<td>0 à 0,8 % en poids</td>
</tr>
<tr>
<td>Autre agent gonflant</td>
<td>0 à 8 % en poids</td>
</tr>
<tr>
<td>Catalyseur à base d’uréthanne</td>
<td>0 à 5 % en poids</td>
</tr>
<tr>
<td>Stabilisant d’alvéole</td>
<td>0 à 5 % en poids</td>
</tr>
</tbody>
</table>

avec un polyisocyanate ayant un indice NCO de 85 à 105, l’ester de type di-(aminobenzoate) étant un di-p-aminobenzote de poly(éther d’alkylène glycol), le poly(éther d’alkylène glycol) ayant un poids moléculaire de 650 à 2 000.

12. Procédé selon la revendication 11, dans lequel le polyisocyanate est choisi parmi les diisocyanates de toluène (TDI), les diisocyanates de diphénylméthane (MDI), les MDI polymères, les poly(isocyanates de phénylène), les MDI modifiés par carbodiimide, les MDI polymères modifiés par carbodiimide, les diisocyanates de cyclohexane (CHDI), les diisocyanates d’isophorone (IPDI), les diisocyanates de naphthalène (NDI), les diisocyanates de 3,3’-diméthyl-4,4’-diphenylène (TODI), les diisocyanates de phénylène, le diisocyanate de para-phénylène (PPDI) et leurs mélanges.

13. Procédé selon la revendication 12, dans lequel l’ester de type dianisobenzoate est un di-p-aminobenzote de poly(oxytétraméthylène).

14. Procédé selon la revendication 13, dans lequel le poly(oxytétraméthylène) a un poids moléculaire d’environ 1 000.

15. Procédé selon la revendication 13, dans lequel le polyisocyanate est un diisocyanate de diphénylméthane modifié par carbodiimide à fonctionnalité relativement élevée.

16. Procédé selon la revendication 15, dans lequel l’autre agent gonflant est un HCFC.
EP 0 984 026 B1

17. Procédé selon la revendication 11, dans lequel la mousse micro-alvéolaire d’élastomère de type polyurée a une masse volumique de 640 à 881 kg/m³, et comprend un mélange et une réaction des composants suivants, en % en poids :

<table>
<thead>
<tr>
<th>Composant</th>
<th>Poids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ester oligomère de type diaminobenzoate</td>
<td>75 à 85 % en poids</td>
</tr>
<tr>
<td>Eau</td>
<td>0,1 à 0,3 % en poids</td>
</tr>
<tr>
<td>Autre agent gonflant</td>
<td>1 à 3 % en poids</td>
</tr>
<tr>
<td>Catalyseur à base d’uréthane</td>
<td>0,5 à 2 % en poids</td>
</tr>
<tr>
<td>Stabilisant d’alvéole</td>
<td>0 à 1 % en poids</td>
</tr>
</tbody>
</table>

avec un polyisocyanate ayant un indice NCO de 85 à 105, l’ester de type di-aminobenzoate étant un di-p-aminobenzoate de poly(oxytétraméthylène) dans lequel le poly(oxytétraméthylène) a un poids moléculaire de 650 à 2 000.

18. Procédé selon la revendication 17, dans lequel le polyisocyanate est choisi parmi les diisocyanates de toluène (TDI), les diisocyanates de diphénylméthane (MDI), les MDI polymères, les poly(isocyanates de phénylène), les MDI modifiés par carbodiimide, les MDI polymères modifiés par carbodiimide, les diisocyanates de cyclohexane (CHDI), les diisocyanates d’isophorone (IPDI), les diisocyanates de naphtalène (NDI), le diisocyanate de 3,3’-diméthyl-4,4’-diphénylène (TODI), les diisocyanates de phénylène, le diisocyanate de para-phénylène (PPDI), et leurs mélanges.

19. Procédé selon la revendication 17, dans lequel le polyisocyanate est un diisocyanate de diphénylméthane modifié par carbodiimide à fonctionnalité relativement élevée.

20. Procédé selon la revendication 19, dans lequel l’autre agent gonflant est le HCFC-141b.