EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
11.05.2005 Bulletin 2005/19

(21) Application number: 99116561.4

(22) Date of filing: 24.08.1999

(54) Automatic velocity and spacing control apparatus for automotive vehicle
Abstandsbezogenes Fahrgeschwindigkeitsregelsystem für Kraftfahrzeuge
Régulateur de vitesse automatique avec régulation de la distance entre deux véhicules

(84) Designated Contracting States: DE FR GB

(30) Priority: 26.08.1998 JP 24018098
14.06.1999 JP 16682899

(43) Date of publication of application:
01.03.2000 Bulletin 2000/09

(73) Proprietor: Nissan Motor Co., Ltd.
Yokohama-shi, Kanagawa 221-0023 (JP)

(72) Inventors:
- Adachi, Kazutaka,
 Imperiaruyokohamabeibyu 402
 Yokohama-shi, Kanagawa 221-0057 (JP)
- Hashizume, Takenori
 Isehara-shi, Kanagawa 259-1116 (JP)
- Iwamoto, Hideo
 Atsugi-shi, Kanagawa 243-0039 (JP)

(74) Representative: Weber, Joachim, Dr.
Hoefer & Partner
Patentanwälte
Gabriel-Max-Strasse 29
81545 München (DE)

(56) References cited:
- EP-A- 0 612 641
- WO-A-99/20481
- DE-A- 19 654 769
- DE-A- 19 848 824
- US-A- 3 820 622

- ELIASSON A: "A CONTROLLER FOR AUTONOMOUS INTELLIGENT CRUISE CONTROL - A PRELIMINARY DESIGN"

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION:

a) Field of the invention

[0001] The present invention relates to an automatic vehicular velocity control apparatus for an automotive vehicle to follow up a preceding vehicle which is running ahead of the vehicle at an appropriate inter-vehicle distance when the preceding vehicle has been recognized.

b) Description of the related art

[0002] A Japanese Patent Application First Publication No. Heisei 11-59222 published on March 12, 1999 which corresponds to US 5 959 572 exemplifies a previously proposed automatic vehicular velocity control apparatus to follow up a preceding vehicle which is running ahead of the vehicle at the same traffic lane at an appropriate inter-vehicle distance.

[0003] In the above-described control apparatus, a preceding vehicle follow-up run control system is constituted by an inter-vehicle distance control system and a vehicular velocity control system. A first gain fd by which an inter-vehicle distance deviation ΔL is multiplied and a second gain fv by which a relative velocity ΔV of the vehicle to the preceding vehicle is multiplied are set on the basis of a specific angular frequency ωM and a damping factor ζM in a transfer function of the preceding vehicle follow-up run control system, a target relative velocity ΔV* is calculated as follows: ΔV* = (fd x ΔL + fv x ΔV), and a target vehicular velocity V* is calculated by subtracting the target relative velocity ΔV* from the vehicular velocity V_T of the preceding vehicle.

[0004] Then, if both of the first gain fd and the second gain fv are modified according to the detected value of the inter-vehicle distance, the response characteristic of the inter-vehicle distance control system is modified.

[0005] WO 99/20481 discloses a method for adaptive cruise control between two vehicles comprising the steps of determining a set-point distance between the two vehicles for which the following vehicle is stabilized at a speed equal to the preceding vehicle and determining a road scenario between the two vehicles based on the relative distance and the relative speed and the percentage by which the following vehicle has intruded upon the set-point distance among five types of scenarios.

[0006] EP 0 612 641 A1 discloses a cruise controller for a vehicle having a distance error determining means for determining a distance error and a speed error determining means for determining a speed error. Further, acceleration demand producing means for producing a vehicle acceleration demand as a function of the distance error and the speed error are provided.

[0007] DE 196 54 769 A1 discloses a method and a device for controlling a vehicle. According to this document, a control intervention is not made through the detour of the velocity control device but directly, comparable to the driver's intervention regarding braking and accelerating (accelerator pedal). These interventions of the driver change as a control variable the longitudinal acceleration of the vehicle, i. e., the longitudinal acceleration is chosen as a controlling variable.

[0008] US 5,493,302 A discloses a cruise control system including a radar for determining range and closing rate of the vehicle relative to the preceding vehicle. The range and closing rates are used to determine a new set speed for the cruise control system. The new set speed is selected to prevent the vehicle from overtaking the preceding vehicle and ideally reduces the closing rate to zero at a predetermined minimum distance from the preceding vehicle.

SUMMARY OF THE INVENTION:

[0009] However, since the response characteristic of the inter-vehicle distance control system is modified only by means of the detected value of the inter-vehicle distance, the following problems occur in the previously proposed automatic vehicular velocity control apparatus described in the BACKGROUND OF THE INVENTION.

1) Suppose that the vehicle has recognized the preceding vehicle at an inter-vehicle distance sufficiently longer than a set inter-vehicle distance and is about to approach to the preceding vehicle whose vehicular velocity is lower than that of the vehicle up to the set inter-vehicle distance. An abrupt deceleration is, in this case, carried out immediately after the preceding vehicle has been recognized even when the relative velocity of the vehicle to the preceding vehicle is large and the inter-vehicle distance when the preceding vehicle has just been recognized is sufficiently longer than the set inter-vehicle distance so that a vehicular run disagreeable to a vehicular occupant (s) occurs.

2) Suppose that another vehicle has been interrupted into a spatial interval of a traffic lane between the preceding
vehicle and the vehicle during the follow-up run of the vehicle to the preceding vehicle. Since the inter-vehicle
distance between the other vehicle and the vehicle becomes abruptly shorter than the set inter-vehicle distance,
the abrupt deceleration is carried out immediately after the interruption of the other vehicle to the spatial interval
between the old preceding vehicle and the vehicle although the relative velocity of the vehicle to the other inter-
rupting vehicle is almost zero.

(3) Furthermore, suppose that the vehicle itself has made a traffic lane change from a normal traffic lane on which
the preceding vehicle was running ahead of the vehicle to an overtake traffic lane on which an overtake vehicle is
running ahead of the vehicle and the vehicle is to follow up the overtake vehicle which is the new preceding vehicle.

[0010] If the inter-vehicle distance to the new preceding vehicle is shorter than the set inter-vehicle distance, the
abrupt deceleration of the vehicle is also carried out immediately after the follow-up run of the vehicle to the new
preceding vehicle even if the vehicular velocity of the new preceding vehicle is higher than that of the vehicular velocity
so that the vehicular run disagreeable to the vehicular occupant(s) occurs.

[0011] It is therefore an object of the present invention to provide an improved automatic vehicular velocity control
apparatus for an automotive vehicle which can achieve a smooth start for the vehicle to appropriately follow up a
preceding vehicle which is running ahead of the vehicle with no driving anxiety given to the vehicular occupant(s) with
an avoidance of the abrupt deceleration described above.

[0012] According to one aspect of the present invention, there is provided with an automatic vehicular velocity control
apparatus for an automotive vehicle, comprising: an inter-vehicle distance detector to detect an inter-vehicle distance
from the vehicle to a preceding vehicle which is running ahead of the vehicle; a vehicular velocity detector to detect a
vehicular velocity of the vehicle; a relative velocity detector to detect a relative velocity of the preceding vehicle to the
vehicle; an inter-vehicle distance command value calculator to calculate a command value of the inter-vehicle distance;
a control response characteristic determinator to determine a control response characteristic of an inter-vehicle dis-
tance control system in accordance with to a deviation between the command value of the inter-vehicle distance and
and a detected value thereof and a detected value of the relative velocity: a vehicular velocity command value calculator
to calculate a command value of the vehicular velocity on the basis of the determined control response characteristic
of the inter-vehicle distance control system; and a vehicular velocity control section to control at least one of a driving
force of the vehicle, a braking force of the vehicle, and a gear ratio of a vehicular transmission in such a manner that
a detected value of the vehicular velocity is made equal to the command value of the vehicular velocity.

[0013] According to another aspect of the present invention, there is provided with an automatic vehicular velocity control
apparatus for an automotive vehicle, comprising: an inter-vehicle distance detector to detect an inter-vehicle distance
from the vehicle to a preceding vehicle which is running ahead of the vehicle; a vehicular velocity detector to detect a
vehicular velocity of the vehicle; a relative velocity detector to detect a relative velocity of the preceding vehicle to the
vehicle; an inter-vehicle distance command value calculator to calculate a command value of an inter-vehicle
distance; a target value determinator to determine a target value of the inter-vehicle distance prescribing a variation
of the inter-vehicle distance with time until the detected value of the inter-vehicle distance has reached to the command
value of the inter-vehicle distance; a gain determinator to determine a first gain by which a deviation between the target
value of the inter-vehicle distance and the detected value of the inter-vehicle distance is multiplied in accordance with
the detected value of the relative velocity; a vehicular velocity command value calculator to calculate a command value
of the vehicular velocity to make the detected value of the inter-vehicle distance equal to the target value of the inter-
vehicle distance on the basis of the detected value of the vehicular velocity, the detected value of the relative velocity,
and the deviation between the target value of the inter-vehicle distance and the detected value thereof; and a vehicular
velocity control section to control at least one of a driving force of the vehicle, a braking force of the vehicle, and a gear
ratio of a vehicular transmission in such a manner that the detected value of the vehicular velocity is made equal to
the command value thereof.

[0014] This summary of the invention does not necessarily describe all necessary features so that the present in-
vention may also be a sub-combination of these described features.

BRIEF DESCRIPTION OF THE DRAWINGS:

[0015]

Fig. 1A is a block diagram of an automatic vehicular velocity control apparatus for an automotive vehicle in a first
preferred embodiment according to the present invention.

Fig. 1B is a circuit block diagram of a controller shown in Fig. 1A.

Fig. 2 is a functional block diagram of the automatic vehicular velocity control apparatus shown in Fig. 1A.

Fig. 3 is a functional block diagram of the automatic vehicular velocity control apparatus in a second preferred
embodiment according to the present invention.

3
Fig. 4 is a functional block diagram of a vehicular velocity control system in the automatic vehicular velocity control apparatus applicable to each embodiment.

Figs. 5A, 5B, and 5C are simulation results in an inter-vehicle distance, a relative velocity, and an acceleration of a comparative example of the automatic vehicular velocity control apparatus when the vehicle is approaching to a preceding vehicle at a relatively long inter-vehicle distance as shown in Fig. 11.

Figs. 6A, 6B, and 6C are simulation results in the inter-vehicle distance, the relative velocity, the acceleration of the automatic vehicular velocity control apparatus in each of the first and second embodiments when the vehicle is approaching to the preceding vehicle in the same situation as shown in Fig. 11.

Figs. 7A, 7B, and 7C are simulation results in the inter-vehicle distance, the relative velocity, and the acceleration of the comparative example of the automatic vehicular velocity control apparatus when another vehicle is interrupted into the traffic lane on which the vehicle is running to follow up an overtake vehicle as a new preceding vehicle in the same situation as shown in Fig. 13.

Figs. 8A, 8B, and 8C are simulation results in the inter-vehicle distance, the relative velocity, and the acceleration of the automatic vehicular velocity control apparatus in each of the first and second embodiments when the other vehicle is interrupted into the spatial interval between the preceding vehicle and the vehicle in the same situation as shown in Fig. 12.

Figs. 9A, 9B, and 9C are simulation results in the inter-vehicle distance, the relative velocity, and the acceleration of the comparative example of the automatic vehicular velocity control apparatus in each of the first and second embodiments when the vehicle has made a traffic lane change to an overtake traffic lane at which the vehicle is running to follow up an overtake vehicle as a new preceding vehicle in the same situation as shown in Fig. 13.

Figs. 10A, 10B, and 10C are simulation results in the inter-vehicle distance, the relative velocity, and the acceleration of the automatic vehicular velocity control apparatus when another vehicle made the traffic lane change to the overtake traffic lane at which the vehicle is running to follow up the overtake vehicle as the new preceding vehicle in the same situation as shown in Fig. 13.

Fig. 11 is an explanatory view for explaining one of the various follow-up run situations in which the vehicle is approaching to the preceding vehicle.

Fig. 12 is an explanatory view for explaining one of the various follow-up run situations in which the other vehicle is interrupted into the traffic lane on which the vehicle is running.

Fig. 13 is an explanatory view for explaining one of the various follow-up run situations in which the vehicle has made the traffic lane change to the overtake traffic lane to follow up the overtake vehicle.

Fig. 14 is a functional block diagram of the automatic vehicular velocity control apparatus in a third preferred embodiment according to the present invention.

Fig. 15 is an example of a map representing a specific angular frequency ω_c of an inter-vehicle distance control system with respect to a relative velocity in the third embodiment shown in Fig. 14.

Fig. 16 is an example of a map representing a damping factor ζ_c of the inter-vehicle distance control system with respect to the relative velocity in the third embodiment shown in Fig. 14.

Fig. 17A is a functional block diagram of the automatic vehicular velocity control apparatus in a fourth preferred embodiment of the automatic vehicular velocity control apparatus according to the present invention.

Fig. 17B is a functional block diagram of the inter-vehicle distance control system and the vehicular velocity control system of the automatic vehicular velocity control apparatus as an alternative of the fourth preferred embodiment of the automatic vehicular velocity control apparatus according to the present invention.

Figs. 18A, 18B, 18C, and 18D are graphs on simulation results of the inter-vehicle distance, the vehicular velocity, the relative velocity, and the acceleration of the automatic vehicular velocity control apparatus in each of the first and second embodiments when the specific angular frequency in the inter-vehicle distance control system is made high.

Figs. 19A, 19B, 19C, and 19D are graphs on the simulation results of the inter-vehicle distance, the vehicular velocity, the relative velocity, and the acceleration of the automatic vehicular velocity control apparatus in each of the first and second embodiments when the specific angular frequency in the inter-vehicle distance control system is made low and the vehicle is following up the preceding vehicle, with the relative velocity being high.

Figs. 20A, 20B, 20C, and 20D are graphs on the simulation results of the inter-vehicle distance, the vehicular velocity, the relative velocity, and the acceleration of the automatic vehicular control apparatus in each of the third and fourth preferred embodiments when the vehicle is following up the preceding vehicle, with the relative velocity being high.

Figs. 21A, 21B, 21C, and 21D are graphs on the simulation results of the inter-vehicle distance, the vehicular velocity, the relative velocity, and the acceleration of the automatic vehicular control apparatus in each of the third and fourth preferred embodiments when the vehicle is following up the preceding vehicle, with the relative velocity being high.

Figs. 22A, 22B, 22C, and 22D are graphs on the simulation results of the inter-vehicle distance, the vehicular velocity, the relative velocity, and the acceleration of the automatic vehicular control apparatus in each of the first
and second preferred embodiments when the vehicle is following up the preceding vehicle, with the relative velocity being low.

Figs. 23A, 23B, 23C, and 23D are graphs on the simulation results of the inter-vehicle distance, the vehicular velocity, the relative velocity, and the acceleration of the automatic vehicular control apparatus in each of the third and fourth preferred embodiments when the vehicle is following up the preceding vehicle, with the relative velocity being low.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS:

[0016] Reference will hereinafter be made to the drawings in order to facilitate a better understanding of the present invention.

(First Embodiment)

[0017] Fig. 1A shows a whole configuration of an automatic vehicular velocity control apparatus in a first preferred embodiment according to the present invention applicable to an automotive vehicle.

[0018] In Fig. 1A, an inter-vehicle distance sensor 1 is disposed on a front lower portion of the vehicle to detect an inter-vehicle distance from the vehicle to a preceding vehicle which is running ahead of the vehicle on the same traffic lane as the vehicle.

[0019] The inter-vehicle distance sensor 1 is constituted by, for example, a radar unit which emits a laser light beam toward a front detectable zone and receives a reflected light beam from an object present in the front detectable zone.

[0020] The inter-vehicle distance L to the preceding vehicle and a relative velocity ΔV of the vehicle to the preceding vehicle are detected.

[0021] The relative velocity ΔV is derived by differentiating the detected value L of the inter-vehicle distance or may be derived by passing the detected value L of the inter-vehicle distance through a band pass filter (BPF).

[0022] It is noted that the inter-vehicle distance may be detected using an electromagnetic wave or an ultrasonic wave and the relative velocity may be calculated from the detected result through such a medium as the electromagnetic wave or the ultrasonic wave.

[0023] A vehicular velocity sensor 2 detects a revolution velocity of an output axle of a transmission 4 to be converted to a vehicular velocity V.

[0024] A controller 5 (also called, a preceding vehicle follow-up run controller) includes a microcomputer and its peripheral devices. The microcomputer includes, as shown in Fig. 1B, a CPU (Central Processing Unit and specifically a MPU (microprocessor unit)), a RAM (Random Access Memory), a ROM (Read Only Memory), an Input Port, an Output Port, and a common bus.

[0025] The controller 5 calculates a vehicular velocity command value V^* such that both of the inter-vehicle distance L and the relative velocity ΔV give their optimum values on the basis of the inter-vehicle distance L, the relative velocity ΔV, and the vehicular velocity V when the vehicle follows up the preceding vehicle. The details of the controller 5 will be described later.

[0026] A vehicular velocity control section 4 calculates at least one or any two or three of a command value to command an engine throttle valve actuator 30 to open an engine throttle valve 3, a command value to command an automatic brake actuator 60 to generate a braking liquid pressure in a brake system 6 according to its command value, and a command value to command a gear ratio actuator 40 to adjust the gear ratio of the transmission 4 according to its command value.

[0027] The vehicular velocity control section 4 is shown in Fig. 2.

[0028] A feedback control technique or a robust model matching technique is applicable to the vehicular velocity control section 4.

[0030] The throttle valve actuator 30 adjustably derives the opening angle of the engine throttle valve 3 according to the command value of the engine throttle valve 3.

[0031] The automatic brake actuator 60 adjusts the braking liquid pressure of the brake system 6 according to its command value. The transmission gear ratio actuator 40 adjusts the gear ratio of the transmission 4. Although the transmission 4 is an automatic transmission in the first embodiment, the transmission 4 may be a continuously variable transmission (CVT). In the case of the continuously variable transmission, the gear ratio means a speed ratio.

[0032] In the first embodiment shown in Figs. 1A, 1B, and 2, a transfer function $G_v(s)$ of a vehicular velocity control system to which the vehicular velocity command value V^* from the preceding vehicle follow-up run control system 50 of the controller 5 is inputted and from which the vehicular velocity V detected by means of the vehicular velocity sensor 2 is outputted is approximated to such a first-order lag system as expressed in an equation (1) of TABLE 3.
In the equation (1), ω_v denotes a break point angular frequency of the transfer function of the vehicular velocity control system ($\omega_v = 1/T$, T denotes a time constant).

As shown in Fig. 2, the preceding vehicle follow-up run controller 50 functionally includes, in terms of a software configuration of the microcomputer, an inter-vehicle distance command value calculating section 501, a coefficients determining section 502, a target inter-vehicle distance calculating section 503, and a vehicular velocity command value calculating section 504.

The preceding vehicle follow-up run control system 50 receives the inter-vehicle distance L and the relative velocity ΔV from the inter-vehicle distance sensor 1 and the vehicular velocity V from the vehicular velocity sensor 2.

It is noted that in a case where the preceding vehicle is not in the front detectable zone of the inter-vehicle distance sensor 1, the preceding vehicle follow-up run control system 50 outputs a vehicular velocity set by a vehicular occupant (a set vehicular velocity) to the vehicular velocity control section 4 as the vehicular velocity command value V^* so that the vehicle runs constantly at the set vehicular velocity (cruise run).

On the other hand, if the inter-vehicle distance sensor 1 recognizes the presence of the preceding vehicle in the front detectable zone, the inter-vehicle distance command value calculating section 501 calculates the inter-vehicle distance command value L^* on the basis of the vehicular velocity V and the relative velocity ΔV.

The vehicular velocity V_T of the preceding vehicle is expressed as follows:

$$V_T = V + \Delta V \quad (2).$$

The command value L^* of the inter-vehicle distance is calculated as the function of the vehicular velocity of the preceding vehicle.

That is to say,

$$L^* = a \cdot V_T + L_{of}$$

$$= a \cdot (V + \Delta V) + L_{of} \quad (3).$$

In the equation (3), a denotes a coefficient and L_{of} denotes an offset.

Alternatively, the command value L^* of the inter-vehicle distance may be calculated as a function of the vehicular velocity V.

$$L^* = a' \cdot V + L_{of}' \quad (4).$$

In the equation (4), a' denotes another coefficient and L_{of}' denotes another offset.

Furthermore, the set vehicular velocity by the vehicular occupant(s) may be used as the command value of the inter-vehicle distance L^*.

The coefficients determining section 502 determines the damping factor ζ_M and the specific angular frequency ω_M in the inter-vehicle distance control system according to the inter-vehicle distance deviation ΔL and the relative velocity ΔV in order to provide an optimum response characteristic according to the inter-vehicle distance deviation ΔL and the relative velocity ΔV for the response characteristic of the inter-vehicle distance control system until the actual inter-vehicle distance L has reached to the command value L^* of the inter-vehicle distance in the inter-vehicle distance control system from which the inter-vehicle distance command value L^* from the inter-vehicle distance command value calculating section 501 is inputted and from which the actual inter-vehicle distance detected by means of the inter-vehicle distance sensor 1 is outputted.

It is noted that the inter-vehicle distance deviation ΔL is expressed as

$$\Delta L = L - L^* \quad (5).$$

Specifically, numerical values of the damping factor ζ_M and the specific angular frequency ω_M in the inter-vehicle distance control system are previously set (stored) as respective maps in accordance with the inter-vehicle distance deviation ΔL and the relative velocity ΔV in order to obtain the optimum response characteristic on the inter-vehicle distance control in various follow-up run situations and determines the damping factor ζ_M and the specific angular frequency ω_M in the inter-vehicle distance control system are previously stored (set) as respective maps in
accordance with the inter-vehicle distance deviation ΔL and the relative velocity ΔV in order to obtain the optimum response characteristic on the inter-vehicle distance control system in various follow-up run situations and determines the values of coefficients of the damping factor ζM and the specific angular frequency ωM in accordance with the inter-vehicle distance deviation ΔL and the relative velocity ΔV for a target inter-vehicle distance calculation.

[0048] TABLE 1 shows an example of the map on the damping factor ζM and TABLE 2 shows an example of the other map on the specific angular frequency of ωM.

[0049] The target inter-vehicle distance calculating section 501 calculates a target inter-vehicle distance L_T and a target relative velocity ΔV_T through a second order filter described in an equation (6) of TABLE 3 using the damping factor ζM and the specific angular frequency ωM to provide a target response characteristic in the inter-vehicle distance control system for the response characteristic. It is noted that the inter-vehicle distance L_0 and the relative velocity V_0 immediately after the preceding vehicle has been recognized are set to their initial values.

[0050] The target inter-vehicle distance L_T and the target relative velocity ΔV_T are a final inter-vehicle distance command value prescribing a time transition of the inter-vehicle distance and the relative velocity so that the actual inter-vehicle distance exhibits the target response characteristic and is converged into the inter-vehicle distance command value L^*. If the equation (6) is evolved and a Laplace transform is carried out for the evolved equation (6), an equation (7) of TABLE 3 can be given.

[0051] If the equation (6) is evolved and a Laplace transform is carried out for the evolved equation (6), an equation (7) of TABLE 3 can be given.

[0052] The equation (7) represents a transfer function of the target inter-vehicle distance L_T to the inter-vehicle distance command value L^* and is expressed in the second-order form.

[0053] In the first embodiment, a feedback control is carried out in the inter-vehicle distance control system so that the actual inter-vehicle distance L provides the target inter-vehicle distance L_T (final inter-vehicle distance command value) represented by the equation (7). As described above, since the values such that the target inter-vehicle distance control response can be obtained in accordance with the inter-vehicle distance deviation ΔL and the relative velocity ΔV are set for the damping factor ζM and the specific angular frequency ωM in the inter-vehicle distance control system, a desirable inter-vehicle distance control response can be achieved under various follow-up run situations.

[0054] Such a response characteristic that the actual inter-vehicle distance is slowly converged into the command value without abrupt deceleration of the vehicle is desirable as the target inter-vehicle control response characteristic is a case where the relative velocity to the preceding vehicle is low (small) even with the inter-vehicle distance to the preceding vehicle being shorter than the command value thereof when another vehicle (a new preceding vehicle) is interrupted into a spatial interval between the preceding vehicle (the old preceding vehicle) and the vehicle or when the vehicle has made a traffic lane change to an overtake traffic lane on which the overtake vehicle is present as the new preceding vehicle. In addition, such a response characteristic that the actual inter-vehicle distance is slowly converged to the command value thereof without the abrupt deceleration in a case where the relative velocity is large (high) with the inter-vehicle distance being long when the vehicle is approaching to the new preceding vehicle.

[0057] In such the follow-up run control situations as described above, the actual inter-vehicle distance overshoots or undershoots around the command value thereof and converges to the command value thereof to exhibit the second-order response characteristic. Such the second-order response characteristic can be achieved through the second-order filter shown in the equations (6) and (7).

[0058] The vehicular velocity command value calculating section 504 calculates the command value L^* of the vehicular velocity using predetermined (gain) constants f_V and f_L in accordance with the following equation (8).

$$V^* = \{V(t) + \Delta V(t)\} \cdot [f_V(\Delta V_T(t) - \Delta V(t))] + f_L(L_T(t) - L(t))$$ (8).

[0059] In the equation (8), f_V denotes a first gain constant by which a target relative velocity deviation (a difference from a target relative velocity $\Delta V_T(t)$ to a detected value of the relative velocity $\Delta V(t)$) is multiplied and f_L denotes a second gain constant by which a target inter-vehicle distance deviation (a difference from a target inter-vehicle distance $L_T(t)$ to the detected value $L(t)$ of the inter-vehicle distance) $(L_T(t) - L(t))$ is multiplied.

[0060] The vehicular velocity control section 4 adjusts at least one or each of the throttle valve actuator 30, the automatic brake actuator 10, and A/T gear ratio actuator 40 to make the actual vehicular velocity $V(t)$ equal to the command value V^* of the vehicular velocity.
(Second Embodiment)

[0061] In the first embodiment, the feedback control is exemplified to make the actual inter-vehicle distance L equal to the target inter-vehicle distance L_T indicating the target response characteristic of the inter-vehicle distance. However, in this inter-vehicle distance feedback control system, a control gain in the inter-vehicle distance control system needs to be increased with a control time constant thereof being shortened in order to increase the response characteristic. At this time, a control stability is sacrificed and there is a trade-off relationship between the response characteristic (speed of response) and the stability of control.

[0062] In a second preferred embodiment, a feed-forward loop is added to the inter-vehicle distance feedback control system in the first embodiment to derive a compensated vehicular velocity command value V_c to achieve the target inter-vehicle distance response from the command value L_T of the inter-vehicle distance. This compensated vehicular velocity command value V_c corrects the vehicular velocity command value V*' derived in the inter-vehicle distance control system according to the command value V_c of the compensated vehicular velocity. Consequently, the control response characteristic can be improved without sacrifice of the stability in the inter-vehicle distance control.

[0063] Fig. 3 shows the functional block diagram of the controller 5 in the second embodiment.

[0064] The preceding vehicle follow-up run controller 50 includes a pre-compensation vehicular velocity command value calculating section 505 connected to the input end of the target inter-vehicle distance calculating section 503 and a corrected vehicular velocity command value calculating section 506 in addition to the inter-vehicle distance command value calculating section 501, the coefficients determining section 502, the target inter-vehicle distance calculating section 503, and the vehicular velocity command value calculating section 504.

[0065] The pre-compensation vehicular velocity command value calculating section 505 calculates the compensated vehicular velocity command value V_c from the command value L' of the inter-vehicle distance through a filter expressed in an equation (9) of TABLE 3.

[0066] The filter in the equation (9) is represented by a product between an inverse of the transfer function from the vehicular velocity command value V* to the actual inter-vehicle distance L and the control response characteristic of the target inter-vehicle distance as shown in the equation (7). It is noted that the transfer function from the vehicular velocity command value V* to the actual inter-vehicle distance L is represented by a product between the transfer function of the vehicular velocity control system having the input of the vehicular velocity command value V* and the output of the actual vehicular velocity V and the vehicular velocity V_f of the preceding vehicle, i.e., an integrator to integrate the relative velocity ΔV to derive the actual inter-vehicle distance L, as shown in Fig. 4.

Initial values when calculating the compensated vehicular velocity command value V_c corresponding to the equation (9) of TABLE 3 are the inter-vehicle distance L0 and the relative velocity ΔV0 which are derived immediately after the inter-vehicle distance sensor 1 has just been recognized the presence of the preceding vehicle.

\[V'' = V^* + V_c \] (10).

[0067] Then, the vehicular velocity control section 4 controls at least one or each of the throttle valve actuator 30, the automatic brake actuator 60, and the A/T gear ratio actuator 40 to make the actual vehicular velocity V equal to the vehicular velocity command value V**.

[0068] Figs. 5A through 10C show the results of simulations.

[0069] It is noted that since the results of simulations in the first embodiment indicate the same results of simulations in the second embodiment (as will be described later), the explanations of the case of the first embodiment will be omitted herein.

[0070] Figs. 5A, 5B, and 5C show timing charts indicating the inter-vehicle distance, the relative velocity, and the acceleration (a signed acceleration, namely, a variation rate of the vehicular velocity) when a comparative example of the automatic vehicular velocity control apparatus in each of the first and second embodiments is operated in a case where the vehicle has recognized the presence of the preceding vehicle and thereafter approached to the preceding vehicle up to the set (target) inter-vehicle distance as shown in Fig. 11.

[0071] Figs. 6A, 6B, and 6C show timing charts indicating the inter-vehicle distance, the relative velocity, and the acceleration when the automatic vehicular velocity control apparatus in the second embodiment is operated in the same case shown in Fig. 11.

[0072] In each of Figs. 5A through 6C, each solid line denotes a case of the vehicular velocity of 100 Km/h, the initial value of the inter-vehicle distance of 100 m, and the vehicular velocity of the preceding vehicle of 75 Km/h, the initial value of the inter-vehicle distance of 100 m, and the vehicular velocity of the preceding vehicle of 90 Km/h.

[0073] Since, in the comparative example, in a case where the relative velocity of the vehicle to the preceding vehicle is large, the abrupt deceleration is carried out immediately after the preceding vehicle has been recognized as shown
in the solid line even when the inter-vehicle distance is long, a negatively large acceleration (deceleration) occurs in
the vehicle so that the vehicular run disagreeable to the vehicular occupant occurs.

However, since, in the second embodiment, when the actual inter-vehicle distance is longer than the command
value thereof and the inter-vehicle distance deviation is large although the relative velocity value to the preceding
vehicle is large, such the damping factor and the specific angular frequency as to provide the inter-vehicle distance
control response which is slowly converged to the command value of the inter-vehicle distance can be provided by the
previously set maps thereon, the vehicle tends to be too approached to the preceding vehicle to some degree but a
degree of decrease in the relative velocity becomes moderate. However, the large deceleration is not generated but
a smooth start to follow up the preceding vehicle can be achieved without giving the vehicular run disagreeable to the
vehicular occupant(s). It is noted that in a case where the relative velocity to the preceding vehicle is reduced, the
similar simulation results as the comparative example are obtained.

Figs. 7A, 7B, and 7C show timing charts of the inter-vehicle distance, the relative velocity, and the acceleration
of the comparative example as the results of simulations when the other vehicle which has running at a different traffic
lane is interrupted into the traffic lane before the vehicle as the new preceding vehicle as shown in Fig. 12.

It is noted that the vehicular velocities of the vehicle and of the preceding vehicle were 90 Km/h and the
vehicular velocity of the interrupted new preceding vehicle was 30 m. Each solid line in Figs. 7A, 7B, and 7C denotes
the actual response and each broken line therein denotes the target response.

In the comparative example, when the inter-vehicle distance between the vehicle and the interrupt preceding
vehicle became abruptly short, the abrupt deceleration of the vehicle was carried out immediately after the
vehicular interruption occurred, and the large deceleration of the vehicle was developed even if the relative velocity
value to the interrupt new preceding vehicle was small so that the vehicular run disagreeable to the vehicular occupant
occurred.

In the second embodiment, however, since such the damping factor and the specific angular frequency as to
provide the control response of the inter-vehicle distance which is slowly converged to the command value of the
inter-vehicle distance by the previously set maps, the vehicle tends to be too approached to the preceding vehicle to
some degree but the degree of decrease in the relative velocity became moderate. In addition, no large deceleration
occurs and the smooth start to follow up the interrupt new preceding vehicle can be achieved without giving the disa-
greeable vehicular run to the vehicular occupant(s).

Figs. 9A, 9B, and 9C show timing charts representing the inter-vehicle distance, the relative velocity, and the
acceleration of the case of the comparative example as the results of simulations when the vehicle has made the traffic
lane change after the overtake vehicle as the new preceding vehicle to the adjacent overtaking traffic lane to overtake
the preceding vehicle (old preceding vehicle) as shown in Fig. 13.

It is noted that the vehicular velocity of the vehicle and the vehicular velocity of the preceding vehicle were
75 Km/h, the vehicular velocity of the new preceding vehicle which is running at the overtake traffic lane was 90 Km/
h, and the inter-vehicle distance from the vehicle to the preceding vehicle immediately after the vehicle has entered
the overtake traffic lane was 20 m.

In the comparative example, when the vehicle has made the traffic lane change to the adjacent lane before the
overtaking vehicle and the inter-vehicle distance to the overtaking vehicle as the new preceding vehicle becomes
abruptly short, the abrupt deceleration of the vehicle was carried out even if the relative velocity to the overtake vehicle
is small (low). Then, the large deceleration of the vehicle occurs so as to give the vehicular occupant(s) the disagreeable
vehicular run.

However, in the second embodiment, since in a case where the relative velocity is small even when the actual
inter-vehicle distance is shorter than the command value of the inter-vehicle distance and the deviation of the inter-
vehicle distance indicates negative, such the damping factor and the specific angular frequency as to provide the
control response characteristic as to be slowly converged into the command value of the inter-vehicle distance by
means of the retrieved previously set map data, the vehicle tended to be approached to the new preceding vehicle but
the degree of decrease in the relative velocity became moderate. Then, no large deceleration occurred and the smooth
start to follow up the (new) preceding vehicle can be achieved without giving the disagreeable vehicular run to the
vehicular occupant(s).

As described hereinafter, in each of the first and second embodiments, the damping factor and the specific
angular frequency in the inter-vehicle distance control system are previously stored as the maps (TABLE 1 and TABLE
2) in accordance with the inter-vehicle distance deviation and the relative velocity so as to provide the optimum inter-
vehicle distance control in various follow-up run situations as shown in Figs. 11 through 13. Then, the command value of the vehicular velocity based on the target inter-vehicle distance and the target relative velocity is calculated and the driving force, the braking force, and/or the gear ratio of the transmission is controlled in accordance with the command value of the vehicular velocity. Hence, in various follow-up run situations, the optimum inter-vehicle distance control response can be achieved and the smooth follow-up run to the preceding vehicle can be started without the abrupt deceleration.

[0086] In addition, in the second embodiment, the response characteristic can be improved without sacrifice of the stability in the inter-vehicle distance control system.

[0087] In the second embodiment, the follow-up run control according to the present invention is applicable to the various follow-up run situations shown in Figs. 11, 12, and 13.

[0088] However, the follow-up run control according to the present invention is applicable to the other situations than those shown in Figs. 11 to 13.

[0089] It is noted that the hardware structure of the second embodiment is the same as in the first embodiment shown in Figs. 1A and 1B.

(Third Embodiment)

[0090] In each of the first and second preferred embodiments, the damping factor and to determine the response characteristic of the target inter-vehicle distance are set in accordance with the inter-vehicle distance deviation and the relative velocity. In a third embodiment of the automatic vehicular velocity control apparatus according to the present invention, the predetermined constants and (refer to the equation (8) described above) in the inter-vehicle distance feedback control system are set in accordance with the relative velocity to make the actual inter-vehicle distance equal to the target inter-vehicle distance . Then, the response characteristic in the inter-vehicle distance control system can be improved.

[0091] It is noted that the constants and in the inter-vehicle distance feedback control system are called gains, the gain by which the difference between the target inter-vehicle distance and the actual inter-vehicle distance , namely, the target inter-vehicle distance deviation multiplied is called the first gain and the gain by which the difference between the target relative velocity and the actual relative velocity is multiplied is called the second gain.

[0092] In the situation wherein the vehicle follow-up the preceding vehicle whose relative velocity value to the vehicle is small (low) as shown in Figs. 12 and 13, the vehicle is decelerated with the large degree of deceleration, Increasing a follow-up capability of the actual inter-vehicle distance to the target inter-vehicle distance .

[0093] At this time, the vehicular run disagreeable to the vehicular occupant(s) is given. It is, however in this case, desirable to widen the inter-vehicle distance but to slowly decrease the vehicular velocity. To achieve this, it is necessary to reduce the first gain by which the target inter-vehicle distance deviation in the inter-vehicle distance feedback control system is multiplied and to increase the second gain by which the target relative velocity deviation is multiplied. Hence, the response characteristic of the inter-vehicle distance feedback control system becomes slow.

[0094] On the other hand, in such a follow-up run situation as to follow up the preceding vehicle whose relative velocity is large (this means that the velocity of the preceding vehicle is lower than that of the vehicle), it is desirable for the vehicle to reach to the target inter-vehicle distance from the present actual inter-vehicle distance as quickly as possible as shown in Fig. 11. Hence, in such a situation as described above, the first gain by which the target inter-vehicle deviation multiplied is increased but the second gain by which the target relative velocity deviation is multiplied is reduced.

[0095] With the response characteristic in the inter-vehicle distance feedback control system increased, thus, the follow-up characteristic of the actual inter-vehicle distance to the target inter-vehicle distance is required to be increased.

[0096] In the third embodiment, the first and second gains and in the inter-vehicle distance feedback control system are set in accordance with the relative velocity of the vehicle to the preceding vehicle to achieve the optimum inter-vehicle distance control response to start the smooth follow-up run to the preceding vehicle in spite of the magnitude of the relative velocity .

[0097] Fig. 14 shows the functional block diagram of the automatic vehicular velocity control apparatus in the third embodiment according to the present invention.

[0098] The preceding vehicle follow-up run controller 5 functionally includes the inter-vehicle distance command value calculating section 801, the target inter-vehicle distance calculating section 802, the gain determining section 803, and the vehicular velocity command value calculating section 804. The preceding vehicle follow-up run controller 8 receives the inter-vehicle distance L and the relative velocity ΔV from the inter-vehicle distance sensor 1 and the vehicular velocity V from the vehicular velocity sensor 2.
If the preceding vehicle cannot be recognized by means of the inter-vehicle distance sensor 1, the vehicular velocity set as the target vehicle speed is outputted to the vehicular velocity control section 4 as the command value \(V^*(t) \) of the vehicular velocity.

The inter-vehicle distance command value calculating section 801 calculates the command value of the inter-vehicle distance in the following equation (11) on the basis of the vehicular velocity \(V(t) \) and the relative velocity to the preceding vehicle \(\Delta V(t) \) if the preceding vehicle is recognized by means of the inter-vehicle distance sensor 1.

\[
L^*(t) = a \left(V(t) + \Delta V(t) \right) + Lof \tag{11A}
\]

\[
V(t) + \Delta V(t) = V(t) \tag{11B}
\]

In the equations (11A) and (11B), \(V(t) \) denotes the vehicular velocity of the preceding vehicle. It is noted that the command value of the inter-vehicle distance \(L^*(t) \) may be derived in accordance with the following equation (12) on the basis of only the vehicular velocity \(V(t) \) as follows:

\[
L^*(t) = a' V(t) + Lo' \tag{12}
\]

The target inter-vehicle distance calculating section 802 derives the target inter-vehicle distance \(L_T(t) \) and the target relative velocity \(\Delta V_T(t) \) in accordance with the filter processing of an equation (13) of TABLE 4.

In either case, a designer sets an arbitrary value therefor.

If the Laplace transform for the evolved equation of (13) is carried out, an equation (14) of TABLE 4 is carried out.

The equation (14) of TABLE 4 is the transfer function from the command value \(L^*(t) \) of the inter-vehicle distance to the target inter-vehicle distance \(L_T(t) \) and is expressed in the second-order equation.

The gain determining section 803 determines the first gain \(f_L \) by which the target inter-vehicle distance deviation \(\Delta L(t) \) in the inter-vehicle distance feedback control system is multiplied and the second gain \(f_v \) by which the target relative velocity deviation \(\Delta V_T(t) \) is multiplied according to the relative velocity \(\Delta V(t) \).

First, with the relative velocity \(\Delta V(t) \) as a parameter, the specific angular frequency \(\omega_C \) and the damping coefficient \(\zeta_C \) which are previously stored in the maps are derived. The specific angular frequency \(\omega_C \) and the damping factor \(\zeta_C \) are the parameters to determine the response characteristic of the inter-vehicle distance feedback control system.

Fig. 14 shows an example of the map representing the specific angular frequency \(\omega_C \). Fig. 15 shows the example of the damping coefficient.

Next, the first gain \(f_L \) and the second gain \(f_v \) to calculate the command value \(V^*(t) \) of the vehicular velocity are calculated on the basis of the specific angular velocity \(\omega_C \) and the damping coefficient \(\zeta_C \) as shown in equations (15A) and (15B):

\[
f_L = \frac{\omega_C^2}{\omega_n V} \tag{15A}
\]

and

\[
f_v = 1 - 2\zeta_C\omega_C/\omega_n V \tag{15B}
\]

In the equation (15A), \(\omega_n V \) denotes the specific angular frequency in the inter-vehicle distance control system so as to make the detected value of the vehicular velocity (actual vehicular velocity) \(V(t) \) equal to the command value \(V^*(t) \) of the vehicular velocity. The first gain \(f_L \) is proportional to a square \(\omega_C \) of the specific angular frequency in the inter-vehicle distance feedback control system and the second gain \(f_v \) is proportional to the specific angular frequency \(\omega_C \). Hence, when the relative velocity \(\Delta V(t) \) is varied, the first gain \(f_L \) is largely varied than the second gain \(f_v \).
The vehicular velocity command value calculating section 804 calculates the command value $V^*(t)$ of the vehicular velocity to make the relative velocity $\Delta V(t)$ equal to the target relative velocity $\Delta V^*(t)$ equal to the target relative velocity $V_T(t)$ and simultaneously to make the inter-vehicle distance $L(t)$ equal to the target inter-vehicle distance $L_T(t)$. That is to say, the first gain f_L and the second gain f_v determined by the gain determining section 803 according to the relative velocity $\Delta V(t)$ are used to calculate the command value of the vehicular velocity in accordance with an equation (16).

$$V^*(t) = \{V(t) + \Delta V(t)\} - \{f_v(\Delta V_T(t) - \Delta V(t)) +

f_L(L_T(t) - L(t))\} = \{V(t) + \Delta V(t)\} - \{f_v(\Delta V_T(t) - \Delta V(t)) +

f_L(L_T(t) - L(t))\}$$

The vehicular velocity control section 4 is the same as that described in each previous embodiment, namely, adjustably controls at least one or each of the throttle actuator 30, the automatic actuator 60, and/or the A/T gear ratio actuator 60 in order that the actual vehicular velocity $V(t)$ of the vehicular velocity to make the relative velocity $\Delta V(t)$ is made equal to the command value $V^*(t)$ of the vehicular velocity.

As appreciated from the equation (15), as the specific angular frequency ω_c in the inter-vehicle distance feedback control system becomes large, the first gain f_L by which the target inter-vehicle distance deviation $(L_T(t) - L(t))$ in the equation (16) is multiplied becomes large and the second gain by which the target relative velocity deviation $(\Delta V_T(t) - \Delta V(t))$ is multiplied becomes small. Since the specific angular frequency ω_c is set to be a larger value as the relative velocity $\Delta V(t)$ becomes large as shown in Fig. 15, the first gain f_L becomes large but the second gain f_v becomes small as the relative velocity $\Delta V(t)$ becomes large.

Hence, in the situation where the vehicle is approaching to the preceding vehicle whose relative velocity $\Delta V(t)$ is high (large) as shown in Fig. 11, the target inter-vehicle distance deviation $(L_T(t) - L(t))$ is feedback to a large degree and the target relative velocity deviation $(L_T(t) - L(t))$ is feedback to a small degree.

In other words, even if the target inter-vehicle distance deviation $(L_T(t) - L(t))$ is small, the command value $V^*(t)$ of the vehicular velocity is largely varied so that the response characteristic in the inter-vehicle distance control system becomes fast.

At this time, in addition, the command value $V^*(t)$ of the vehicular velocity is not largely varied even if the target relative velocity deviation $(\Delta V_T(t) - \Delta V(t))$ is large. No abrupt deceleration is carried out even if the relative velocity $\Delta V(t)$ is large (high).

Hence, in the situation of Fig. 11 where the vehicle follows up the preceding vehicle whose relative velocity is large, a slow deceleration of the vehicle but a quick arrival at the target inter-vehicle distance can be achieved to provide the feeling of relief for the vehicular occupant(s).

On the other hand, since a small value is set to be the specific angular velocity ω_c in the inter-vehicle distance feedback control system as the relative velocity $\Delta V(t)$ becomes small (low), the first gain f_L by which the target inter-vehicle distance deviation $(L_T(t) - L(t))$ in the equation (16) is multiplied becomes reduced but the second gain f_v by which the target relative velocity deviation $(\Delta V_T(t) - \Delta V(t))$ is multiplied becomes increased.

Hence, in the situation where the vehicle follows up the preceding vehicle whose relative velocity $\Delta V(t)$ is small as shown in Figs. 12 and 13, the target inter-vehicle distance deviation $(L_T(t) - L(t))$ is feedback to a small degree in the calculation of the command value $V^*(t)$ in the equation (16) and the target relative velocity deviation $(\Delta V_T(t) - \Delta V(t))$ is feedback to a large degree.

In other words, although the target inter-vehicle distance deviation $(L_T(t) - L(t))$ is large, the command value $V^*(t)$ is not largely varied and the response characteristic in the distance feedback control system becomes slow.

It is noted that, at this time, even if the target relative velocity deviation $(\Delta V_T(t) - \Delta V(t))$ is largely feedback, the relative velocity $\Delta V(t)$ itself is so small that the command value $V^*(t)$ of the vehicular velocity is not so largely varied and the abrupt deceleration is not carried out. Hence, in the situation where the vehicle follows up the preceding vehicle whose relative velocity $\Delta V(t)$ is small, no abrupt deceleration is carried out and the inter-vehicle distance can slowly be expanded.

In addition, such the abrupt deceleration as to give the vehicular run disagreeable to the vehicular occupant(s) in the case of the comparative example does not occur.

It is noted that the hardware structure of the automatic vehicular control apparatus in the third embodiment is the same as that shown in Figs. 1A and 1B.

(Fourth Embodiment)
In addition, if the response in the inter-vehicle distance control system is made slow with the specific angular
frequency, the relative velocity, and the accelerations in the automatic vehicular velocity control apparatus in either of the first or the second embodiment when the specific angular frequency \(\omega_c \) was lowered.

Thus, the inter-vehicle distance feedback control system can improve the response characteristic without sacrifice of the stability.

Fig. 17A shows the functional block diagram of the automatic vehicular velocity control apparatus in the fourth embodiment.

It is noted that the same reference numerals shown in Fig. 17A as those in Fig. 14 correspond to like elements in the third embodiment shown in Fig. 14 and the detailed explanations thereof are omitted herein.

The preceding vehicle follow-up run controller 800A shown in Fig. 17A includes the pre-compensated vehicular velocity command calculating section 805 and the corrected vehicular velocity command value calculating section 806.

The pre-compensated vehicular velocity command value calculating section 805 calculates the compensated vehicular velocity command value \(V_c \) by carrying out the filtering process of an equation (17) of TABLE 4.

The filter expressed in the equation (17) of TABLE 4 is represented by the product between the inverse of the transfer function from the vehicular velocity command value \(V^*(t) \) to the actual inter-vehicle distance \(L(t) \) and the responsive characteristic of the target inter-vehicle distance \(L_T(t) \) shown in the equation (14).

It is noted that the transfer function from the command value \(V^*(t) \) of the vehicular velocity up to the actual inter-vehicle distance \(L(t) \) is represented by the product between the transfer function \(G_v(s) \) (refer to the equation (1)) in the vehicular velocity control system into which the command value \(V^*(t) \) of the vehicular velocity is inputted and from which the actual vehicular velocity \(V(t) \) is outputted and the difference between the actual vehicular velocity \(V_T(t) \) of the preceding vehicle, i.e., the integrator to integrate the relative velocity to achieve the actual inter-vehicle distance \(L(t) \). It is noted that the initial values to calculate the actual inter-vehicle distance \(L(t) \) are the inter-vehicle distance \(L_0 \) and the relative velocity \(\Delta V_0 \) immediately after the vehicle has just been recognized the preceding vehicle.

The corrected vehicular velocity command value calculating section 806 adds the compensated vehicular velocity command value \(V^*(t) \) calculated in the inter-vehicle distance feedback control system to derive the corrected command value \(V^{**}(t) \) of the vehicular velocity.

\[
V^{**}(t) = V_T(t) - V^*(t) - V_c
\]

The vehicular velocity control section 4 adjustably controls at least one of the throttle actuator 30, the automatic brake actuator 80, the A/T gear ratio actuator 70 to make the actual vehicular velocity equal to the corrected command value \(V^{**}(t) \).

Figs. 18A, 18B, 18C, 18D, 19A, 19B, 19C, 19D, 20A, 20B, 20C, and 20D show the results of simulations in a case where the vehicle whose vehicular velocity was \(V = 90 \text{Km/h} \), the vehicular velocity \(V_T \) of the preceding vehicle was 60 Km/h, and the vehicle has recognized the presence of the preceding vehicle at the inter-vehicle distance of 120 m, and the vehicle has started to follow up the preceding vehicle.

Figs. 18A through 18D show the results of simulations of the inter-vehicle distance, the vehicular velocity, the relative velocity, and the accelerations in the automatic vehicular velocity control apparatus in either of the first or the second embodiment when the specific angular frequency \(\omega_c \) was lowered.

Figs. 19A through 19D show those results of simulations thereof in a case where the specific angular frequency is lowered.

Figs. 20A through 20D show those results of simulations thereof in each of the third and fourth embodiments. In Figs. 18A through 20D, each solid line denotes the target value and the broken line denotes the actual value.

In a case wherein the vehicle follows up the preceding vehicle whose relative velocity value \(\Delta V(t) \) is large, the response in the inter-vehicle distance control system is quickened with the specific angular frequency in each of the first and second embodiments increased.

As shown in Figs. 18A through 18D, the large variation in the deceleration occurs after the preceding vehicle follow-up run start although the actual inter-vehicle distance \(L(t) \) is made coincident with the target inter-vehicle distance \(L_T(t) \).

In addition, if the response in the inter-vehicle distance control system is made slow with the specific angular frequency, the relative velocity, and the accelerations in the automatic vehicular velocity control apparatus in either of the first or the second embodiment when the specific angular frequency \(\omega_c \) was lowered.

The corrected vehicular velocity command value calculating section 806 adds the compensated vehicular velocity command value \(V^*(t) \) calculated in the inter-vehicle distance feedback control system to derive the corrected command value \(V^{**}(t) \) of the vehicular velocity.
frequency lowered in each of the first and second embodiments, the variation in the deceleration becomes moderate as shown in Figs. 19A through 19D but the actual inter-vehicle distance \(L(t) \) largely overshoot the target inter-vehicle distance \(L_T(t) \). This gives the vehicular occupant(s) a feel of anxiety.

[0145] However, in each of the third and fourth embodiments, even if the vehicle follows up the preceding vehicle whose relative velocity \(\Delta V(t) \) is large (high), the actual vehicular velocity \(L(t) \) is varied in such a manner as to be made substantially coincident with the target inter-vehicle distance \(L_T(t) \) as shown in Figs. 20A through 20D and no remarkable variation in the acceleration (deceleration) occurs after the preceding vehicle follow-up run start.

[0146] Figs. 21A, 21B, 21C, 21D, 22A, 22B, 22C, 22D, 23A, 23B, 23C, and 23D show the results of the simulations when the preceding vehicle whose relative velocity was \(\Delta V=60 \text{ Km/h} \) was recognized at the inter-vehicle distance of 70 m during the vehicular run at \(V=74 \text{ Km/h} \).

[0147] Figs. 21A through 21D show the results of simulations when the specific angular frequency in the inter-vehicle distance feedback control system in each of the first and second preferred embodiments is increased.

[0148] Figs. 22A through 22D show the results of simulations when the specific angular frequency in the inter-vehicle distance feedback control system in each of the first and second preferred embodiments is lowered.

[0149] Figs. 23A through 23D show the results of simulations when each of the third and fourth embodiments is operated.

[0150] In Figs. 21A through 23D, the solid line denotes the target value and the broken line denotes the actual value.

[0151] In a case where the vehicle follows up the preceding vehicle whose relative velocity is small (low), the response in the inter-vehicle distance control system is quickened with the specific angular frequency increased in either of the first or second embodiment. At this time, although the actual inter-vehicle distance \(L(t) \) is varied in such a manner as to be made substantially coincident with the target inter-vehicle distance \(L_T(t) \) as shown in Figs. 21A through 21D but the large deceleration variation occurs after the follow-up run start.

[0152] It is noted that in the case where the response in the inter-vehicle distance control system is made slow with the specific angular frequency in either of the first or second embodiment lowered, the actual inter-vehicle distance \(L(t) \) is varied in such a manner as to be made substantially coincident with the target inter-vehicle distance \(L_T(t) \) and moderate variation in the deceleration occurs.

[0153] It is noted that in a case where the response characteristic in the inter-vehicle distance control system is made slow with the specific angular frequency increased and with the response in the inter-vehicle distance control system quickened in each of the first and second preferred embodiments, the actual inter-vehicle distance \(L(t) \) is varied in such a manner as to be substantially made coincident with the target inter-vehicle distance \(L_T(t) \) and the variation in the deceleration becomes moderate.

[0154] In a case where the vehicle follows up the preceding vehicle whose relative velocity \(\Delta V(t) \) is small (low) in each of the third and fourth preferred embodiments, the actual inter-vehicle distance \(L(t) \) is varied in such a manner as to be substantially made coincident with the target inter-vehicle distance \(L_T(t) \) and no large variation in the deceleration occurs after the start of the follow-up run.

[0155] As described above, since the first gain \(f_L \) by which the target inter-vehicle distance deviation \((L_T(t) - L(t)) \) in the inter-vehicle distance feedback control system is multiplied and the second gain \(f_v \) by which the target relative velocity deviation \((\Delta V_T(t) - \Delta V(t)) \) in the inter-vehicle distance feedback control system is multiplied are set in accordance with the relative velocity \(\Delta V(t) \), the optimum inter-vehicle control response characteristic can be achieved in various preceding vehicle follow-up run situations. No large variation occurs after the start of the preceding vehicle follow-up run.

[0156] In addition, since the first gain \(f_L \) by which the target inter-vehicle distance deviation \((L_T(t) - L(t)) \) is multiplied is increased, the response in the inter-vehicle distance control system becomes fast, the follow-up capability of the actual inter-vehicle distance to the target inter-vehicle distance LT(T) can be raised.

[0157] In a case where the vehicle follows up the preceding vehicle whose relative velocity \(\Delta V(t) \) is large, a quick arrival to the target inter-vehicle distance \(\Delta V_T(t) \) can be achieved and the feeling of the disburden can be given to the vehicular occupant(s).

[0158] In addition, in the automatic vehicular velocity control apparatus according to the present invention, the response characteristic can be increased without sacrifice of the stability in the inter-vehicle distance feedback control system.

[0159] It is noted that since, in each of the third and fourth embodiments, the first gain \(f_L \) by which the target inter-vehicle distance feedback control system is multiplied and the second gain \(f_v \) by which the target relative velocity deviation \((\Delta V_T(t) - \Delta V(t)) \) in the above-described control system is multiplied are set in accordance with the relative velocity \(\Delta V(t) \).

[0160] Only the first gain \(f_L \) by which the target inter-vehicle distance deviation \((L_T(t) - L(t)) \) in the inter-vehicle distance feedback control system may be set in accordance with the relative velocity \(\Delta V(t) \) and the command value \(V'(t) \) of the vehicular velocity may be calculated by subtracting the target inter-vehicle distance deviation \(f_L (L_T(t) - L(t)) \) multiplied by the first gain \(f_L \) from the vehicular velocity of the preceding vehicle \(V_T(t) = V(t) + \Delta V(t) \).

[0161] Fig. 17B shows an alternative of the fourth preferred embodiment of the automatic vehicular velocity control.
apparatus according to the present invention.

[0162] As shown in Fig. 17B, the coefficients determining section 502 corresponds to the maps shown in TABLE 1 and TABLE 2 and shown in Fig. 3 and the target inter-vehicle distance calculating section 810 having the transfer function expressed as \(\omega_M^2(s^2+2\zeta_M\omega_M s+\omega_M^2) \) derives the target inter-vehicle distance \(L^* \) (or \(L_T \)) and the target relative velocity \(\Delta V^* \) (or \(\Delta V_T \)).

[0163] The vehicular velocity command value calculating section 820 includes: a first subtractor \(D_L \) to subtract the target inter-vehicle distance \(L^* \) from the actual inter-vehicle distance \(L \) to derive the target inter-vehicle distance deviation \((L^*-L, \text{namely, } \{L_T(t)-L(t)\}) \); a second subtractor \(D_v \) to subtract the target relative velocity \(\Delta V^* \) from the actual relative velocity \(\Delta V \) to derive the target relative velocity deviation \((\Delta V^*-\Delta V, \text{namely, } \{\Delta V_T(t)-\Delta V(t)\}) \); a first multiplier having the first gain \(f_L \) by which the subtraction result is multiplied to derive \(f_L \times (L^*-L) \); a second multiplier having the second gain \(f_v \) by which the subtraction result is multiplied to derive \(f_v \times (\Delta V^* - \Delta V) \); a summer \(S_1 \) to add the vehicular velocity \(V \) to the relative velocity \(\Delta V \) for the calculation \((V + \Delta V) \); a first multiplicator \(S_2 \) to add the summed result from the summer \(S_1 \) to the compensated command value \(V_c \) to derive the target vehicular velocity \(V^* \); a second multiplicator \(S_3 \) to add the summed result from the first multiplicator \(S_2 \) to the compensated command value \(V_c \) and the inter-vehicle distance deviation \(\Delta L \). The pre-compensated vehicular velocity command value calculating section 850 has the transfer function as given by

\[
\frac{V^*}{V+\Delta V}\text{-}(f_L \times (L^*-L) + f_v \times (\Delta V^* - \Delta V))\text{ (this calculation is the same as the equation (16)) as the target vehicular velocity \(V^* \), and an adder \(S_2 \) to add the summed result from the summer \(S_1 \) to the compensated command value \(V_c \) of the vehicular velocity command value calculating section 850 to derive the final command value \(V^* \) of the vehicular velocity \(V^* - V_t - V^* - V_c \). The pre-compensated vehicular velocity command value calculating section 850 has the angular frequency \(\omega_M \) and the damping factor \(\zeta_M \) are derived from the maps 802 according to the relative velocity \(\Delta V \) and the inter-vehicle distance deviation \(\Delta L \).

[0164] Each of the numerical values of \(\omega_M \) and \(\zeta_M \) is previously distributed into the maps in accordance with the signed values of the inter-vehicle distance deviation \(\Delta L \) and of the relative velocity \(\Delta V \) of the vehicle to the preceding vehicle.

[0165] In Fig. 17B, the numerical values of each of the specific angular frequency \(\omega_M \) and the damping factor \(\zeta_M \) are previously stored in a first quadrant of the respective maps to cope with the situation (I mode) in which the relative velocity \(\Delta V \) is positively large and the inter-vehicle distance deviation \(\Delta L \) is positively large such that the vehicle has made the traffic lane change to overtake the old preceding vehicle and has followed up the new preceding vehicle whose relative velocity is large (as shown in Fig. 13), are previously stored in a second quadrant of the respective maps to cope with the situation (II mode) in which the relative velocity \(\Delta V \) is negatively small and the inter-vehicle distance deviation \(\Delta L \) is negatively small such that the other vehicle is interrupted into the same traffic lane as the vehicle as the interrupt vehicle (as shown in Fig. 12), and are previously stored in a fourth quadrant (III mode in which the relative velocity \(\Delta V \) is positive and the inter-vehicle distance deviation \(\Delta V \) is negative such that the new preceding vehicle whose relative velocity is large is recognized at the overtake traffic lane to which the vehicle has made the traffic lane change.

[0166] It is noted that a symbol of \(s \) denotes a Laplace transform operator and the relative velocity which is large means that the velocity of the preceding vehicle is lower than that of the vehicle and that the relative velocity is large in the negative direction (since \(\Delta V = V_t - V \)).

[0167] It is noted that an inter-vehicle distance (feedback) control system defined in the appended claims includes the inter-vehicle distance sensor 1; the vehicular velocity sensor 2; the inter-vehicle distance command calculating section 501 (801); the coefficients determining section 502; the target inter-vehicle distance calculating section 503 (802); and the vehicular velocity command value calculating section 504 (803, 804) in each of the first, second, third, and fourth embodiments and includes the sections 810 and 820 shown in Fig. 17B and the vehicular velocity control system includes the vehicular velocity control section 810 having the transfer function expressed as given by

\[
\frac{V^*}{V+\Delta V} = \frac{M}{\omega_M^2(s^2+2\zeta_M\omega_M s+\omega_M^2)}\text{ and TABLE 2 and shown in Fig. 3 and the target inter-vehicle distance calculating section 810 having the transfer function expressed as given by}

\[
M = \frac{1}{\omega_M^2} = \frac{1}{s^2+2\zeta_M\omega_M s+\omega_M^2}.
\]

It is also noted that the comparative example described in the specification is the previously proposed automatic vehicular velocity control apparatus described in the Japanese Patent Application Publication No. Heisei 11-59222 published on March 12, 1999.

[0169] Although the present invention has been described by reference to certain embodiments described above, the present invention is not limited to the embodiments described above. Modifications and variations of the embodiments will occur to those skilled in the art in light of the above teachings.

[0170] The scope of the present invention is defined with reference to the following claims.
TABLE 1

<table>
<thead>
<tr>
<th>Relative Velocity (km/h)</th>
<th>-101</th>
<th>-36</th>
<th>-2.7</th>
<th>0</th>
<th>7.2</th>
<th>10.8</th>
<th>14.4</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>km/s</td>
<td>-28</td>
<td>-10</td>
<td>-2</td>
<td>0</td>
<td>0.046</td>
<td>0.066</td>
<td>0.084</td>
<td>0.10</td>
</tr>
<tr>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
</tr>
<tr>
<td>0.800</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
</tr>
<tr>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
</tr>
<tr>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
</tr>
<tr>
<td>0.910</td>
<td>0.910</td>
<td>0.910</td>
<td>0.910</td>
<td>0.910</td>
<td>0.910</td>
<td>0.910</td>
<td>0.910</td>
<td>0.910</td>
</tr>
<tr>
<td>0.653</td>
<td>0.653</td>
<td>0.653</td>
<td>0.653</td>
<td>0.653</td>
<td>0.653</td>
<td>0.653</td>
<td>0.653</td>
<td>0.653</td>
</tr>
<tr>
<td>0.525</td>
<td>0.525</td>
<td>0.525</td>
<td>0.525</td>
<td>0.525</td>
<td>0.525</td>
<td>0.525</td>
<td>0.525</td>
<td>0.525</td>
</tr>
<tr>
<td>0.448</td>
<td>0.448</td>
<td>0.448</td>
<td>0.448</td>
<td>0.448</td>
<td>0.448</td>
<td>0.448</td>
<td>0.448</td>
<td>0.448</td>
</tr>
<tr>
<td>0.317</td>
<td>0.317</td>
<td>0.317</td>
<td>0.317</td>
<td>0.317</td>
<td>0.317</td>
<td>0.317</td>
<td>0.317</td>
<td>0.317</td>
</tr>
<tr>
<td>0.252</td>
<td>0.252</td>
<td>0.252</td>
<td>0.252</td>
<td>0.252</td>
<td>0.252</td>
<td>0.252</td>
<td>0.252</td>
<td>0.252</td>
</tr>
<tr>
<td>0.168</td>
<td>0.168</td>
<td>0.168</td>
<td>0.168</td>
<td>0.168</td>
<td>0.168</td>
<td>0.168</td>
<td>0.168</td>
<td>0.168</td>
</tr>
<tr>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
</tr>
<tr>
<td>0.101</td>
<td>0.101</td>
<td>0.101</td>
<td>0.101</td>
<td>0.101</td>
<td>0.101</td>
<td>0.101</td>
<td>0.101</td>
<td>0.101</td>
</tr>
<tr>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
<td>0.089</td>
</tr>
<tr>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
<td>0.076</td>
</tr>
<tr>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
</tr>
<tr>
<td>0.057</td>
<td>0.057</td>
<td>0.057</td>
<td>0.057</td>
<td>0.057</td>
<td>0.057</td>
<td>0.057</td>
<td>0.057</td>
<td>0.057</td>
</tr>
<tr>
<td>0.051</td>
<td>0.051</td>
<td>0.051</td>
<td>0.051</td>
<td>0.051</td>
<td>0.051</td>
<td>0.051</td>
<td>0.051</td>
<td>0.051</td>
</tr>
<tr>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
</tr>
<tr>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Notes:
- The table presents the inter-vehicle distance deviation (Actual Inter-Vehicle Distance — Target Inter-Vehicle Distance) in meters (m).
- The relative velocity is given in km/h and m/s.
- The values in the table represent the deviation for various relative velocities and distances.
TABLE 2

Inter-Vehicle Distance Deviation (Actual Inter-Vehicle Distance — Target Inter-Vehicle Distance) m

<table>
<thead>
<tr>
<th>Relative Velocity km/h</th>
<th>m/s</th>
<th>-20</th>
<th>-16</th>
<th>-12</th>
<th>-8</th>
<th>-4</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>-101</td>
<td>-28</td>
<td>0.130</td>
<td>0.120</td>
<td>0.110</td>
<td>0.100</td>
<td>0.110</td>
<td>0.110</td>
<td>0.070</td>
<td>0.130</td>
<td>0.140</td>
<td>0.150</td>
<td>0.160</td>
<td>0.170</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td></td>
</tr>
<tr>
<td>-86.4</td>
<td>-24</td>
<td>0.140</td>
<td>0.130</td>
<td>0.120</td>
<td>0.110</td>
<td>0.110</td>
<td>0.110</td>
<td>0.082</td>
<td>0.135</td>
<td>0.145</td>
<td>0.155</td>
<td>0.165</td>
<td>0.175</td>
<td>0.185</td>
<td>0.185</td>
<td>0.185</td>
<td></td>
</tr>
<tr>
<td>-72</td>
<td>-20</td>
<td>0.150</td>
<td>0.140</td>
<td>0.130</td>
<td>0.120</td>
<td>0.110</td>
<td>0.110</td>
<td>0.098</td>
<td>0.140</td>
<td>0.150</td>
<td>0.160</td>
<td>0.170</td>
<td>0.180</td>
<td>0.190</td>
<td>0.190</td>
<td>0.190</td>
<td></td>
</tr>
<tr>
<td>-57.6</td>
<td>-16</td>
<td>0.160</td>
<td>0.150</td>
<td>0.140</td>
<td>0.130</td>
<td>0.120</td>
<td>0.110</td>
<td>0.105</td>
<td>0.145</td>
<td>0.155</td>
<td>0.165</td>
<td>0.175</td>
<td>0.185</td>
<td>0.195</td>
<td>0.195</td>
<td>0.195</td>
<td></td>
</tr>
<tr>
<td>-43.2</td>
<td>-12</td>
<td>0.180</td>
<td>0.160</td>
<td>0.150</td>
<td>0.140</td>
<td>0.140</td>
<td>0.140</td>
<td>0.130</td>
<td>0.150</td>
<td>0.160</td>
<td>0.170</td>
<td>0.180</td>
<td>0.190</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>-36</td>
<td>-10</td>
<td>0.180</td>
<td>0.180</td>
<td>0.160</td>
<td>0.180</td>
<td>0.170</td>
<td>0.160</td>
<td>0.160</td>
<td>0.155</td>
<td>0.165</td>
<td>0.175</td>
<td>0.185</td>
<td>0.195</td>
<td>0.205</td>
<td>0.205</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td>-28.8</td>
<td>-8</td>
<td>0.190</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.165</td>
<td>0.175</td>
<td>0.185</td>
<td>0.195</td>
<td>0.205</td>
<td>0.215</td>
<td>0.215</td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td>-21.6</td>
<td>-6</td>
<td>0.200</td>
<td>0.190</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.165</td>
<td>0.175</td>
<td>0.185</td>
<td>0.195</td>
<td>0.205</td>
<td>0.215</td>
<td>0.215</td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td>-14.4</td>
<td>-4</td>
<td>0.210</td>
<td>0.200</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.170</td>
<td>0.180</td>
<td>0.190</td>
<td>0.200</td>
<td>0.210</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>-10.8</td>
<td>-3</td>
<td>0.210</td>
<td>0.210</td>
<td>0.190</td>
<td>0.190</td>
<td>0.185</td>
<td>0.180</td>
<td>0.180</td>
<td>0.175</td>
<td>0.185</td>
<td>0.195</td>
<td>0.205</td>
<td>0.215</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>-7.2</td>
<td>-2</td>
<td>0.220</td>
<td>0.210</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.190</td>
<td>0.200</td>
<td>0.210</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.230</td>
<td>0.220</td>
<td>0.210</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.190</td>
<td>0.200</td>
<td>0.210</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>2</td>
<td>0.230</td>
<td>0.220</td>
<td>0.210</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
<td>0.180</td>
<td>0.180</td>
<td>0.180</td>
<td>0.190</td>
<td>0.200</td>
<td>0.210</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>10.8</td>
<td>3</td>
<td>0.220</td>
<td>0.210</td>
<td>0.200</td>
<td>0.190</td>
<td>0.170</td>
<td>0.175</td>
<td>0.180</td>
<td>0.180</td>
<td>0.190</td>
<td>0.200</td>
<td>0.210</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>14.4</td>
<td>4</td>
<td>0.210</td>
<td>0.200</td>
<td>0.190</td>
<td>0.180</td>
<td>0.160</td>
<td>0.170</td>
<td>0.180</td>
<td>0.180</td>
<td>0.190</td>
<td>0.200</td>
<td>0.210</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>0.200</td>
<td>0.190</td>
<td>0.180</td>
<td>0.170</td>
<td>0.150</td>
<td>0.165</td>
<td>0.180</td>
<td>0.180</td>
<td>0.190</td>
<td>0.200</td>
<td>0.210</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td>0.220</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3

\[
G_v(s) = \frac{\omega_v}{s + \omega_v} \quad \cdots (1)
\]

\[
\frac{d}{dt} \begin{bmatrix} L_T(t) \\ \Delta V_T(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega_M^2 & -2\zeta_M\omega_M \end{bmatrix} \begin{bmatrix} L_T(t) \\ \Delta V_T(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_M^2 \end{bmatrix} L^*(t) \quad \cdots (6)
\]

\[
\frac{L_T(s)}{L^*(s)} = \frac{\omega_M^2}{s^2 + 2\zeta_M\omega_M s + \omega_M^2} \quad \cdots (7)
\]

\[
\frac{G_c(s)}{L^*(s)} = \frac{V_c(s)}{L^*(s)} = \frac{\omega_M^2 s(s + \omega_v)}{\omega_v(s^2 + 2\zeta_M\omega_M s + \omega_M^2)} \quad \cdots (9)
\]
TABLE 4

\[
\frac{d}{dt} \begin{bmatrix} L_T(t) \\ \Delta V_T(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega_M^2 & -2\zeta_M \omega_M \end{bmatrix} \begin{bmatrix} L_T(t) \\ \Delta V_T(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_M^2 \end{bmatrix} L^*(t) \quad \cdots (13)
\]

\[
\frac{L_T(s)}{L^*(s)} = \frac{\omega_M^2}{s^2 + 2\zeta_M \omega_M s + \omega_M^2} \quad \cdots (14)
\]

\[
G_c(s) = \frac{V_c(s)}{L^*(s)} = \frac{\omega_M^2 s(s + \omega_V)}{\omega_V (s^2 + 2\zeta_M \omega_M s + \omega_M^2)} \quad \cdots (17)
\]

Claims

1. An automatic vehicular velocity control apparatus for an automotive vehicle, comprising:

 - an inter-vehicle distance detector (1) to detect an inter-vehicle distance (L) from the vehicle to a preceding vehicle which is running ahead of the vehicle;
 - a vehicular velocity detector (2) to detect a vehicular velocity (V) of the vehicle;
 - a relative velocity detector (1) to detect a relative velocity (\(\Delta V\)) of the preceding vehicle to the vehicle;
 - an inter-vehicle distance command value calculator (501, 801) to calculate a command value (\(L^*\)) of the inter-vehicle distance; and
 - a vehicular velocity control section (4) to control at least one of a driving force of the vehicle (3), a braking force of the vehicle (6), and a gear ratio of a vehicular transmission in such a manner that a detected value (V) of the vehicular velocity is made equal to a command value (\(V^*\)) of the vehicular velocity,

 characterized in that the automatic vehicular velocity control apparatus further comprises:

 - a target inter-vehicle distance control response characteristic determining section (502, 503, 802, 803) to determine a control response characteristic of an inter-vehicle distance control system in response to a deviation (\(\Delta L\)) between the command value (\(L^*\)) of the inter-vehicle distance and a detected value (L) thereof and a detected value (\(\Delta V\)) of the relative velocity; and
 - a vehicular velocity command value calculator (504, 804) to calculate the command value (\(V^*\)) of the vehicular velocity on the basis of the determined control response characteristic of the inter-vehicle distance control system.

2. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 1, wherein the
target inter-vehicle distance control response characteristic determining section includes a memory (502) in which a plurality of control modes and control response characteristics corresponding to the respective control modes are previously stored on the basis of signs and magnitudes of the deviation and of the detected value (ΔV) of the relative velocity.

3. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 2, wherein the memory includes two-dimensional arrays (TABLE 1, TABLE 2), each two-dimensional array having a longitudinal axis of the deviation (ΔL) and a lateral axis of the detected value (ΔV) of the relative velocity each of which a coefficient to determine the control response characteristic is previously stored.

4. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 3, wherein each coefficient to determine the control response characteristic is a specific angular frequency (ω_M) and a damping factor (ζ_M) of the inter-vehicle distance control system.

5. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 4, wherein the inter-vehicle distance control system includes a target value calculator (503) to calculate a target value (L_T) of the inter-vehicle distance and a target value (ΔV_T) of the relative velocity from the inter-vehicle distance command value using a first filter prescribed by the specific angular frequency (ω_M) and the damping factor (ζ_M) selected from the memory and the vehicular velocity command value calculator calculates the vehicular velocity command value (V*) on the basis of the detected values of the inter-vehicle distance, the relative velocity (ΔV), and the vehicular velocity (V) and the target values of the inter-vehicle distance and the relative velocity.

6. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 5, wherein the first filter is a second order filter.

7. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 6, wherein a transfer function of the second order filter is expressed as ω_M^2/(s^2 + 2ζ_M ω_M s + ω_M^2), wherein s denotes a Laplace transform operator.

8. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 7, further comprising: a correction value calculator to calculate a correction value for the vehicular velocity command value (V*) calculated by the vehicular velocity command value calculator using a second filter having a transfer function prescribed by the transfer function of the first filter, an inverse of a transfer function of the vehicular velocity control system, and an integration element; and a vehicular velocity command value correction section to correct the vehicular velocity command value (V*) using the correction value calculated by the correction value calculator.

9. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 8, wherein the transfer function of the second filter is expressed as ω_M^2 s/(s + ω_V)/ω_V (s^2 + 2ζ_M ω_M s + ω_M^2), wherein ω_V denotes a break point angular frequency in a vehicular velocity control system constituted by the vehicular velocity control section.

10. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 9, wherein the correction value calculator is a feedforward system connected between the control response characteristic determinator and the vehicular velocity command value calculator.

11. An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 1, wherein the relative velocity detector comprises a differentiator to differentiate the detected value of the inter-vehicle distance.

12. An automatic vehicular velocity control apparatus for an automotive vehicle, comprising:

- an inter-vehicle distance detector (1) to detect an inter-vehicle distance (L) from the vehicle to a preceding vehicle which is running ahead of the vehicle;
- a vehicular velocity detector (2) to detect a vehicular velocity (V) of the vehicle;
- a relative velocity detector (1) to detect a relative velocity (ΔV) of the preceding vehicle to the vehicle;
- an inter-vehicle distance command value calculating section (501) to calculate a command value (L*) of an inter-vehicle distance; and
- a vehicular velocity control section (4) to control at least one of the driving force of the vehicle through an engine throttle valve (3), a braking force of a vehicle brake system (6), and a gear ratio of a vehicular transmission in
such a manner that the detected value V of the vehicular velocity is made equal to a command value (V^*) thereof,

characterized in that the automatic vehicular velocity control apparatus further comprises

- a target inter-vehicle distance calculating section (503) to determine a target value (L_T) of the inter-vehicle distance prescribing a variation of the inter-vehicle distance with time until the detected value (L) of the inter-vehicle distance has reached to the command value (L_T) of the inter-vehicle distance;
- a gain determining section (820) to determine a first gain (f_L) by which a deviation between the target value (L_T) of the inter-vehicle distance and the detected value (L) of the inter-vehicle distance is multiplied in accordance with the detected value (ΔV) of the relative velocity; and
- a vehicular velocity command value calculating section (504) to calculate the command value (V^*) of the vehicular velocity to make the detected value (V) of the inter-vehicle distance equal to the target value (L_T) of the inter-vehicle distance on the basis of the detected value (V) of the vehicular velocity, the detected value (ΔV) of the relative velocity, and the deviation between the target value (L_T) of the inter-vehicle distance and the detected value (L) thereof.

An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 13, wherein the target value determining section further determines a target value (ΔV_T) of the relative velocity prescribing the variation of the relative velocity (ΔV) with time until the detected value (L) of the inter-vehicle distance has reached to the command value (L^*) of the inter-vehicle distance, the gain determining section (803) further determines a second gain (f_V) by which another deviation between the target value (V_T) of the relative velocity and the detected value thereof is multiplied in accordance with the detected value (ΔV) of the relative velocity, and the vehicular velocity command value calculating section calculates the command value (V^*) of the vehicular velocity to make the detected value (V) of the vehicular velocity equal to the target value thereof on the basis of the deviation multiplied by the first gain and the other deviation multiplied by the second gain (f_L).

An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 14, further comprising a correction value calculating section (505) or to calculate a correction value (V_{c}) of the vehicular velocity from the inter-vehicle distance command value determined by the target value determining section using a filter having a transfer function including a transfer characteristic from the command value (L^*) of the inter-vehicle distance determined by the target value (L_T) determining section to the target value of the inter-vehicle distance and an inverse transfer characteristic of the transfer characteristic of the vehicular velocity control system to which an integration element is added and a vehicular velocity command value correction section to correct the command value of the vehicular velocity according to the corrected value of the vehicular velocity.

An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 13, wherein the gain determining section increases the first gain (f_L) as the detected value of the relative velocity becomes large.

An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 13, wherein the gain determining section determines the first gain (f_L) and the second gain (f_V) as follows: $f_L = \omega_c^2 / \omega_n v$, $f_V = 1 - 2\zeta\omega_c / \omega_n v$, wherein ω_c denotes a specific angular frequency, ζ denotes a damping factor, both of the specific angular frequency and the damping factor being parameters to determine a response characteristic of an inter-vehicle distance feedback control system and being stored in a memory of the automatic vehicular velocity control apparatus in forms of respective maps in accordance with the detected value of the relative velocity and $\omega_n v$ denotes a specific angular frequency of the vehicular velocity control system to make the detected value of the vehicular velocity equal to the command value thereof.

An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 16, wherein the vehicular velocity command value calculating section calculates the command value $V^*(t)$ of the vehicular velocity as follows: $V^*(t) = (V(t) + \Delta V(t)) \cdot [f_V \times \{\Delta V_T(t) \cdot \Delta V(t)\} + f_L \times (L_T(t) - L(t))]$, wherein $V(t)$ denotes the detected value of the vehicular velocity, $\Delta V(t)$ denotes the detected value of the relative velocity, f_V denotes the second gain, $\Delta V_T(t)$ denotes the target value of the relative velocity and $\Delta V(t)$ denotes the detected value of the relative velocity, f_L denotes the first gain, $L_T(t)$ denotes the target value of the inter-vehicle distance, and $L(t)$ denotes the detected value of the inter-vehicle distance.

An automatic vehicular velocity control apparatus for an automotive vehicle as claimed in claim 17, wherein the specific angular frequency ω_c in the inter-vehicle distance feedback control system is stored in the corresponding
one of the maps such that the value of the specific angular frequency ω_c is increased in proportion to the increase in a magnitude of the detected value of the relative velocity.

Patentansprüche

1. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für Automobilfahrzeuge, die aufweist:
 - einen Fahrzeugzwischenabstands-Detektor (1), um einen Fahrzeugzwischenabstand (L) vom Fahrzeug zu einem vorausgehenden Fahrzeug, das vor dem Fahrzeug fährt, festzustellen;
 - einen Fahrzeuggeschwindigkeits-Detektor (2), um eine Fahrzeuggeschwindigkeit (V) des Fahrzeugs festzustellen;
 - einen Relativgeschwindigkeits-Detektor (1), um eine Relativgeschwindigkeit (ΔV) des vorausgehenden Fahrzeugs zum Fahrzeug festzustellen;
 - einen Fahrzeugzwischenabstands-Sollwert-Rechner (501,801), um einen Sollwert (L*) eines Fahrzeugzwischenabstands zu berechnen; und
 - einen Fahrzeuggeschwindigkeits-Steuerung/Regelungsabschnitt (4), um zumindest eine Antriebskraft des Fahrzeugs (6) oder eine Gangstufe eines Fahrzeuggetriebes auf die Art und Weise zu steuern/zu regeln, dass ein festgestellter Wert (V) der Fahrzeuggeschwindigkeit einem Sollwert (V^*) der Fahrzeuggeschwindigkeit gleichgesetzt wird,

dadurch gekennzeichnet, dass die automatische Fahrzeuggeschwindigkeits-Steuerung-/Regelungseinrichtung ferner aufweist:

3. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 2, wobei der Speicher zweidimensionale Datenfelder (Tabelle 1, Tabelle 2) enthält, wobei jedes zweidimensionale Datenfeld eine Längsachse der Abweichung (\(\Delta L\)) und eine Querachse des festgestellten Werts (\(\Delta V\)) der Relativgeschwindigkeit aufweist, von welchen je ein Koeffizient zur Ermittlung der Steuerungs-/Regelungs-Reaktionscharakteristik vorgespeichert wurde.

4. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 3, wobei jeder Koeffizient zur Ermittlung der Steuerungs-/Regelungs-Reaktionscharakteristik eine spezifische Kreisfrequenz (ω_M) und ein Dämpfungsfaktor (ζ_M) des Fahrzeugzwischenabstand-Steuer-/Regelsystems ist.

5. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 4, wobei das Fahrzeugzwischenabstands-Steuerung/Regelungssystem einen Zielwertrechner (503) aufweist, um einen Zielwert (L*) des Fahrzeugzwischenabstands und einen Zielwert (\(\Delta V_T\)) der Relativgeschwindigkeit aus dem Fahrzeugzwischenabstand-Sollwert, unter Verwendung eines ersten, durch die spezifische Kreisfrequenz (ω_M) und dem aus dem Speicher gewählten Dämpfungsfaktor (ζ_M) vorgeschriebenen Filters, zu berechnen und wobei der Fahrzeuggeschwindigkeits-Sollwert-Rechner den Fahrzeuggeschwindigkeits-Sollwert (V^*) auf der Basis der festgestellten Werte des Fahrzeugzwischenabstands, der Relativgeschwindigkeit (\(\Delta V\)) und der Fahrzeuggeschwindigkeit (V) und den Zielwerten des Fahrzeugzwischenabstands und der Relativgeschwindigkeit errechnet.
6. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug, wie in Anspruch 5 beansprucht, wobei der erste Filter ein Filter zweiter Ordnung ist.

7. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 6, wobei eine Transferfunktion des Filters zweiter Ordnung ausgedrückt wird durch $\omega_M^2/(s^2 + 2\zeta_M s + \omega_M^2)$, wobei s einen Laplace-Transform-Operator bezeichnet.

8. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 7, die ferner aufweist:
 - einen Korrekturwert-Rechner, um einen Korrekturwert für den Fahrzeuggeschwindigkeits-Sollwert (V^*), der von einem Fahrzeuggeschwindigkeits-Sollwert-Regler unter Verwendung eines zweiten Filters, der eine Transferfunktion, die durch die Transfer-Funktion des ersten Filters vorgeschrieben ist, berechnet wird, eine Umkehrfunktion einer Transfer-Funktion des Fahrzeuggeschwindigkeits-/Steuerungs-/Regelungssystems und ein Integrationselement zu berechnen; und
 - einen Fahrzeuggeschwindigkeits-Sollwert-Korrekturabschnitt, um den Fahrzeuggeschwindigkeits-Sollwert (V^*), unter Verwendung des durch den Korrekturwert-Rechner berechneten Korrekturwerts, zu korrigieren.

9. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 8, wobei die Transferfunktion des zweiten Filters ausgedrückt wird durch $\omega_M^2 s(s + \omega_v)/\omega_v(s^2 + 2\zeta_M \omega_M s + \omega_M^2)$, wobei ω_v einen Kreisfrequenz-Schaltpunkt in einem Fahrzeuggeschwindigkeits-Steuerung-/Regelungssystem, das durch den Fahrzeuggeschwindigkeits-Steuerung-/Regelungsabschnitt gebildet wird, bezeichnet.

11. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 1, wobei der Relativgeschwindigkeits-Detektor einen Differenzierer aufweist, um den erfassten Wert des Fahrzeugzwischenabstands zu differenzieren.

12. Automatisches Fahrzeuggeschwindigkeits-Steuerung/Regelungssystem für ein Automobilfahrzeug, das aufweist:
 - einen Fahrzeugzwischenabstands-Detektor (1), um einen Fahrzeugzwischenabstand (L) vom Fahrzeug zu einem vorausgehenden Fahrzeug, das vor dem Fahrzeug fährt, zu erfassen;
 - einen Fahrzeuggeschwindigkeits-Detektor (2) um eine Fahrzeuggeschwindigkeit (V) des Fahrzeugs zu erfassen;
 - einen Relativgeschwindigkeits-Detektor (1), um eine Relativgeschwindigkeit (ΔV) des vorausgehenden Fahrzeugs zum Fahrzeug zu erfassen;
 - einen Fahrzeugzwischenabstands-Sollwert-Rechnerabschnitt (501), um einen Sollwert (L^*) eines Fahrzeugzwischenabstands zu berechnen; und
 - einen Fahrzeuggeschwindigkeits-Steuerung/Regelungsabschnitt, um zumindest eine Antriebskraft des Fahrzeugs über eine Motor-Drosselklappe (3), eine Bremskraft des Fahrzeug-Bremsystems (6) oder eine Gangstufe eines Fahrzeuggetriebes in der Art und Weise zu steuern/zu regeln, dass der erfasste Wert V der Fahrzeuggeschwindigkeit einem Sollwert (V^*) von dieser gleichgesetzt wird, gekennzeichnet dadurch, dass die automatische Fahrzeuggeschwindigkeits-Steuerung-/Regelungsvorrichtung ferner aufweist
 - einen Ziel-Fahrzeugzwischenabstands-Berechnungsabschnitt (503), um einen Zielwert (L_T) des Fahrzeugzwischenabstands zu erfassen, wobei eine Veränderung des Fahrzeugzwischenabstands mit einer Zeit, zu der der festgestellte Wert (L) den Zielwert (L_T) des Fahrzeugzwischenabstands erreicht hat, festgesetzt wird;
 - einen Steigerungs-Ermittlungs-Abschnitt (820), um eine erste Steigerung (t_L), mit dem eine Abweichung zwischen dem Sollwert (L) des Fahrzeugzwischenabstands und den erfassten Wert (L) des Fahrzeugzwischenabstands gemäß dem erfassten Wert (ΔV) der Relativgeschwindigkeit multipliziert wird; und
 - einen Fahrzeuggeschwindigkeits-Sollwert-Berechungsabschnitt (504), um den Sollwert (V^*) der Fahrzeuggeschwindigkeit zu berechnen, um den erfassten Wert (L) des Fahrzeugzwischenabstands dem Zielwert (L_T) des Fahrzeugzwischenabstands, auf der Basis des erfassten Werts (V) der Fahrzeuggeschwindigkeit, dem
erfassten Wert (ΔV) der Relativgeschwindigkeit und der Abweichung zwischen dem Zielwert (L_T) des Fahrzeugzwischenabstands und dessen erfassten Wert (L), gleichzusetzen.

13. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 12, wobei der Zielwert-Ermittlungsbereich ferner einen Zielwert (ΔV_T) der Relativgeschwindigkeit ermittelt, wobei die Veränderung der Relativgeschwindigkeit (ΔV) mit einer Zeit, bis zu der der festgestellte Wert (L) des Fahrzeugzwischenabstands den Sollwert (L^*) des Fahrzeugzwischenabstands erreicht hat, wobei der Steigerungs-Ermittlungsabschnitt (803) ferner eine zweite Steigerung (f_v) ermittelt, mit der eine andere Abweichung zwischen dem Zielwert der Relativgeschwindigkeit und dessen erfasstem Wert, gemäß dem erfassten Wert (ΔV) der Relativgeschwindigkeit multipliziert wird und der Fahrzeuggeschwindigkeits-Sollwert-Rechenabschnitt den Sollwert (V^*) der Fahrzeuggeschwindigkeit berechnet, um den erfassten Wert (V) der Fahrzeuggeschwindigkeit gleich dessen Zielwert, auf der Basis, der mit der ersten Steigerung multiplizierten Abweichung und der mit der zweiten Steigerung (f_v) multiplizierten anderen Abweichung, zu setzen.

15. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 14, wobei der Steigerungs-Ermittlungsbereich die erste Steigerung (f_L) anhebt, sowie der erfasste Wert der Relativgeschwindigkeit groß wird.

16. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung für ein Automobilfahrzeug gemäß Anspruch 13, wobei der Steigerungs-Ermittlungsbereich eine erste Steigerung (f_L) und die zweite Steigerung (f_v) wie folgt ermittelt: $f_L = \omega_c^2 / \omega_nv$; $f_v = 1 - 2\zeta_c \omega_c / \omega_nv$, wobei ω_c eine spezifische Kreisfrequenz bezeichnet, ζ_c einen Dämpfungsfaktor bezeichnet, wobei beide, die spezifische Kreisfrequenz und der Dämpfungsfaktor, Parameter sind, um eine Reaktionscharakteristik eines Fahrzeugzwischenabstand-Feedback-Steuerung/Regelungssystems zu ermitteln und die in einem Speicher der automatischen Fahrzeuggeschwindigkeits-Steuerung/Regelungsvorrichtung in Form von entsprechenden Kennfeldern gemäß dem erfassten Wert der Relativgeschwindigkeit gespeichert werden und ω_nv eine spezifische Kreisfrequenz des Fahrzeuggeschwindigkeits-Steuerung-/Regelungssystems bezeichnet, um den erfassten Wert der Fahrzeuggeschwindigkeit gleich dessen Sollwert zu setzen.

17. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungseinrichtung für ein Automobilfahrzeug gemäß Anspruch 16, wobei der Fahrzeuggeschwindigkeits-Sollwert-Berechnungsabschnitt den Sollwert $V^*(t)$ der Fahrzeuggeschwindigkeit wie folgt berechnet: $V^*(t) = (V(t) + \Delta V(t)) - f_v \times (\Delta V_T(t) - \Delta V(t)) + f_L \times (L_T(t) - L(t))$, wobei $V(t)$ den erfassten Wert der Fahrzeuggeschwindigkeit bezeichnet, $\Delta V(t)$ den erfassten Wert der Relativgeschwindigkeit bezeichnet, $\Delta V_T(t)$ den erfassten Wert der Relativgeschwindigkeit bezeichnet, f_v die zweite Steigerung bezeichnet, $\Delta V_T(t)$ den Sollwert der Relativgeschwindigkeit bezeichnet und $\Delta V(t)$ den erfassten Wert der Relativgeschwindigkeit bezeichnet, f_L die erste Steigerung bezeichnet, $L_T(t)$ den Zielwert des Fahrzeugzwischenabstands bezeichnet und $L(t)$ den erfassten Wert des Fahrzeugzwischenabstands bezeichnet.

18. Automatische Fahrzeuggeschwindigkeits-Steuerung/Regelungseinrichtung für ein Automobilfahrzeug gemäß Anspruch 17, wobei die spezifische Kreisfrequenz ω_c im Fahrzeugzwischenabstand-Feedback-Steuerung/Regelungssystem in einem der entsprechenden Kennfelder gespeichert wird, sodass der Wert der spezifischen Kreisfrequenz ω_c proportional zum Anstieg in einer Größe des erfassten Wertes der Relativgeschwindigkeit erhöht wird.

Revendications

1. Appareil de régulation automatique de vitesse d’un véhicule destiné à un véhicule automobile, comprenant :
 - un détecteur (1) de distance inter-véhicule destiné à détecter une distance (L) inter-véhicule depuis le véhicule
jusqu'à un véhicule précédent roulant devant le véhicule ;
- un détecteur de vitesse d'un véhicule (2) destiné à détecter une vitesse (V) de véhicule ;
- un détecteur de vitesse (1) relative destiné à détecter une vitesse relative (ΔV) du véhicule précédent jusqu'au véhicule ;
- un calculateur (501, 801) de valeur de commande de distance inter-véhicule destiné à calculer une valeur de commande (L*) de la distance inter-véhicule ; et
- une section de régulation (4) de vitesse de véhicule destiné à réguler au moins une parmi une poussée (3) du véhicule, une force de freinage (6) du véhicule, et un rapport de transmission d'une transmission de véhicule de telle manière qu'une valeur détectée (V) de la vitesse de véhicule est rapprochée pour égaliser une valeur de commande (V*) de la vitesse du véhicule,

caractérisé en ce que l'appareil de régulation automatique de vitesse d'un véhicule comprend en outre :
- une section (502, 503, 802, 803) de détermination de caractéristique de réponse de régulation cible d'une distance inter-véhicule destiné à déterminer une caractéristique de réponse de régulation d'un système de régulation de distance inter-véhicule en réponse à un écart (ΔL) entre la valeur de commande (L*) de la distance inter-véhicule et une valeur de (L) détectée de ce dernier et une valeur (ΔV) détectée de la vitesse relative ; et
- un calculateur (504, 804) de valeur de commande de vitesse de véhicule destiné à calculer la valeur de commande (V*) de la vitesse de véhicule sur base de la caractéristique de réponse de régulation déterminée du système de régulation de distance inter-véhicule.

2. Appareil de régulation automatique de vitesse d'un véhicule automobile selon la revendication 1, dans lequel la section de détermination de caractéristique de réponse de régulation cible d'une distance inter-véhicule inclut une mémoire (502) dans laquelle une pluralité de modes de régulation et de caractéristiques de réponses de régulation correspondant aux modes de régulation respectifs sont mémorisés au préalable sur la base de signes et d'amplitudes de l'écart et de la valeur (ΔV) détectée de la vitesse relative.

3. Appareil de régulation automatique de vitesse d'un véhicule automobile selon la revendication 2, dans lequel la mémoire inclut des tableaux bidimensionnels (TABLEAU 1, TABLEAU 2), chaque tableau bidimensionnel ayant un axe longitudinal de l'écart (ΔL) et un axe latéral de la valeur (ΔV) détectée de la vitesse relative dont chacun possède un coefficient destiné à déterminer la caractéristique de réponse de régulation mémorisée au préalable.

4. Appareil de régulation automatique de vitesse d'un véhicule automobile selon la revendication 3, dans lequel chaque coefficient destiné à déterminer la caractéristique de réponse de régulation est une fréquence angulaire (ωM) spécifique et un facteur d'amortissement (ζM) du système de régulation de distance inter-véhicule.

5. Appareil de régulation automatique de vitesse d'un véhicule automobile selon la revendication 4, dans lequel le système de régulation de distance inter-véhicule inclut un calculateur de valeur cible (503) destiné à calculer une valeur cible (LT) de la distance inter-véhicule et une valeur cible (ΔVT) de la vitesse relative grâce à la valeur de commande de distance inter-véhicule en utilisant un premier filtre prescrit par la fréquence angulaire (ωM) spécifique et le facteur d'amortissement (ζM) choisi dans la mémoire et le calculateur de valeur de commande de vitesse de véhicule calcule la vitesse (V*) de commande de vitesse de véhicule sur base des valeurs détectées de la distance inter-véhicule, la vitesse (ΔV) relative, et la vitesse (V) de véhicule et les valeurs cibles de la distance inter-véhicule et la vitesse relative.

6. Appareil de régulation automatique de vitesse d'un véhicule automobile selon la revendication 5, dans lequel le premier filtre est un filtre de second ordre.

7. Appareil de régulation automatique de vitesse d'un véhicule automobile selon la revendication 6, dans lequel une fonction de transfert du filtre de second ordre est exprimée par \(\frac{\omega_M^2}{s^2 + 2\zeta_M s + \omega_M^2} \), dans laquelle s représente un opérateur de transformation de Laplace.

8. Appareil de régulation automatique de vitesse d'un véhicule automobile selon la revendication 7, comprenant en outre : un calculateur de valeur de correction pour calculer une valeur de correction pour la valeur (V*) de commande de vitesse de véhicule calculée par le calculateur de valeur de commande de vitesse
de véhicule en utilisant un second filtre ayant une fonction de transfert prescrite par la fonction de transfert du premier filtre, une inverse d'une fonction de transfert du système de régulation de vitesse du véhicule, et un élément d'intégration ; et une section de correction de valeur de commande de vitesse de véhicule destiné à corriger la valeur \((V^*) \) de commande de vitesse de véhicule en utilisant la valeur de correction calculée par le calculateur de valeur de correction.

9. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile selon la revendication 8, dans lequel la fonction de transfert du second filtre est exprimée par
\[
\omega_M^2 s(s + \omega v)/(s^2 + 2\zeta_M \omega_M s + \omega_M^2),
\]
dans laquelle \(\omega_v \) représente une fréquence angulaire de point de freinage dans un système de régulation de vitesse de véhicule constitué par la section de régulation de vitesse de véhicule.

10. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile selon la revendication 9, dans lequel le déterminateur de valeur de correction est un système d'action anticipatrice relié entre le déterminateur de caractéristique de réponse de régulation et le calculateur de valeur de commande de vitesse de véhicule.

11. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile selon la revendication 1, dans lequel le détecteur de vitesse relative comprend un différenciateur destiné à différencier la valeur détectée de la distance inter-véhicule.

12. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile, comprenant :

- un détecteur (1) de distance inter-véhicule destiné à détecter une distance \((L) \) inter-véhicule depuis le véhicule jusqu'à un véhicule précédent roulant devant le véhicule ;
- un détecteur (2) de vitesse de véhicule destiné à détecter une vitesse \((V) \) de véhicule du véhicule ;
- un détecteur (1) de vitesse relative destiné à détecter une vitesse relative \((\Delta V) \) du véhicule précédent du véhicule ;
- une section de calcul de valeur de commande de distance inter-véhicule (501) destinée à calculer une valeur de commande \((L^*) \) d'une distance inter-véhicule ; et
- une section de régulation (4) de vitesse de véhicule destinée à réguler au moins une parmi une poussée du véhicule au travers d'un papillon des gaz (3), une force de freinage d'un système de freinage (6) d'un véhicule, et un rapport de transmission d'une transmission de véhicule de telle manière que la valeur \(V \) détectée de la vitesse de véhicule est approchée de manière à égaler une valeur \((V^*) \) de commande de cette dernière,

caractérisé en ce que l'appareil de régulation automatique de vitesse de véhicule comprend en outre

- une section de calcul (503) de distance cible inter-véhicule destinée à déterminer une valeur cible \((L_T) \) de la distance inter-véhicule prescrivant une variation de la distance inter-véhicule dans le temps jusqu'à ce que la valeur \(L \) détectée de la distance inter-véhicule ait atteint la valeur de commande \((L^*) \) de la distance inter-véhicule ;
- une section de détermination de gain (820) destinée à déterminer un premier gain \((f_L) \), par laquelle un écart entre la valeur cible \((L_T) \) de la distance inter-véhicule et la valeur \(L \) détectée de la distance inter-véhicule est multipliée selon la valeur détectée \((\Delta V) \) de la vitesse relative ; et

une section de calcul (504) de valeur de commande de vitesse de véhicule destinée à calculer la valeur \((V^*) \) de commande de la vitesse de véhicule destinée à rapprocher la valeur \(L \) détectée de la distance inter-véhicule pour la rendre égale à la valeur \((L_T) \) cible de la distance inter-véhicule sur la base de la valeur \(V \) détectée de la vitesse de véhicule, la valeur \((\Delta V) \) détectée de la vitesse relative, et l'écart entre la valeur \((L_T) \) cible de la distance inter-véhicule et la valeur \(L \) détectée de cette dernière.

13. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile selon la revendication 12, dans lequel la section de détermination de valeur cible détermine en outre une valeur cible \((\Delta V_T) \) de la vitesse relative prescrivant la variation de la vitesse relative \((\Delta V) \) dans le temps jusqu'à ce que la valeur \(L \) détectée de la distance inter-véhicule ait atteint la valeur de commande \((L^*) \) de la distance inter-véhicule, la section de détermination de gain (803) détermine en outre un second gain \((f_v) \) par lequel un autre écart entre la valeur cible de la vitesse relative et la valeur détectée de cette dernière est multiplié selon la valeur \((\Delta V) \) détectée de la vitesse relative, et la section de calcul de valeur de commande de vitesse de véhicule calcule la valeur \((V^*) \) de commande de la vitesse de véhicule destiné à rapprocher la valeur \(V \) détectée de la vitesse de véhicule pour l'égaliser à la valeur cible de cette dernière sur base de l'écart multiplié par le premier gain et l'autre écart multiplié par le second gain \((f_v) \).
14. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile selon la revendication 13, comprenant en outre une section de calcul (505) de valeur de correction ou pour calculer une valeur (Vc) de correction de la vitesse de véhicule à partir de la valeur de commande de distance inter-véhicule déterminée par la section de détermination de valeur cible en utilisant un filtre ayant une fonction de transfert incluant une caractéristique de transfert de la valeur (L*) de commande de distance inter-véhicule déterminée par la section de détermination de valeur cible (L(t)) jusqu'à la valeur cible de la distance inter-véhicule et une caractéristique de transfert inverse de la caractéristique de transfert du système de régulation de vitesse de véhicule à laquelle un élément d'intégration est ajouté et une section de correction de valeur de commande de vitesse de véhicule destiné à corriger la valeur de commande de la vitesse de véhicule selon la valeur corrigée de la vitesse de véhicule.

15. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile selon la revendication 14, dans lequel la section de détermination de gain accroît le premier gain (fL) lorsque la valeur détectée de la vitesse relative augmente.

16. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile selon la revendication 13, dans lequel la section de détermination de gain détermine le premier gain (fL) et le second gain (fv) comme suit : fL = ωc²/ωnv ; fv = 1 - 2ζcωc/ωnv, où ωc représente une fréquence angulaire spécifique, ζc représente un facteur d'amortissement, la fréquence angulaire spécifique et le facteur d'amortissement étant tous deux des paramètres destinés à déterminer une caractéristique de réponse d'un système de régulation de rétroaction de distance inter-véhicule et étant mémorisés dans une mémoire de l'appareil de régulation automatique de vitesse d'un véhicule sous la forme de mappes respectives selon la valeur détectée de la vitesse relative et ωnv représente une fréquence angulaire spécifique du système de contrôle de vitesse de véhicule afin d'apporter la valeur détectée de la vitesse de véhicule de manière à la rendre égale à la valeur de commande de cette dernière.

17. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile selon la revendication 16, dans lequel la section de calcul de valeur de commande de vitesse de véhicule calcule la valeur de commande V*(t) de la vitesse de véhicule comme suit : V*(t) = (V(t) + ΔV(t)) - [fv x {ΔVT(t) ΔV(t)} + fL x {LT(t) - L(t)}], dans laquelle V(t) représente la valeur détectée de la vitesse de véhicule, ΔVT(t) représente la valeur cible de la vitesse relative, ΔV(t) représente la valeur cible de la vitesse relative et ΔV(t) représente la valeur détectée de la vitesse relative, fL représente le premier gain, LT(t) représente la valeur cible de distance inter-véhicule, et L(t) représente la valeur détectée de la distance inter-véhicule.

18. Appareil de régulation automatique de vitesse d'un véhicule destiné à un véhicule automobile selon la revendication 17, dans lequel la fréquence angulaire ωc spécifique dans le système de contrôle de rétroaction de distance inter-véhicule est mémorisée dans l'une des mappes correspondantes de telle manière que la valeur de la fréquence angulaire ωc spécifique est augmentée en proportion de l'augmentation d'une grandeur de la valeur détectée de la vitesse relative.
FIG. 11

INTER-VEHICLE DISTANCE WHEN THE PRECEDING VEHICLE HAS BEEN RECOGNIZED

SET INTER-VEHICLE DISTANCE