(45) Date of publication and mention of the grant of the patent: 12.03.2003 Bulletin 2003/11

(21) Application number: 99115576.3

(22) Date of filing: 06.08.1999

(54) Rubber composition which contains anti-reversion material and tire with component thereof

Kautschukzusammensetzung die ein reversionsverhinderndes Mittel enthält und Reifen mit daraus hergestellter Komponente

Composition de caoutchouc contenant un agent anti-réversion et pneu comportant une telle composition

(84) Designated Contracting States: DE ES FR GB IT NL

(30) Priority: 17.08.1998 US 135144

(43) Date of publication of application: 23.02.2000 Bulletin 2000/08

(73) Proprietary: THE GOODYEAR TIRE & RUBBER COMPANY Akron, Ohio 44316-0001 (US)

(72) Inventors:
 • Blok, Edward John Wadsworth, Ohio 44281 (US)
 • Wideman, Lawson Gibson Hudson, Ohio 44236 (US)
 • Sandstrom, Harry Paul Tallmadge, Ohio 44278 (US)
 • Varner, Eugene John Barberton, Ohio 44203 (US)

(74) Representative: Leitz, Paul Goodyear Technical Center, Patent Department, Avenue Gordon Smith 7750 Colmar-Berg (LU)

(56) References cited:
 US-A- 5 696 188

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Field

[0001] The invention relates to a rubber composition which contains a tris (maleamic acid derivative) amine as an anti-reversion additive and to a tire having a component of such rubber composition.

Background

[0002] Rubber compositions are typically used for tire treads which may be optimized for various rubber composition properties to promote three tire properties; namely, traction, rolling resistance and treadwear.

[0003] In this regard, typically desirable physical properties for tire tread rubber compositions may include, for example, hardness, modulus, hysteresis as indicated by rebound properties, tangent delta (Tan. delta) at 0°C, and abrasion resistance as indicated by DIN abrasion values. Such physical properties are well known to those having skill in the rubber compounding art and, in general, are considered to be predictive of tire tread performance.

[0004] The phenomenon of reversion in the acceleration sulfur vulcanization of cis 1,4-polyisoprene (natural or synthetic) or other diene-based elastomers is undesirable. Reversion occurs when polysulfidic crosslinks deteriorate with time and temperature. Subsequently, this leads to a reduction in crosslink density and a deterioration of physical properties (lower modulus and higher hysteresis).

[0005] Accordingly, it remains desirable to utilize a reversion resistant additive in various rubber compositions.

[0006] In the description of this invention, the term "phr," where used herein, and according to conventional practice, refers to "parts of a respective material per 100 parts by weight of rubber or elastomer".

[0007] In the description of this invention, the terms "rubber" and "elastomer," if used herein, may be used interchangeably, unless otherwise prescribed. The terms "rubber composition," "compounded rubber" and "rubber compound," if used herein, are used interchangeably to refer to "rubber which has been blended or mixed with various ingredients and materials" and such terms are well known to those having skill in the rubber mixing or rubber compounding art.

Summary and Description of the Invention

[0008] In accordance with this invention, a rubber composition is provided which comprises (A) 100 parts by weight of at least one diene-based elastomer and (B) 0.5 to 10 phr of a tris(maleamic acid derivative) amine of the following formula I:

\[
\begin{align*}
H & \quad R' \quad R'' \quad O \\
I & \quad N\{-\text{alkylene-}N-C-C=\text{COH}\},
\end{align*}
\]

wherein the alkylene radical is a saturated hydrocarbon radical containing from one to 12, preferably from 1 to 4 carbon atoms, which may be linear or branched; R' and R'' may be the same or different radicals selected from hydrogen, alkyl radicals having from one to 6 carbon atoms, and halo radicals.

[0009] Preferably said alkylene radical is selected from the group consisting of methylene, ethylene, propylene, butylene or pentylene radicals.

[0010] Preferably, R' and R'' radicals are selected from hydrogen, methyl, chloro and bromo radicals.

[0011] More preferably R' and R'' are selected from hydrogen and methyl radicals.

[0012] Representative examples of tris (maleamic acid derivative) amines for this invention are, for example, adducts formed by reacting tris(2-aminoethyl)amine and maleic or citraconic anhydride to provide the corresponding tris (maleamic acid derivative) amine. Such adducts might be, for example, tris(citraconamic acid methyl) amine, tris (maleamic acid ethyl) amine, tris(citraconamic acid propyl) amine and the like.

[0013] A more preferred tris (maleamic acid derivative) amine is tris(2-citraconamic acid ethyl) amine.

[0014] In further accordance with this invention, a tire having a component, particularly a tread, of such rubber composition is provided.
Further Detailed Description

[0015] It is considered that this invention is particularly applicable where it is desired to endeavor to minimize reversion in rubber composition applications where such compositions are to be subjected to relatively high temperature use under dynamic working conditions. Such reversion may be evidenced by dynamic aging of various physical properties of the rubber composition usually resulting in a reduction of one or more desirable physical property values for the rubber composition such as, for example, modulus, rebound and/or hardness values.

[0016] The tris (maleamic acid derivative) amine for use in this invention, while its mechanism may not be completely understood, is believed to be an elastomer and filler interactive material in a manner to resist reversion of elastomer composition properties at elevated temperatures under dynamic working conditions.

[0017] In general, it is considered herein that a tris (maleamic acid derivative) amine may be synthesized, for example, by combining a tris (aminoalkyl) amine with an acid anhydride under suitable reaction conditions.

[0018] In this invention, the tris (maleamic acid derivative) amine has been observed to act somewhat as a rubber chemical which controls, or inhibits, reversion of rubber composition properties under conditions of elevated temperatures and dynamic conditions. This is considered herein to be particularly beneficial for rubber tire applications where heat build-up, and accompanying elevated temperatures under dynamic working conditions are present.

[0019] In the practice of this invention, as hereinbefore pointed out, the rubber composition is comprised of at least one diene-based elastomer, or rubber. Such elastomers are typically selected from homopolymers and copolymers of conjugated dienes and copolymers of conjugated diene(s) and vinyl aromatic monomers such as, for example, styrene and alpha-methylstyrene. Such dienes may, for example, be selected from isoprene and 1,3-butadiene and such vinyl aromatic monomers may be selected from styrene and alpha-methylstyrene. Such elastomer, or rubber, may be selected, for example, from at least one of cis 1,4-polysoprene rubber (natural or synthetic, and preferably natural rubber), 3,4-polysoprene rubber, styrene/butadiene copolymer rubbers, isoprene/butadiene copolymer rubbers, styrene/isoprene copolymer rubbers, styrene/isoprene/butadiene terpolymer rubbers, cis 1,4-polyisoprene rubber, trans 1,4-polybutadiene rubber (70-95 percent trans), low vinyl polybutadiene rubber (10-30 percent vinyl), high vinyl polybutadiene rubber (30-90 percent vinyl).

[0020] In one aspect, the rubber is preferably comprised of at least two diene-based rubbers. For example, a combination of two or more rubbers is preferred such as cis 1,4-polysoprene rubber (natural or synthetic, although natural is usually preferred), 3,4-polysoprene rubber, isoprene/butadiene copolymer rubber, styrene/isoprene/butadiene rubber, emulsion and solution polymerization derived styrene/butadiene rubbers cis 1,4-polyisoprene rubbers, medium vinyl polybutadiene rubbers (30-55 percent vinyl), high vinyl polybutadiene rubbers (55-90 percent vinyl) and emulsion polymerization prepared butadiene/acrylonitrile copolymers.

[0021] Such elastomers are intended to include tin-coupled and/or silica-coupled end functionalized organic solution polymerization prepared elastomers (ie: for example, amine and hydroxyl end functionalized elastomers) and, also lithium produced solution polymerization prepared elastomers containing units derived from isoprene, 1,3-butadiene and styrene which have been coupled with tin tetrachloride or silicon tetrachloride.

[0022] It is readily understood by those having skill in the art that the rubber composition would be compounded by methods generally known in the rubber compounding art, such as mixing the various sulfur-vulcanizable constituent rubbers with various commonly used additive materials such as, for example, curing aids, such as sulfur, activators, retarders and accelerators, processing additives, such as oils, resins including tackifying resins, coupling agent, and plasticizers, fillers, pigments, fatty acid, zinc oxide, waxes, antioxidants and antiozonants, peptizing agents and reinforcing materials such as, for example, carbon black. As known to those skilled in the art, depending on the intended use of the sulfur-vulcanizable and sulfur-vulcanized material (rubbers), the additives mentioned above are selected and commonly used in conventional amounts.

[0023] The composition of the present invention may contain conventional amounts of known rubber chemicals.

[0024] Typical amounts of tackifier resins, if used, may comprise 0.5 to 10 phr, usually 1 to 5 phr. Typical amounts of processing aids comprise 1 to 50 phr. Such processing aids can include, for example, aromatic, naphthenic, and/or paraffinic processing oils. Typical amounts of antioxidants comprise 1 to 5 phr. Representative antioxidants may be, for example, diphenyl-p-phenylenediamine and others such as, for example, those disclosed in The Vanderbitt Rubber Handbook (1978), pages 344-346. Typical amounts of antioxidants comprise 1 to 5 phr. Typical amounts of fatty acids, if used, which are usually comprised primarily of stearic acid, comprise 0.5 to 3 phr. Typical amounts of zinc oxide comprise 2 to 5 phr. Typical amounts of waxes comprise 1 to 5 phr. Often microcrystalline waxes are used. Typical amounts of peptizers comprise 0.1 to 1 phr. Typical peptizers may be, for example, pentachlorothiophenol and dibenzamidodiphenyl disulfide.

[0025] The vulcanization of the rubber composition is conducted in the presence of a sulfur-vulcanizing agent. Examples of suitable sulfur-vulcanizing agents include elemental sulfur (free sulfur) or sulfur-donating vulcanizing agents, for example, an amine disulfide, polymeric polysulfide or sulfur olefin adducts. Preferably, the sulfur-vulcanizing agent is elemental sulfur. As known to those skilled in the art, sulfur-vulcanizing agents are used in an amount ranging from
0.5 to 4 phr, or even, in some circumstances, up to 8 phr, with a range of from 1.5 to 2.5, sometimes from 2 to 2.5, being preferred.

Accelerators are used to control the time and/or temperature required for vulcanization and to improve the properties of the vulcanize. In one embodiment, a single accelerator system may be used, i.e., primary accelerator. Conventionally and preferably, a primary accelerator(s) is used in total amounts ranging from 0.5 to 4, preferably 0.8 to 2, phr. In another embodiment, combinations of a primary and a secondary accelerator might be used with the secondary accelerator being used in amounts of 0.05 to 5 phr in order to activate and to improve the properties of the vulcanize. Combinations of these accelerators might be expected to produce a synergistic effect on the final properties and are somewhat better than those produced by use of either accelerator alone. In addition, delayed action accelerators may be used which are not affected by normal processing temperatures but produce a satisfactory cure at ordinary vulcanization temperatures. Vulcanization retarders might also be used. Suitable types of accelerators that may be used in the present invention are amines, disulfides, guanidines, thioureas, thiazoles, thiurams, sulfenamides, thiocarbamates and xanthates. Preferably, the primary accelerator is a sulfenamide. If a second accelerator is used, the secondary accelerator is preferably a guanidine, dithiocarbamate or thiuram compound.

The presence and relative amounts of most of the above additives are not considered to be an aspect of the present invention which is more primarily directed to the utilization of the aforesaid anti-reversion compound.

The rubber composition may be and is preferably prepared by mixing the diene-based rubber, carbon blacks and other rubber compounding ingredients, exclusive of the rubber curatives, in at least one sequential mixing step with at least one mechanical mixer, usually referred to as "non-productive" mix stage(s), to a temperature in a range of 150°C to 180°C for one to 4 minutes, followed by a final mix stage in which the curatives, such as sulfur and accelerators, are added and mixed therewith for 1 to 4 minutes to a temperature within a range of 90°C to 125°C. The terms "non-productive" and "productive" mix stages are well known to those having skill in the rubber mixing art.

It is to be appreciated that the rubber composition is conventionally cooled to a temperature below 40°C between the aforesaid mix stages.

It is to be further appreciated that the aforesaid duration of time for the required temperature maintenance for the mixing process(es) during the non-productive mix stages can be accomplished, for example, by (i) adjusting the motor speed of the mixer, namely reducing the motor speed after the desired temperature of the rubber composition is reached, in a variable speed mixer or by (ii) utilizing two or more mix stages sufficient to satisfy the duration requirement for the aforesaid maximum mixing temperature maintenance.

Vulcanization of the rubber composition of the present invention is generally carried out at conventional temperatures ranging from 100°C to 200°C. Preferably, the vulcanization is conducted at temperatures ranging from 110°C to 180°C. Any of the usual vulcanization processes may be used such as heating in a press or mold, heating with superheated steam or hot air or in a salt bath.

Upon vulcanization of the sulfur-vulcanized composition, the rubber composition of this invention can be used for various purposes. For example, the sulfur-vulcanized rubber composition may be in the form of a tread for a pneumatic tire which is the subject of this invention. Such tires can be built, shaped, molded and cured by various methods which are known and will be readily apparent to those having skill in such art. As can be appreciated, the tire may be a passenger tire, aircraft tire, truck tire and the like. Preferably, the tire is a passenger tire. The tire may also be radial or bias, with a radial tire being preferred.

The invention may be better understood by reference to the following examples in which the parts and percentages are by weight unless otherwise indicated.

EXAMPLE I

A round bottom 3-liter flask was swept with nitrogen and charged with 49g (0.34 mole) of tris(2-aminoethyl)amine in 1500 ml of reagent acetone. The solution was stirred as 112g (1.01 mole) of citraconic anhydride in 500 ml of reagent acetone was added in a dropwise fashion over 1 ½ hours and the exothermic nature of the reaction was allowed to heat the reaction mixture as additional heat was added to cause it to reflux.

The reflux was continued for 3 hours and the acetone was distilled away under a reduced pressure of 29 inches of mercury at 50°C to yield 166 grams of a dark amber semi-solid which was shown by NMR analysis in CDCl₃ to be the tris citraconic acid derivative. One hundred grams of the semi-solid was dissolved in 100g of reagent acetone and added to 100g of N330 carbon black while stirring the mixture. The acetone was removed at 50°C under 29 inches of Hg vacuum to yield black friable granules of tris(2-citraconic acid ethyl)amine on carbon black in a weight ratio of 1/1.

EXAMPLE II

In this example, rubber compositions are prepared which contain a tris (maleamic acid derivative) amine
prepared by Example I. The rubber compositions are referred to herein as the Control (Cntrl) and Exp A.

[0037] All of the rubber compositions for this Example were prepared as a blend of emulsion polymerization prepared styrene/butadiene copolymer rubber, and cis 1,4-polybutadiene rubber.

[0038] The compositions were prepared by mixing the ingredients in several stages, namely, one non-productive stage (without the curatives) followed by a productive mix stage (for the curatives), then the resulting composition was cured under conditions of elevated pressure and temperature.

[0039] For the non-productive mixing stage, exclusive of the accelerator(s) and sulfur curatives which are mixed (added) in the final, productive mixing stage, the ingredients, including the elastomers, are mixed for four minutes to a temperature of 160°C. In a final productive mixing stage the curatives are mixed with the rubber composition (mixture) in a Banbury type mixer; namely, the accelerator(s) and sulfur to a maximum temperature of 110°C for three minutes.

[0040] The resulting rubber compositions were then Vulcanized at a temperature of 150°C for 18 minutes.

[0041] The following Table 1 relates to the ingredients used for the Control and Exp. A formulations.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Cntrl</th>
<th>Exp A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Productive Mix Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-SBR Rubber(^{1})</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Cis BR Rubber(^{2})</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Processing Oil/Aids(^{3})</td>
<td>47.55</td>
<td>47.55</td>
</tr>
<tr>
<td>Zinc Oxide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fatty Acid</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Antioxidant(^{4})</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Carbon Black (N299)(^{5})</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Tris amine(^{6})</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Productive Mix Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur</td>
<td>1.45</td>
<td>1.45</td>
</tr>
<tr>
<td>Accelerators(^{7})</td>
<td>1.50</td>
<td>1.50</td>
</tr>
</tbody>
</table>

1) Emulsion polymerization prepared styrene/butadiene copolymer rubber obtained as PLF 1712 from The Goodyear Tire & Rubber Company having a styrene content of 23.5 percent and a Tg of -55°C;
2) Cis 1,4-polybutadiene rubber obtained as BUDENE® 1254 a trademark of The Goodyear Tire & Rubber Company having a cis content of 98 percent; also contains 25 phr aromatic oil;
3) Aromatic rubber processing oil, wax, etc.;
4) Of the alkylaryl paraphenylene diamine type;
5) ISAF carbon black having an Iodine Number of 122 g/kg and a corresponding DBP Adsorption Number of 114 cc/100 gm;
6) a tris (maleamic acid derivative) amine from Example I herein;
7) Accelerators of the sulfenamide type.

[0042] The physical properties for the resulting vulcanized rubber compositions are shown in the following Table 2.

[0043] The various tests are considered herein to be well known to those having skill in such analytical art. A description of the anti-reversion test may be found in US-A- 5,736,611.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Control</th>
<th>Exp A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break-Strength, MPa</td>
<td>17.1</td>
<td>14.4</td>
</tr>
<tr>
<td>Elongation @ Break, %</td>
<td>653</td>
<td>663</td>
</tr>
<tr>
<td>300% Modulus, MPa</td>
<td>5.75</td>
<td>4.79</td>
</tr>
<tr>
<td>Hardness, RT</td>
<td>60.7</td>
<td>62.1</td>
</tr>
<tr>
<td>Hardness, 100°C</td>
<td>49</td>
<td>48.4</td>
</tr>
<tr>
<td>Rebound, RT</td>
<td>32.1</td>
<td>30.9</td>
</tr>
</tbody>
</table>
The addition of amine additive demonstrated a significant improvement in the high temperature stability of the Exp A compound. The rheometer curve at 191°C showed a significant reduction in reversion for the Exp A compound. The Exp A compound also showed a marching modulus which was not observed for the control. This would suggest that even higher temperatures of cure could be tolerated with the experimental compound without appreciable reversion taking place.

Therefore, it is considered herein that a particular benefit of using the amine is the high temperature stability it imparts to sulfur cured rubber compositions.

Claims

1. In accordance with this invention, a rubber composition characterized by comprising (A) 100 parts by weight of at least one diene-based elastomer and (B) 0.5 to 10 phr of a tris(maleamic acid derivative)amine of the following formula I:

 \[
 \text{H}_2\text{O} \quad \text{R}' \quad \text{R}'' \quad \text{O} \\
 \text{I} \quad \text{N}(-	ext{alkylene}-\text{N}-\text{C}-\text{C}=\text{C}-\text{COH})_3
 \]

 wherein the alkylene radical is a saturated linear or branched hydrocarbon radical containing from one to 12 carbon atoms; R' and R'' are the same or different radicals selected from hydrogen, alkyl radicals having from one to 6 carbon atoms, and halo radicals.

2. The rubber composition of claim 1 characterized in that said diene-based elastomer is selected from homopolymers of 1,3-butadiene or isoprene, from copolymers of 1,3-butadiene and isoprene and from copolymers of at least one of 1,3-butadiene and isoprene with a vinyl aromatic monomer selected from styrene and alpha-methylstyrene.

3. The rubber composition of any of the preceding claims characterized in that at least one of said diene-based elastomers is a tin or silicon coupled elastomer or an end functionalized elastomer.

4. The rubber composition of any of the preceding claims characterized in that said alkylene radical is selected from the group consisting of methylene, ethylene, propylene, butylene and pentylene radicals.
5. The rubber composition of any of the preceding claims 1-3 characterized in that said alkylene radical contains from one to four carbon atoms and R' and R" are selected from hydrogen, methyl, chloro and bromo radicals.

6. The rubber composition of any of the preceding claims characterized in that R' and R" are selected from hydrogen and methyl radicals.

7. The rubber composition of claim 1 characterized in that said tris(maleamic acid derivative)amine is a reaction product of a primary tris(aminoalkyl)amine with an acid anhydride.

8. The rubber composition of claim 1 characterized in that said tris(maleamic acid derivative)amine is a reaction product of tris(2-aminoethyl)amine and maleic or citraconic anhydride.

9. The rubber composition of claim 1, 2, or 3 characterized in that said tris(maleamic acid derivative)amine is a reaction product of tris(citraconamic acid methyl)amine, tris(maleamic acid ethyl)amine and tris(citraconamic acid propyl)amine.

10. A tire characterized by having a component of the rubber composition of any of the preceding claims.

11. The tire of claim 10 characterized in that said component is a tread.

Patentansprüche

1. Kautschukzusammensetzung nach der Erfindung, dadurch gekennzeichnet, dass sie umfasst (A) 100 Gew.-Teile mindestens eines Elastomers auf Dienbasis und (B) 0,5 bis 10 ThK eines Tris(maleinsäuremonoamidderivat)amins der folgenden Formel I:

 \[
 \text{H}_2\text{O} \quad \text{R}' \quad \text{R}'' \quad \text{O} \\
 \text{N}(-\text{alkylen}-\text{N}--\text{C}--\text{C}--\text{C}--\text{COH})_3
 \]

 worin der Alkylenrest ein gesättigter, linearer oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist und R' und R" die gleichen oder verschiedene Reste sind, die ausgewählt sind aus Wasserstoff, Alkylresten mit 1 bis 6 Kohlenstoffatomen und Halogenresten.

2. Kautschukzusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass das Elastomer auf Dienbasis ausgewählt ist aus Homopolymeren von 1,3-Butadien oder Isopren, aus Copolymeren von 1,3-Butadien und Isopren und aus Copolymeren von 1,3-Butadien und/oder Isopren mit einem aromatischen Vinylmonomer ausgewählt aus Styrol und α-Methylstyrol.

5. Kautschukzusammensetzung nach irgendeinem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Alkylenrest 1 bis 4 Kohlenstoffatome enthält und R' und R" aus Wasserstoff, Methyl-, Chlor- und Bromresten ausgewählt sind.

7. Kautschukzusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass das Tris(maleinsäuremono-
amidderivat)amin ein Reaktionsprodukt von einem primären Tris(aminooethyl)amin mit einem Säureanhydrid ist.

8. Kautschukzusammensetzung nach Anspruch 1, **dadurch gekennzeichnet, dass** das Tris(maleinsäuremonoamidderivat)amin ein Reaktionsprodukt von Tris(2-aminooethyl)amin und Malein- oder Citraconsäureanhydrid ist.

9. Kautschukzusammensetzung nach Anspruch 1, 2 oder 3, **dadurch gekennzeichnet, dass** das Tris(maleinsäuremonooamidderivat)amin ausgewählt ist aus mindestens einem der Gruppe bestehend aus Tris(citraconsäuremonoamidmethyl)amin, Tris(maleinsäuremonoamidethyl)amin und Tris(citraconsäuremonoamidpropyl)amin.

10. Reifen, **dadurch gekennzeichnet, dass** er eine Komponente aus einer Kautschukzusammensetzung nach irgendeinem der vorhergehenden Ansprüche aufweist.

11. Reifen nach Anspruch 10, **dadurch gekennzeichnet, dass** die Komponente eine Lauffläche ist.

Revendications

1. Composition de caoutchouc **caractérisée par le fait qu**'elle comprend (A) 100 parties en poids d'au moins un élastomère à base diéique et (B), à raison de 0,5 à 10 phr, une tris(dérivé de l'acide maléamique)amine répondant à la formule I ci-après :

 \[
 \text{H} \text{O} \text{R'} \text{R''} \text{O} \\
 \text{\text{N}}(\text{alkylène-N} \text{C} \text{C} \text{C} \text{COH})_3
 \]

 dans laquelle le radical alkylène représente un radical d'hydrocarbure saturé linéaire ou ramifié contenant de 1 à 12 atomes de carbone ; R' et R'' sont identiques ou différents et représentent des radicaux choisis parmi le groupe comprenant un atome d'hydrogène, des radicaux alkyle contenant de 1 à 6 atomes de carbone, et des radicaux halogénés.

2. Composition de caoutchouc selon la revendication 1, **caractérisée en ce que** ledit élastomère à base diéique est choisi parmi des homopolymères du 1,3-butadiène ou de l'isoprène, à partir de copolymère du 1,3-butadiène et de l'isoprène et à partir de copolymère soit du 1,3-butadiène, soit de l'isoprène avec un monomère vinyl-aromatique choisi parmi le groupe comprenant le styrène et l'alpha-méthylstyrène.

3. Composition de caoutchouc selon l'une quelconque des revendications précédentes, **caractérisée en ce qu**'au moins un desdits élastomères à base diéique est un élastomère couplé à de l'étain ou à du silicium ou encore un élastomère à extrémité fonctionnalisée.

4. Composition de caoutchouc selon l'une quelconque des revendications précédentes, **caractérisée en ce que** ledit radical d'alkylène est choisi parmi le groupe constitué par le méthylène, l'éthylène, le propylène, le butylène et le pentylène.

5. Composition de caoutchouc selon l'une quelconque des revendications précédentes 1 à 3, **caractérisée en ce que** ledit radical d'alkylène contient de 1 à 4 atomes de carbone et R' et R'' sont choisis parmi le groupe comprenant un atome d'hydrogène, un groupe méthyle, un groupe chloro et un groupe bromo.

6. Composition de caoutchouc selon l'une quelconque des revendications précédentes, **caractérisée en ce que** R' et R'' sont choisis parmi le groupe comprenant un atome d'hydrogène et un groupe méthyle.

7. Composition de caoutchouc selon la revendication 1, **caractérisé en ce que** ladite tris(dérivé de l'acide maléamique)amine est un produit réactionnel d'une tris(aminooethyl)amine primaire avec un anhydride d'acide.

8. Composition de caoutchouc selon la revendication 1, **caractérisé en ce que** ladite tris(dérivé de l'acide maléamique)amine est un produit réactionnel d'une tris(2-aminooethyl)amine et de l'anhydride maléique ou citraconique.
9. Composition de caoutchouc selon la revendication 1, 2 ou 3, **caractérisée en ce que** ladite tris(dérivé de l'acide maléamique)amine est choisie parmi au moins une amine faisant partie du groupe constitué par la tris(acide citraconamique-méthyl)amine, la tris(acide maléamique-éthyl)amine et la tris(acide citraconamique-propyl)amine.

10. Bandage pneumatique **caractérisé par le fait qu** il possède un composant de la composition de caoutchouc selon l'une quelconque des revendications précédentes.

11. Bandage pneumatique selon la revendication 10, **caractérisé en ce que** ledit composant est une bande de roulement.