PHARMACEUTICAL ANTIVIRAL COMPOSITION COMPRISING GLYCYRRHIZIC ACID AND AT LEAST ONE PROTEIN ENDOWED WITH ANTIVIRAL ACTIVITY

ANTIVIRALE PHARMAZEUTISCHE ZUSAMMENSETZUNGEN WELCHE GLYCYRRHIZINSÄURE UND MINDESTENS EIN PROTEIN MIT ANTIVIRALER WIRKSAMKEIT ENTHALTEN

COMPOSITION ANTIVIRALE PHARMACEUTIQUE COMPRENANT DE L’ACIDE GLYCYRRHIZIQUE ET AU MOINS UNE PROTEINE PRESENTANT UNE ACTIVITE ANTIVIRALE

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

Designated Extension States:
LV RO SI

Priority: 14.05.1997 IT MI971119

Date of publication of application: 23.02.2000 Bulletin 2000/08

Inventors:
• POMPEI, Raffaello I-09045 Quartu Sant’Elena (IT)

Representative: Marchi, Massimo, Dr. et al Marchi & Partners, Via Pirelli, 19 20124 Milano (IT)

References cited:
EP-A- 0 275 457
• DATABASE WPI Section Ch, Week 9131 Derwent Publications Ltd., London, GB; Class A96, AN 91-226430 XP002053255 & JP 03 145432 A (ZERIA SHINYAKU KOGYO KK) , 20 June 1991

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to a pharmaceutical antiviral composition comprising glycyrrhizic acid and at least one protein endowed with antiviral activity.

Currently, aciclovir is therefore the most used drug in the treatment of mouth and lip lesions (rash from fever) but its topical use often causes burning and irritation of mucous membranes. Moreover, aciclovir is fairly efficient when administered during the first infection, but is not very effective in the case of recurring infections, thus being non-resolutive and not preventing re-infection by Herpes Simplex Virus type 1.

Additionally, oral treatment has the disadvantage of causing side effects such as nausea, diarrhoea, itching, headaches, renal inadequacies and nephrotoxicity.

Therefore, there is still a real need for a drug which is active in the treatment of infections from Herpes Simplex Virus type 1 even in the case of recurring infections and which is free from side effects.

Indeed, it has also been known that glycyrrhizic acid shows a certain antiviral activity. At antiviral doses, it largely inhibits the synthesis of viral glycopolypeptides and only at very high doses does it also inhibit the cell glycopolypeptides synthesis. In fact while the action of the glycyrrhizic acid on the synthesis of proteins, both in normal cells and infected cells, is practically irrelevant even at doses of 4 mM, the synthesis of glyco-polypeptides shows a substantial difference in normal and infected cells. In fact, at the concentration of 0.5 mM (which inhibits 50% of viral replication) glycyrrhizic acid causes a reduction in the incorporation of glucosamine-H₂ of more than 10% in infected cells and no inhibition in normal cells. An increased dose of glycyrrhizic acid up to 1 mM, causes an 80% reduction of the virus, no inhibition of the synthesis of glyco-polypeptides in the control and a 20% reduction in the synthesis of glycoprotein in infected cells. At 4 mM, the synthesis of glyco-polypeptides in the normal cells is also slightly altered, but the production of the virus is inhibited by 99% ("L'Igiene Moderna", Pompei R. and Marcialis M.A., 83, 385-391, 1985).

Furthermore, Table A shows the results of tests carried out treating cells infected by HSV1 with 8 mM glycyrrhizic acid. The infected cells have been kept in contact with the glycyrrhizic acid for 2 hours at 37°C. The experimental results given in the Table show that there is a strong decrease in infection at 12, 17 and 22 hours and that the cells retain their cellular integrity. The inhibition is of about 2 logarithms at 12 hours from the infection and 3 logarithms (99.9%) at 22 hours from infection ("Nature", Pompei R. et al., 281, No. 5733, 689-690, 1979).

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>17</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3x10⁶</td>
<td>5.4 x 10⁶</td>
<td>2.6 x 10⁷</td>
</tr>
<tr>
<td>Glycyrrhizic acid 8mM</td>
<td>4.2 x 10⁴</td>
<td>1.2 x 10⁴</td>
<td>1.1 x 10⁴</td>
</tr>
</tbody>
</table>

* PFU = plaque forming viral unit.

It has now surprisingly been found that glycyrrhizic acid has a synergistic effect on the proteins endowed with...
antiviral activity.

Therefore, it is a first object of this invention to provide a pharmaceutical composition characterized in that it comprises glycyrrhiza acid and at least one protein having antiviral activity.

Preferably, the protein is selected from the group comprising the lysozymes and the lactoferrins.

Typical examples of lysozymes are turkey lysozyme, human lysozyme, chicken lysozyme, heat-inactivated chicken lysozyme and chicken lysozyme digested with trypsin. Preferably, the lysozyme is a chicken lysozyme or a human lysozyme.

Typical examples of lactoferrins are bovine and human lactoferrins.

Typically, the virus is of a herpetic type. Even more preferably it is the Herpes Simplex Virus type 1 (HSV1).

Preferably, the pharmaceutical compositions of this invention are prepared in the form of suitable dosage forms. Examples of suitable dosage forms are creams, ointments and medicated plasters, for topical administration.

Typically, the pharmaceutical composition of this invention is useful in the treatment of topical viral infections.

Preferably, the virus is of a herpetic type. Even more preferably it is the Herpes Simplex Virus type 1 (HSV1).

Preferably, the pharmaceutical compositions of this invention are prepared in the form of suitable dosage forms, Examples of suitable dosage forms are creams, ointments and medicated plasters, for topical administration.

The dosage forms may also contain other conventional ingredients, such as: preservatives, stabilisers, surfactants, buffers, salts to regulate osmotic pressure, emulsifiers, sweeteners, colouring agents, flavouring agents and the like.

The amount of active ingredients in the pharmaceutical composition of this invention may vary within a wide range depending on known factors such as, for example, stage and severity of the infection, body weight of the patient, type of the dosage form, administration route, number of dosage forms administered per day and the efficacy of the active ingredients. However, the optimum amount will be determined readily and routinely by a person skilled in the art.

The dosage forms of the pharmaceutical composition of this invention may be prepared according to techniques which are well known to the pharmaceutical chemist, and comprise mixing, granulation, compression, dissolution and the like.

The following examples are intended to illustrate this invention without limiting it in any way.

The compounds used in the experiments were:

- glycyrrhiza acid (as ammonium salt) supplied by FLUKA AG;
- Herpes Simplex Virus type 1 supplied by the NIH, Rockville, Maryland;
- chicken lysozyme supplied by SIGMA;
- lactoferrin supplied by SIGMA;
- VERO cell from kidney of African green monkey from ICN FLOW, Costa Mesa, CA;
- Eagle medium modified by Dulbecco (DMEM), added with calf foetal serum, inactivated for 30’ at 56°C, supplied by ICN FLOW, Costa Mesa, CA.

EXAMPLE 1

Monolayers of VERO cells were plated on 24 wells plates and infected with about 1 HSV1 viral infecting unit x 100 cells for one hour at room temperature. Then different amounts from 0 to 8 mg/ml of chicken, turkey and human lysozymes were added in a thermostat at 37°C and in the presence of CO₂ (5%).

After 48 hours, when the cytopathic effect was total in the control, the cells were frozen and defrosted twice to cause rupture and, therefore, the release of the virus.

The concentration of infecting viral particles produced for each dilution of lysozyme was titrated after centrifugation. Titration was carried out by diluting the content of each well from 10⁻¹ to 10⁻⁷ and putting it in contact with cell monolayers in a multiwell having 6 wells each for 1 hour at room temperature.

Once the infection had occurred, the cells were covered with a layer of nutritive agar and, after 48 hours of incubation, they were coloured with neutral red, and the macroscopically visible viral plaques were counted. Thus the inhibition percentage obtained on the viral plaque by lysozyme compared with the control was established.

The experimental data obtained in this way are given in Table 1.

<table>
<thead>
<tr>
<th>Inhibition (%) of viral plaques with various lysozymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doses (mg/ml)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Chicken</td>
</tr>
<tr>
<td>Turkey</td>
</tr>
<tr>
<td>Human</td>
</tr>
</tbody>
</table>

*Percentage of the control ± standard deviation.
[0029] Table 1 shows that:

1) chicken lysozyme

 i) significantly inhibits the formation of herpetic virus plaques on VERO cells;
 ii) the action is dose-dependent;
 iii) at the dose of 8 mg/ml inhibits HSV1 of about 92%;
 iv) the 50% inhibiting dose (ID50) is of about 1 mg/ml;

2) the turkey and human lysozymes showed an antitherpetic activity similar to chicken lysozyme.

EXAMPLE 2

[0030] It was carried out as Example 1 except that different amounts of from 0 to 1 mg/ml of glycyrrhizic acid alone were added to the monolayers of VERO cells infected with HSV1. The experimental results are shown in Table 2.

<table>
<thead>
<tr>
<th>Doses (mg/ml)</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition (%)</td>
<td>0</td>
<td>10±4</td>
<td>27±7</td>
<td>50±8</td>
<td>75±12</td>
</tr>
</tbody>
</table>

EXAMPLE 3

[0031] It was carried out as Example 1 except that 0.5 mg/ml of glycyrrhizic acid and different amounts of chicken lysozyme of from 0 to 1 mg/ml were added to the monolayers of VERO cells infected with HSV1.

[0032] The experimental results are shown in Table 3.

<table>
<thead>
<tr>
<th>Chicken lysozyme/ doses (mg/ml)</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition (%)</td>
<td>72±6</td>
<td>83±8</td>
<td>85±8</td>
<td>87±9</td>
<td>88±8</td>
</tr>
</tbody>
</table>

[0033] As can be seen from Table 3, the associations of glycyrrhizic acid and lysozymes are characterized by a marked synergic effect. For example, in view of the sum of the activities measured separately (Tables 1 and 2), the inhibition (%) expected for an association comprising 0.5 mg/ml of chicken lysozyme and 0.5 mg/ml of glycyrrhizic acid is of about 35-40%. In contrast, the results shown in Table 3 prove that the inhibition (%) of this association is about 84%.

[0034] The synergy is confirmed by the FIC index, which in the case in examination is 0.125.

[0035] As it is known, the FIC index (fractioned inhibiting concentrations) is obtained by dividing the 50% viral inhibiting concentration of the mixture of the two products by the 50% viral inhibiting dose of each product singly. A FIC index ≤ 0.5 means that there is a significant synergy between the two products.

EXAMPLE 4

[0036] It was carried out as Example 1 except that different amounts of bovine and human lactoferrin were added to the monolayers of VERO cells infected with HSV1.

[0037] The experimental data obtained in this way are given in Table 4.
Table 4 shows that the lactoferrins are not very toxic and that their viral action is already very pronounced at levels significantly below toxic ones.

EXAMPLE 5

It was carried out as Example 1 except that 0.5 mg/ml of glycyrrhizic acid and different amounts from 0 to 1 mg/ml of human lactoferrin were added to the monolayers of VERO cells infected with HSV1.

TABLE 5

<table>
<thead>
<tr>
<th>Inhibition (%) of viral plaques (Glycyrrhizic acid 0.5 mg/ml + Different doses of human lactoferrin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. lactoferrin doses mg/ml</td>
</tr>
<tr>
<td>Inhibition (%)</td>
</tr>
</tbody>
</table>

As can be seen from Table 5, the associations of glycyrrhizic acid and lactoferrin are characterized by a marked synergic effect. For example, in view of the sum of the activity measured separately (Tables 2 and 4), the expected inhibition (%) of an association comprising 0.25 mg/ml of lactoferrin and 0.5 mg/ml of glycyrrhizic acid is of about 65-75%. In contrast, the results shown in Table 5 prove that the inhibition (%) of this association is about 100%.

EXAMPLE 6

It was carried out as Example 1 except that 0.5 mg/ml of glycyrrhizic acid, 0.1 mg/ml of human lactoferrin and different amounts of from 0 to 1 mg/ml of chicken lysozyme were added to the monolayers of VERO cells infected with HSV1.

TABLE 6

<table>
<thead>
<tr>
<th>Inhibition (%) of viral plaques (Glycyrrhizic acid 0.5 mg/ml and human lactoferrin 0.1 mg/ml + Different doses of chicken lysozyme)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken lysozyme/ doses (mg/ml)</td>
</tr>
<tr>
<td>Inhibition (%)</td>
</tr>
</tbody>
</table>

As can be seen from Table 6, the associations of glycyrrhizic acid, lactoferrin and lysozymes are characterized by a marked synergic effect. For example, in view of the sum of the activity measured separately, the expected inhibition (%) of an association comprising 0.1 mg/ml of lactoferrin, 0.5 mg/ml of glycyrrhizic acid and 0.5 mg/ml of lysozyme is about 65%. In contrast, the results shown in Table 6 show that the inhibition (%) of this association is about 98%.
Claims

1. A pharmaceutical composition characterized in that it comprises glycyrrhizic acid and at least one protein having antiviral activity provided, however, that when said protein is a lysozyme and the composition is in form of an aqueous solution it does not contain a salt of an alkali or alkaline-earth metal.

2. A composition according to claim 1, characterized in that said protein is a lysozyme and/or a lactoferrin.

3. A composition according to claim 2, characterized in that the lysozyme is selected from the group comprising chicken lysozyme, turkey lysozyme, human lysozyme, heat-inactivated chicken lysozyme, chicken lysozyme digested with trypsin.

4. A composition according to claim 2, characterized in that lactoferrin is a human or bovine lactoferrin.

Patentansprüche

1. Pharmazeutische Zusammensetzung, dadurch gekennzeichnet, dass sie Glycyrrhizinsäure und mindestens ein Protein mit einer antiviralen Aktivität umfasst, mit der Massgabe, dass, wenn das Protein ein Lysozym ist und sich die Zusammensetzung in Form einer wässrigen Lösung befindet, sie kein Salz eines Alkali- oder Erdalkalimetalls enthält.

2. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass das Protein ein Lysozym und/oder ein Lactoferrin ist.

Revendications

1. Composition pharmaceutique caractérisée en ce qu'elle comprend de l'acide glycyrrhizique et au mois une protéine possédant une activité antivirale à la condition que, toutefois, quand ladite protéine est un lysozyme et que la composition se trouve sous la forme d'une solution aqueuse, elle ne contient pas de sel d'un alcali ou de métal minéral calcin.

2. Composition selon la revendication 1, caractérisée en ce que ladite protéine est un lysozyme et/ou une lactoferrine.

3. Composition selon la revendication 2, caractérisée en ce que le lysozyme est sélectionné dans le groupe comprenant le lysozyme de poulet, le lysozyme de dinde, le lysozyme humain, le lysozyme de poulet inactivé à la chaleur, le lysozyme de poulet digéré à la trypsine.

4. Composition selon la revendication 2, caractérisée en ce que la lactoferrine est une lactoferrine humaine ou bovine.